
S1. Supplementary
S1.1. Explanability vs. Interpretability

In this paper, we alternatively utilize both the terms ”ex-
plainability” and ”Interpretability” for illustration. To avoid
confusion, we follow the definition of [30]: Interpretabil-
ity indicates that the model is inherently interpretable (pri-
ori), while explainability implies that the model is explained
with post-hoc approaches (posterio). For instance, among
the two methods involving in this paper for trustworthiness,
Gini Importance based on the impurity is a property of the
model itself and is therefore known as ”interpretability”,
while Grouped feature ablation belongs to ”explainability”,
as we calculate it by posterior approaches such as feature
ablation and retraining. However, for simplicity, we de-
scribe the results of the two methods jointly as ”explana-
tions”.

S1.2. Hausdorff dimension

The Hausdorff dimension can be formulated as:

dimH(X) := inf
{
d ≥ 0 : Hd(X) = 0

}
(S1)

where Hd(X) is d-dimensional Hausdorff Measure and
formulated as:

Hd
δ (S) = inf

{ ∞∑
i=1

(diamUi)
d :

∞⋃
i=1

Ui ⊇ S, diamUi < δ

}
(S2)

S1.3. Equidistance vs. Exponential window sizes

Fig. S1 illustrates the difference in coverage between
equidistant and exponential window sizes. If the window
size decreases equidistantly, the coverage explodes when
the window size is small, which results in a large number of
repetitive statistical features (the top right plot). The win-
dow shrinks progressively slower in the exponential win-
dow size, leading to a smoother increase in the coverage
(the bottom left plot).

S1.4. Visualization of Gaussian features

As a supplement to Section 3.2, Figure S2 illustrates the
visualization of Gaussian features.

S1.5. Hyperparameter settings

For FPF, there are several important hyperparameters
that affect the classification performance: 1) the number
of trees in the random forest n estimators, 2) the maxi-
mum depth of the trees max depth, 3) the number of rota-
tion augmentations R, 4) the type of rotation augmentation
”feature” or ”quantity” and 5) the feature filtering thresh-
old THp.

n estimators 20 40 60 80 100 120
OA(%) 83.7 85.6 85.4 85.5 86.3 85.9

Table S1. Hyperparameter setting of n estimators.

max depth 10 20 30 40
OA(%) 79.3 86.0 85.7 85.6

Table S2. Hyperparameter setting of max depth.

1 3 5 7
OA(%) 85.4 86.3 86.1 85.5
Table S3. Hyperparameter setting of R.

Feat. No RA. Quan. Feat.
OA(%) 85.4 84.7 86.3

Table S4. Hyperparameter setting of rotation augmentation types,
where No RA. denotes no rotation augmentation and Quan. and
Feat. denote augmentation type ”quantity” and ”feature”, respec-
tively.

TH p 1e-5 3e-5 5e-5 7e-5 9e-5
OA(%) 85.3 85.8 85.4 86.3 85.4

Table S5. Hyperparameter setting of THp.

Feat. NWD. PWS. Both
OA(%) 78.8 81.5 82.5

Table S6. The performance of other features. where NWD. and
PWS. stand for Non-zero window distribution and Pure window
statistics, respectively, and both indicate combining both as input
features.

We exhibit the results in Table S1, S2, S3, S4
and S5, respectively. The optimal configurations are :
n estimator = 100, R = 3, THp = 7e − 5 and rotation
augmentation type is ”feature”. Although max depth = 30
performed better than other settings, we find that configur-
ing it manually fails to achieve the best performance. There-
fore, in our experiments, we do not limit the maximum
depth of the trees. Empirically, the average depth of the
trees generated in the random forest is approximately 30.

Additional features: We try additional hand-crafted
features and augmentations that, though slightly underper-
form on ModelNet40, may have potential on other datasets.
1) Non-zero window distribution: The distribution (mean
and variance) of all the windows that contain at least one
point. 2) Pure window statistics: Pure statistical informa-
tion for all windows, including the windows containing the
most and least points and their indexes, as well as the mean
and variance of the number of points contained in all win-
dow. We report the results in table S6.

S1.6. Results for rotation vore

We complement the quantitative results for the conclu-
sions made in the rotation vote of Section 4.3, which is
shown in Table S7.



Figure S1. The correlation between window size (left) and window coverage (right), The top and bottom are the equidistant and exponential
window sizes, respectively. The horizontal coordinates represent the 30 fractal windows, the vertical coordinates of the left two plots
represent the window size, and the vertical coordinates of the right two plots represent the coverage of the windows (i.e., the number of
windows containing at least one point).

Figure S2. Examples of estimated Gaussian distribution of the projections. The upper and lower rows are the estimates of the 1D and 2D
projections, respectively. The first and last two columns show examples of ”airplane” and ”car”, respectively, and the fractal size of the
first and third columns is 0.34, while that of the second and fourth columns is 0.10.

raw w. R. w/o. R.
OA(%) 85.4 84.3 44.9

Table S7. Performance comparison of rotation vote, where raw de-
notes no rotation vote, w. R. and wo. R. denote rotation vote with
and without rotation augmentation, respectively.

S1.7. Experiment configuration

All experiments in section 4.1 on processing time
are conducted on an Intel(R) Core(TM) i7-4650U CPU
@ 1.70GHz. To conduct the speed tests, for PointNet,

PointNet++ and DGCNN, we reproduce the results with
third-party open source codes (https://github.
com/yanx27/Pointnet_Pointnet2_pytorch
and https://github.com/AnTao97/dgcnn.
pytorch), which optimize the codes so that the results
perform slightly better than claimed. We report our real
experimental results, rather than copying directly from
their papers. For PointMLP and PointHop, we utilize the
official code. For the non-DL approach, we only compare
the model training and inference times since the data is
preprocessable. For the non-DL methods PointHop and

https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/AnTao97/dgcnn.pytorch
https://github.com/AnTao97/dgcnn.pytorch


FPF, we only record the duration of training and inference
to compare the complexity of the generated features.

We design two simple neural networks as baselines for
fractual features. FC is a network consisting entirely of fully
connected layers, and CNN contains both convolutional and
fully connected layers. The structures of the two models are
illustrated in Figure S3.



Figure S3. Structures of NN baselines. FSF denotes Fractal Statistical Features, which is extracted by proposed method. Num cls denotes
the total number of classes, for ModelNet40, Num cls = 40. R and I represent the number of rotational augmentations and the number
of fractal windows, respectively. The left and middle columns show the architecture of FC and CNN, respectively. The right column is the
legend.


