Difficulty-Net: Learning to Predict Difficulty for Long-Tailed Recognition
Supplementary Material

Imb. Train Val / Meta Test
CIFAR-LT 10200 49-2/490 10 100
ImageNet-LT 256 571280 10 50
Places-LT 996 574980 10 100

Table 5: The imbalance ratio (Imb.) and the number of sam-
ples per class in each datasets. Since the training splits are
imbalanced, we show the number of samples in the least
and most frequent classes. Note that exactly the same set of
images are used for both the validation sets and meta sets.
This indicates that meta-learning based methods including
ours do not exploit any extra data.

1. More implementation details
1.1. More details on datasets

Table 5 shows the number of samples in training, vali-
dation, and test splits in each dataset. As shown in the ta-
ble, meta-learning (ML) based methods including ours and
[18, 29] reuse validation images for constructing gmeta g
dataset to be used for meta learning. Note that (1) our pro-
posed method was compared with other ML based methods
in exactly the same conditions, (2) we re-ran the experi-
ments using public codes of previous methods and therefore
all the methods compared in this paper are evaluated using
exactly the same split as shown above, and (3) all the ML
based methods including ours do not use any extra data, and
therefore they do not receive any unfair benefit compared to
other methods by having §™¢'¢. All the hyper-parameters
were tuned using the validation sets.

1.2. Hyperparameter settings

For CIFAR100-LT, following [36, 6], we use AutoAug-
ment [4] and Cutout [10]. Following [36], we train ResNet-
32 [14] for 12.8K steps with a batch size of 128 and an ini-
tial learning rate of 0.1. The learning rate is linearly warmed
up to 0.2 over the first 400 steps. It is also decayed by 0.1
after 6.4K and 9.6K steps. For the classifier learning stage
in decoupled learning methods, we fix the feature extractor
and re-train the classifier for 50 steps using class-balanced

sampling following [19]. The learning rate used is 0.1 and is
decayed by 0.1 after 30 and 40 epochs. For both the stages,
we use a weight decay of 1e—4. CIFAR100-LT experiments
are done on a single NVIDIA Tesla V100 GPU.

For ImageNet-LT, we follow [51] and train the models
for 180 steps with an initial learning rate of 0.05. The batch
size used is 128. We use cosine learning rate decay and
weight decay of 5e — 4. In decoupled training, for the sec-
ond stage we only re-train the classifier for 10 steps using
batch size 128 and cosine decayed learning rate with an ini-
tial value of 0.05. The models are trained on four NVIDIA
Tesla V100 GPUs.

For Places-LT, following [51, 24] we load a ResNet-152
pretrained on ImageNet and then finetune it for 30 steps
using an initial learning rate of 0.01 and weight decay of
5e — 4. The learning rate is decayed by 0.1 after 10 and 20
steps. The batch size used is 128. For the classifier learn-
ing stage, we retrain the classifier for 20 steps with a batch
size of 256 and initial learning rate of 0.1, which is cosine
decayed. The training is done on four NVIDIA Tesla V100
GPUs.

For all the datasets, we use SGD optimizer with momen-
tum 0.9. For Difficulty-Net learning, we use ADAM op-
timizer with a learning rate of 0.001 and a weight decay
le — 4. All implementations are done on PyTorch.

1.3. Designing the Difficulty-Net

As stated in Sec. 3.2, our Difficulty-Net is a MLP with
2 hidden layers. The illustration of our Difficulty-Net is
given in Fig. 5. The output layer dimension changes with
the number of classes in the dataset. Here we provide a
simple way to select the hidden layer dimensions H. To
come up with the method, we compare the end-to-end train-
ing performance using different values for 4 on 2 different
datasets. The results are given in Table 6.

We find that the best working H is different for different
datasets. Therefore, based on the results, we decide to select
H = 2" such that 2"~ ! < C < 27, where C is the number
of classes and n is a positive integer.

The value of C' and H for the three different datasets that
we used are given in Table 7.

1)3\\\

, 9

Y ‘Il N
\{\ ’.‘A
\‘

Input layer
dim=C

Hidden layer 1 Hidden layer 2 Output layer
dim=H dim=H dim=C

Figure 5: Illustration of our Difficulty-Net

CIFARI100-LT ImageNet-LT

= (C'=100) (C' = 1000)
128 47.96 39.4
256 48.06 40.4
512 47.81 41.2
1024 47.34 414
2048 46.92 40.8

Table 6: Effect of H on e2e training of ResNet-32
and ResNet-10 on CIFAR100-LT (imbalance=100) and
ImageNet-LT respectively.

Dataset C H

CIFARI100-LT 100 128
ImageNet-LT 1000 1024
Places-LT 365 512

Table 7: C and H for datasets used in our experiments.

1.4. Algorithm for meta-learning via Difficulty-Net

The algorithm for our Difficulty-Net based learning is
provided in Algorithm 1. As stated in Sec. 3.2, our learning
method comprises of three main steps (Eq. 9,10 and 11) that
are represented by steps 7, 8 and 10 in the algorithm. Note
that in our algorithm, S™¢!% is reused as validation set SV
for calculating accuracies.

