S1. Supplementary
S1.1. Explanability vs. Interpretability

In this paper, we alternatively utilize both the terms “ex-
plainability”” and “Interpretability” for illustration. To avoid
confusion, we follow the definition of [30]: Interpretabil-
ity indicates that the model is inherently interpretable (pri-
ori), while explainability implies that the model is explained
with post-hoc approaches (posterio). For instance, among
the two methods involving in this paper for trustworthiness,
Gini Importance based on the impurity is a property of the
model itself and is therefore known as “interpretability”,
while Grouped feature ablation belongs to “explainability”,
as we calculate it by posterior approaches such as feature
ablation and retraining. However, for simplicity, we de-
scribe the results of the two methods jointly as “explana-
tions”.

S1.2. Hausdorff dimension
The Hausdorff dimension can be formulated as:
dimpy (X) :=inf{d > 0: H X) =0}  (SD

where H?(X) is d-dimensional Hausdorff Measure and
formulated as:

H(S) = inf {Z(diam U : | JUi 2 8, diamU; < &
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(52)
S1.3. Equidistance vs. Exponential window sizes

Fig. [ST]illustrates the difference in coverage between
equidistant and exponential window sizes. If the window
size decreases equidistantly, the coverage explodes when
the window size is small, which results in a large number of
repetitive statistical features (the top right plot). The win-
dow shrinks progressively slower in the exponential win-
dow size, leading to a smoother increase in the coverage
(the bottom left plot).

S1.4. Visualization of Gaussian features

As a supplement to Section [3.2] Figure [S2]illustrates the
visualization of Gaussian features.

S1.5. Hyperparameter settings

For FPF, there are several important hyperparameters
that affect the classification performance: 1) the number
of trees in the random forest n_estimators, 2) the maxi-
mum depth of the trees max_depth, 3) the number of rota-
tion augmentations R, 4) the type of rotation augmentation
” feature” or “quantity” and 5) the feature filtering thresh-
old TH),.

n_estimators 20 40 60 80 100 120

OA(%) 837 856 854 855 863 859

Table S1. Hyperparameter setting of n_estimators.

max_depth 10 20 30 40

OA(%) 793 86.0 85.7 85.6
Table S2. Hyperparameter setting of maz_depth.

1 3 5 7

OA(%) 854 863 86.1 855
Table S3. Hyperparameter setting of R.

Feat. NoRA. Quan. Feat.
OA(%) 85.4 84.7 86.3
Table S4. Hyperparameter setting of rotation augmentation types,
where No RA. denotes no rotation augmentation and Quan. and
Feat. denote augmentation type “quantity” and “feature”, respec-
tively.

THp le-5 3e5 5e5 7e-5 0O9e-5
OA(%) 853 858 854 863 854
Table S5. Hyperparameter setting of T'H,.

Feat. NWD. PWS. Both
OA (%) 78.8 81.5 82.5
Table S6. The performance of other features. where NWD. and
PWS. stand for Non-zero window distribution and Pure window
statistics, respectively, and both indicate combining both as input
features.

We exhibit the results in Table [S1l [S2} [S3 [54
and [S3] respectively. The optimal configurations are :
n_estimator = 100, R = 3, TH, = Te — 5 and rotation
augmentation type is "feature”. Although max_depth = 30
performed better than other settings, we find that configur-
ing it manually fails to achieve the best performance. There-
fore, in our experiments, we do not limit the maximum
depth of the trees. Empirically, the average depth of the
trees generated in the random forest is approximately 30.

Additional features: We try additional hand-crafted
features and augmentations that, though slightly underper-
form on ModelNet40, may have potential on other datasets.
1) Non-zero window distribution: The distribution (mean
and variance) of all the windows that contain at least one
point. 2) Pure window statistics: Pure statistical informa-
tion for all windows, including the windows containing the
most and least points and their indexes, as well as the mean
and variance of the number of points contained in all win-
dow. We report the results in table[S6|

S1.6. Results for rotation vore

We complement the quantitative results for the conclu-
sions made in the rotation vote of Section 3] which is
shown in Table[S7l
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Figure S1. The correlation between window size (left) and window coverage (right), The top and bottom are the equidistant and exponential

window sizes, respectively. The horizontal coordinates represent the 30 fractal windows, the vertical coordinates of the left two plots
represent the window size, and the vertical coordinates of the right two plots represent the coverage of the windows (i.e., the number of

windows containing at least one point).
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Figure S2. Examples of estimated Gaussian distribution of the projections. The upper and lower rows are the estimates of the 1D and 2D
projections, respectively. The first and last two columns show examples of “airplane” and “car”, respectively, and the fractal size of the
first and third columns is 0.34, while that of the second and fourth columns is 0.10.

raw  w.R. w/o.R. PointNet++ and DGCNN, we reproduce the results with
OA(%) 854 843 44.9 third-party open source codes (https://github.

Table S7. Performance comparison of rotation vote, where raw de- com/vanx27/Pointnet Pointnet2 pytorch
notes no rotation vote, w. R. and wo. R. denote rotation vote with and https://github.com/AnTao97/dgcnn.

and without rotation augmentation, respectively. pytorch), which optimize the codes so that the results

perform slightly better than claimed. We report our real
experimental results, rather than copying directly from

S1.7. Experiment configuration their papers. For PointMLP and PointHop, we utilize the
) ) ] ) ) official code. For the non-DL approach, we only compare
All experiments in section f.T| on processing time the model training and inference times since the data is

are conducted on an Intel(R) Core(TM) i7-4650U CPU preprocessable. For the non-DL methods PointHop and
@ 1.70GHz. To conduct the speed tests, for PointNet,


https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/AnTao97/dgcnn.pytorch
https://github.com/AnTao97/dgcnn.pytorch

FPF, we only record the duration of training and inference
to compare the complexity of the generated features.

We design two simple neural networks as baselines for
fractual features. FC is a network consisting entirely of fully
connected layers, and CNN contains both convolutional and
fully connected layers. The structures of the two models are
illustrated in Figure[S3}



. FSF | . FSF | | Input |

. 256 | | Rx256x| |
| | ‘ FC layers |
. 128 | | 256x128x1 |
‘ N | | | | 6|4 ‘ ‘ Convolution layers |
um_cls
e ‘ Output |
CNN

Figure S3. Structures of NN baselines. FSF denotes Fractal Statistical Features, which is extracted by proposed method. Num_cls denotes
the total number of classes, for ModelNet40, Num_cls = 40. R and I represent the number of rotational augmentations and the number
of fractal windows, respectively. The left and middle columns show the architecture of FC and CNN, respectively. The right column is the
legend.



