
[Supplementary] Controllable 3D Generative Adversarial Face Model via
Disentangling Shape and Appearance

Appendix 1
Expression generator conditioned on identity: A

commonly acknowledged fact about human faces is each
individual’s ability to express themselves uniquely with dif-
ferences in the fine details. The expression generator when
trained with inputs as (znoise, zexp) can generate only a sin-
gle style of expression for each identity. By using the Gexp

conditioned on zid, our model can modify the style of ex-
pression associated with a shape’s identity by changing only
the zid code in Gexp, thereby increasing the overall diver-
sity. As illustrated in Fig. 1(a), the same identity has the
“smile” expression in various styles. In Fig. 1(b), the source
identity has a “mouth right” expression, and the target has
the same expression with a slight smile and deeper lip cor-
ner, which is transferred onto the source shape.

Visualization of generated samples: The embedding
space of generated samples with the same level of expres-
sions is futher explored. Specifically, we conduct t-SNE on
5000 samples generated by our model, including 250 differ-
ent identities with 20 different expressions each. As shown
in Fig. 2(a), the samples with the same identity are within
the same cluster. Fig. 2(b), while, shows that samples with
the same expression are within the same cluster.

We also explore the embedding space of generated sam-
ples with different levels of expressions. 3000 samples are
generated including 15 different levels for all 20 expres-
sions, and each level of a specific expression has 10 sam-
ples. The intensity of expression varies from 0.0 to 1.5
(higher values of number mean a higher level of intensity of
expression). As shown in Fig. 3(a) by t-SNE, all the clusters
can be roughly divided into two categories, i.e., ones with
pure colors and others with mixed colors. Each color repre-
sents a specific expression. We randomly zoom in a cluster
with pure color (region A) and the expression levels are pri-
marily high values (above 0.5). We observed that samples
close to the cluster’s center have higher values (the most
immediate samples have the highest values of 1.5). This
is because samples with higher levels or intensities visually
have more prominent expressions and they are more likely
to belong to that corresponding expressions, and so does
their embedding space as in Fig. 3(b). The samples with
lower levels of expressions, on the other hand, are more

like ’neutral’ expression even though they belong to differ-
ent expressions. As shown in Fig. 3(c), we randomly zoom
in a cluster with mixed color (region B), and the expression
levels are mostly low values (lower than 0.5). Besides, the
more samples are close to the cluster’s center, the lower val-
ues they have (the extreme case is that samples in the center
have the lowest values, i.e., 0.0).

This set of experiments shows that our generative model
can not only generate different levels of expressions visually
but also make sense semantically in the corresponding em-
bedding space. And our model indeed encodes identity and
expression information in an implicitly meaningful way.

Appendix 2

Here we present the results when the AUs are incorrect
are shown in Fig. 4. We can observe that GANimation re-
sults hardly change since, with the wrong facial landmarks,
the model regards the value of action units corresponding to
the mouth region as nearly a constant from the source to the
target. In this way, the images will not change no matter we
perform interpolation or extrapolation.
In conclusion, our method has superior expression intensity
control compared with GANimation.
Architecture details: In table 1 and table 2 we detail the
architecture of our encoder and decoder. Here, num verts
denotes the number of a shape’s vertices within a dataset
and num verts × 3 means the dimension of the flattened
vector comprising all vertices’ 3D coordinates (x, y, z).
Besides, nid and nexp are the number of identities and
expressions within a dataset, respectively. In particular,
num verts = 26317, nid = 847 and nexp = 20 for
FaceScape dataset and num verts = 22127, nid = 267
and nexp = 7 for Comb dataset. In table 3 and table 4, we
detail the architecture of our generator and discriminator.
Identity code zid and noise code znoise are sampled from
Gaussian distribution and expression code is a one-hot vec-
tor. We use LeakyReLU with a slope of 0.2 as our activation
function.



Appendix 3
Fig. 5 illustrates extrapolation along the textures of ran-

domly generated identities. By fixing the expression code,
we can fix the expression and change the identity by varying
the identity code and vice versa. Fig. 6 shows the rendered
faces with the corresponding meshes for a given ID and dif-
ferent expressions.