2. More Results

2.1. CIFAR100-LT results without using extra aug-
mentations

For the CIFAR100-LT results reported in Table 1, we
used extra augmentations (AutoAugment [4] and Cutout
[10]) to ensure same training setups as recent SOTA meth-

Algorithm 1 Meta-learning using Difficulty-Net

Require: Training set S'"%" Meta dataset S™¢¢
Require: Initial learnable parameters 6; and ¢,
Require: Max iterations 7', Value of A
Require: Learning rates «, 8 and batch sizes b, m
I: fort=1...Tdo
Compute Ac ¢ using f(x; ¢¢) on S™ete
Sample mini-batch of size b from S @
Sample mini-batch of size m from S™ete
Compute weights with Ac ; and 6; using Eq. 4
Compute intermediate ¢ (6;) using Eq. 9
Update 6, to 6,1 using Eq. 10
Re-compute Eq. 4 with A¢c; and 0;41
9: Update ¢ to ¢;1 using Eq. 11
10: end for
Output: o7 1,0741

® D DAL

ods such as PaCo[6], BALMS [26] and DRO-LT[28] for
fair comparison. As expected, these additional augmenta-
tion techniques provide a significant boost in the results. To
verify that our proposed method is effective independent of
these extra augmentations, we compare the results of our
method with other SOTA methods without using the aug-
mentation techniques. The results are reported in Table 8.
With or without extra augmentations, Ours + LAS proves to
be very effective.

2.2. ImageNet-LT results on many-, med- and few-
shot classes

In Table 2, we saw that our proposed method helps to
achieve the best overall accuracy. Here we study the ef-
fectiveness of our method for each of many-, medium- and
few-shot classes. The comparison results are given in Ta-
ble 9. We find that in both e2e learning and decoupled learn-
ing, Difficulty-Net based weight assignment helps to signif-
icantly boost the performance of the few-shot and medium-
shot classes. We believe this result indicates the strong
capability of Difficulty-Net based weighting in mitigating
biased performance caused by the class imbalance. Espe-
cially, Ours + LAS is the most effective for the few-shot
classes, irrespective of the model used.

2.3. ImageNet-LT Results Using RandAugment

In Table 2, we reproduced the results of PaCo [6] without
using RandAugment [5] for the sake of fair comparison with
all the other methods that do not use RandAugment. How-
ever, the originally reported results in [6] use RandAugment
as additional augmentation, which are significantly higher
than the reproduced results. This suggests that PaCo is
greatly benefited by the use of RandAugment. Therefore,
we used RandAugment with our method and compared the
results with PaCo in Table 10. We only used Ours + LAS for

Imbalance
Method 200 100 S50 20 10
e2e training
Focal Loss [23] } 35.62 38.41 44.32 51.95 55.78
MWN [29] } 37.91 42.09 46.74 54.37 58.46

Class-Balanced [7] T 36.23 39.60 45.32 52.99 57.99
CB-DA [18] T 39.31 43.35 48.53 55.62 59.58
LDAM [2] t - 39.60 - - 5691

EQL [36] t 37.34 40.54 44.70 54.12 58.32
CDB-CE [31] { 37.40 42.57 46.78 54.22 58.74
PaCo [6] 36.96 40.92 46.97 53.66 59.59

+ Bal. Softmax [26] 39.55 44.13 48.60 55.89 60.24
Ours 39.94 43.82 49.00 55.70 60.25
+ Bal. Softmax 41.43 45.81 51.14 56.58 61.33

decoupled learning

cRT [19] 40.13 44.04 48.97 55.67 59.54
LWS [19] 40.70 45.05 49.70 56.22 60.00
LAS [51] 40.76 45.32 49.96 56.66 59.96
BALMS [26] 39.58 44.64 48.52 54.28 58.34
MWN + cRT 40.57 44.00 49.47 56.05 59.64
MWN + LWS 40.48 44.52 49.10 55.89 59.48
MWN + LAS 40.94 44.64 49.15 55.91 59.24
Ours + cRT 41.12 45.41 50.50 56.30 60.86
Ours + LWS 41.67 46.04 51.27 56.66 61.30
Ours + LAS 42.19 46.42 51.60 56.82 61.47

Table 8: Top-1 classification accuracy (%) on CIFAR100-
LT without using extra augmentation i.e. AutoAugment and
Cutout. { denotes copied results from origin paper [31, 18].
The best results are made bold while the second best results
are underlined, which applies for the other tables as well.

the comparison because Ours + LAS is the best performing
decoupled learning method as seen in Table 1,2 and 3.

From Table 10, we find that using Rand Augment benefits
our method as well. With or without RandAugment [5],
Ours+LAS outperformed PaCo.

2.4. Comparison on ImageNet-LT with MoE meth-
ods

In Sec. 4.4, we did not compare our proposed method di-
rectly to mixture of experts (MoE) methods as the latter uses
multiple experts while we focus on improving the learning
of a single expert. For the fair comparison with MoE meth-
ods, we created an ensemble of Difficulty-Net based trained
models. For the ensemble creation, we trained two expert
models using Ours + LAS decoupled learning. The back-
bone architectures of these two models were kept the same.
The only difference between these models was that one used
a linear classifier and the other used a cosine classifier. Dur-
ing inference, we simply took the mean outputs of these two
models. The results of this simple ensemble is provided in

Table 11.

As can be seen, although our ensemble comprises of only
two expert models, it performs significantly better than 3-
experts and 4-experts RIDE [41]. This shows that our pro-
posed Difficulty-Net is effective in learning expert models
for MoE methods. However, the current ensemble is heuris-
tic and a detailed research on contribution of Difficulty-Net
in MoE is left for the future.

2.5. More results on sample-level v/s class-level dif-
ficulty

As empirically verified in Table 4, class-level difficulty is
more effective than sample-level difficulty in our Difficulty-
Net. We believe that this happens because as stated in
[31] and Sec. 4.5, the absolute number of hard samples in
head classes is significantly higher than that in tail classes
due to the inherent long-tail characteristic of the dataset.
Using sample-level difficulty gives high weights to all the
hard samples irrespective of their classes, resulting in more
weights for the head classes and therefore getting the model
biased to the head classes.

We verified this by conducting a simple experiment on
CIFARI100-LT. For 2 classes A and B with 376 and 46 train-
ing samples respectively, the absolute number of hard sam-
ples given high weights by sample-level method was higher
for A(50) than B(13). Although higher proportion of sam-
ples in B(x 28%) received high weights compared to A
(=~ 13%), A got more weights compared to B due to its
higher absolute number of hard samples. As a result, the
accuracy for A is improved from 46% to 62% and that for
B is decreased from 31% to 21%, hence boosting the bias.
In such case, using class-level difficulty gives high weights
to all samples of B, resulting in more weights for B. As a
result, the accuracy on B was improved from 31% to 40%,
while that on A was almost maintained (46% to 44%).

The effectiveness of class-level difficulty in Difficulty-
Net for overcoming model bias is further verified in Ta-
ble 12. Using sample-level difficulty causes the model to
get biased towards the many-shot classes while class-level
difficulty is particularly useful for improving performance
on the med-shot and few-shot classes.

Backbone Network | ResNet-10 | ResNet-50

Method ‘Many Medium Few Overall‘Many Medium Few Overall
e2e training
CE 57.6 257 32 34.8|64.0 38.8 5.8 41.6
Focal Loss [23] 364 299 16.0 30.5|- - - -
OLTR [24] 432 35.1 18.5 35.6|- - - -
EQL [36] - - - 36.4|— - - -
CDB-CE [31] - - - 38.5|— - - -
Bal. Softmax [26] 55.8 35.7 209 41.1|- - - -
PaCo[6]" - - - —(68.4 44.8 147 498
+ Bal. Softmax [26]" |- - - —59.9 52.6 36.1 535
Ours 58.8 36.4 13.9 41.4(68.1 472 215 512
+ Bal. Softmax 54.6 41.6 27.8 443|63.6 514 358 537
decoupled learning
cRT [19] - - - 41.8|58.8 44.0 26.1 473
LWS [19] - - - 41.4|57.1 452 29.3 477
MiSLAS [51] - - - —-61.7 51.3 358 527
BALMS [26] 50.3 39.5 253 41.8|- - - -
Ours + cRT 533 41.1 274 43.6/63.2 51.8 352 535
Ours + LWS 51.6 43.7 293 444/625 523 366 537
Ours + LAS 51.8 43.6 30.2 44.6/62.9 52.6 36.8 54.0

Table 9: Top-1 accuracy (%) on many-, medium- and few-shot classes of ImageNet-LT. * represents results reproduced using
author’s codes without using RandAugment [5] for fair comparison. Other results are copied from original papers.

Method ResNet-10 ResNet-50
PaCo + Bal. Softmax [6] - 57.0
Ours + LAS 46.9 57.4

Table 10: Top-1 accuracy (%) using RandAugment[5].

Baseline results are copied from the original paper [6].
Imbalance \ 100 \ 10

Difficulty ‘Many Med Few All ‘Many Med Few All

Sample-level 67.00 47.46 18.99 45.76|74.50 61.01 48.02 62.51
Class-level (ours)|64.47 51.21 24.92 47.96|70.48 64.40 53.36 63.52

Method ResNet-10 ResNet-50

LEME [45] 388 ~ Table 12: Comparison of sample-level difficulty and class-
RIDE (2 experts) [41] - 544 level difficulty on CIFAR100-LT.

RIDE (3 experts) [41] - 54.9

RIDE (4 experts) [41] - 554

Ours (2 experts) 47.5 56.2

Table 11: Comparison with mixture of expert methods.
Baseline results are copied from the original papers [45, 41].