We also trained our model on BP4D dataset - a highly
diverse dataset. The dataset are labeled by AUs and tasks
instead of holistic expression labels. However, for each of
the basic facial expressions, we can obtain their prototypical
AUs based on the facial action coding system (FACS) [2].
For example, the work [1] has done a study and provided
a set of weights which indicates the percentage of the spe-
cific expression in which the AU are activated. Following
the same model, we used the same weights to annotate the
images with different facial expressions. For example, hap-
piness is represented (see Table 1 in [1]) by AU12, AU25,
AU6, AU77, AU10, with the corresponding weights of 0.82,
0.7, 0.57, 0.83, 0.63, respectively. Here, for each video
frame in the BP4D dataset, we calculate the level of each
expression and pick the frame which gives us the maximum
score for that expression.



(a) Same identity having different styles of “smile” expression. (b) Transferring expression style of target to
source.

Figure 1. Style editing: changing only the zid code in Gexp , the style of expression or fine details can be transferred while preserving the
identity.

(a) (b)

Figure 2. (a) and (b) are visualization results of identity and expression embedding respectively of generated samples with same level of
expressions using t-SNE. There are 20 colors in each figure indicating the 20 expressions.

References
[1] Dimitrios Kollias, Viktoriia Sharmanska, and Stefanos

Zafeiriou. Distribution matching for heterogeneous multi-
task learning: a large-scale face study. arXiv preprint
arXiv:2105.03790, 2021.

[2] Erika L Rosenberg and Paul Ekman. What the face reveals:
Basic and applied studies of spontaneous expression using
the Facial Action Coding System (FACS). Oxford University
Press, 2020.



(a) (b) (c)

Figure 3. (a) visualization of expression embedding of generated samples with different levels of expressions using t-SNE. (b) zoom of
region A of (a) and (c) zoom of region B of (a). The numbers in (b) and (c) denote the different levels or intensities of expressions.

Figure 4. The same setting as the last Figure. Mouth stretch on sample 8.

Figure 5. Generated Textures.



Figure 6. Meshes and rendered images of same ID, different expressions. The first row shows meshes generated using our shape generator
and the second row shows the corresponding rendered images using the textures from the texture generator.

Table 1. The architecture of encoder
ID encoder Exp encoder

Input num verts× 3 num verts× 3
Linear num verts× 3→ 1024 num verts× 3→ 1024

Activation LeakyReLU(0.2)
Linear 1024→512 1024→512

Activation LeakyReLU(0.2)
Linear 512→100 512→30
Output ID Embedding Exp Embedding

Classification Layer Classification Layer
Linear 100→ nid 30→ nexp

Output ID class Exp class

Table 2. The architecture of decoder
ID decoder Exp decoder

Input ID embedding Exp embedding
Linear ID embedding → 512 Exp embedding → 512

Activation LeakyReLU(0.2)
Linear 512→1024 512→1024

Activation LeakyReLU(0.2)
Linear 1024→ num verts× 3 1024→ num verts× 3
Output num verts× 3 num verts× 3

Table 3. The architecture of ID generator Gid, Exp generator Gexp

Gid Gexp

Input zid + znoise zid + zexp + znoise

Linear (20 + 5)→ 512 (20 + 20 + 5)→512
Activation LeakyReLU(0.2)

Linear 512→512 512→512
Activation LeakyReLU(0.2)

Linear 512→1024 512→1024
Activation LeakyReLU(0.2)

Linear 1024→100 1024→30
Output ID embedding Exp embedding



Table 4. The architecture of discriminator D
D

Input ID embedding + Exp embedding
Common branch

Linear (100 + 30)→ 1024
Activation LeakyReLU(0.2)

Linear 1024→512
Activation LeakyReLU(0.2)

Linear 512→256
Activation LeakyReLU(0.2)

Discriminator branch
Linear 256→1
Output Real or Fake

ID branch
Linear 256→ nid

Output ID class
Exp branch

Linear 256→ nexp

Output Exp class


