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In this appendix, we provide additional efficiency anal-
ysis (Sec. B) ablation studies (Sec. C), and full experiment
results (Sec. D)

A. Structured Decoding with Cross-Attention
and Query Array

We continue Sec.4 to discuss downstream tasks decoder
queries.

A.0.1 Visual Question Answering

We tackle visual question answering tasks as a classification
task (e.g., VQAv2), by choosing the right answer from the
a predefined answer vocabulary, following [24]. Similarly
to the VTM task, we create a decoder query with a [CLS]
embedding (Q = 1), then apply a classification head with
cross-entropy loss.

A.0.2 Cross-Modal Retrieval

We tackle cross-modal retrieval tasks by first estimating the
multi-modal similarity scores sV L of image-text or video-
text pairs, then retrieving contents by ranking the similarity
scores. We study different types of architecture for this task
and explain the details in Sec. 3.5. For multi-stream archi-
tecture, similar to the VTM task, we create a decoder query
with a [CLS] embedding (Q = 1), then apply a classifica-
tion head with cross-entropy loss.

B. Efficiency Analysis
B.1. Scaling Latent Array

PERCEIVER-VL has a complexity of O(MN), while the
input size M is fixed for specific tasks and datasets. To com-
plement the latent array scaling analysis on VQAv2 in the
main paper Fig. 5, in Fig. 1, we additionally show the effect
of varying the size of the latent array N during finetuning in
terms of computation and downstream VQAv2 retrieval task
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Figure 1. The efficiency-accuracy tradeoff of using different latent
array size N during finetuning on VQAv2. During pretraining, we
use the latent array size N = 128 (blue vertical line).

performance. Note that we use N=128 during pretraining.
We use mixed-stream architecture by default. We can see
that the computational cost (GFLOPs) linearly scales with
N , while the VQAv2 R@1 remains reasonably well (e.g.,
CC+Webvid PT: 66.6 → 68.0 → 69.2 → 69.8 with latent
array length 32 → 64 → 128 → 256), across three different
pretraining setups (Sec. C.2).

B.2. LayerDrop to Encoder Cross-Attentions

In Table 1 we analyze the effect of applying LayerDrop
(LD) [7] to encoder cross-attention layers, as discussed in
main paper Sec. 3.3 on an additional task, VQAv2. First,
we observe that LD acts as a regularizer, as we see LD im-
proves the VQAv2 accuracy in the first block, while increas-
ing pLD too high 0.5 → 0.7 hurts the performance (69.2 →
68.9). The last row in the bottom block achieves the best ac-
curacy (69.5), with LD during both pretraining and finetun-
ing. Second, removing cross-attention layers without LD
during finetuning hurts performance (see 69.2 → 66.1 in
the middle block). Lastly, with LD during finetuning, one
can reduce the inference time latency around 16.7% (18.0
ms → 15.0 ms), with minimal accuracy drop (see 69.5 →



# Cross-attentions in encoder
VQAv2 Acc.

Time

Pretraining Finetuning Inference (ms)

3 3 3 68.7 18.0
1 ∼ 3 (0.5) 3 3 69.2 18.0
1 ∼ 3 (0.7) 3 3 68.9 18.0

1 ∼ 3 (0.5) 1 1 68.2 15.0
1 ∼ 3 (0.5) 3 3 69.2 18.0
1 ∼ 3 (0.5) 3 1 66.1 15.0

1 ∼ 3 (0.5) 1 ∼ 3 (0.5) 1 68.4 15.0
1 ∼ 3 (0.5) 1 ∼ 3 (0.5) 3 69.5 18.0

Table 1. Accuracy and inference time on VQAv2 with varied
number of cross-attentions in PERCEIVER-VL encoder. We in-
clude the layer dropout probability pLD in brackets if used. Note
that PERCEIVER-VL has 3 cross-attention layers in encoder, and
we do not apply dropout to the first cross-attention in encoder
(pLD = 0) to ensure that the latent array always receives signal
from the input.

Aggregation Scheme Weight initialization GFLOPs ↓
Random init ImageNet-21k (ViT-B/32)

Joint (default) 48.6 62.5 30.5
Separate 49.5 62.3 31.3
Separate+ 50.5 62.9 33.2

Table 2. Comparison of different modality aggregation schemes
(main paper Sec. 3.2) on VQAv2.

68.4 in the bottom block). This indicates that, with a LD-
finetuned model, we can control its latency on demand at
the inference time by varying the number of cross-attention
layers, without storing checkpoints of multiple models.

C. Ablation Studies
We provide ablation studies regarding PERCEIVER-VL’s

architectural components and training strategy, including
modality aggregation, pretraining dataset, positional encod-
ing for latent arrays, and two-stage training for CLIP weight
initialization.

C.1. Modality Aggregation

In Table 2, we compare different modality aggregation
schemes for fusing visual and text inputs as we discussed in
main paper Sec. 3.2. This study is performed on VQAv2
with two different weight initializations. In our experi-
ments, we do not observe a significant difference among
the three methods (Joint, Separate, Separate+) in terms of
accuracy and GFLOPs. Thus, we use Joint as our default
modality aggregation scheme for simplicity.

C.2. Pretraining Datasets

Table 3 shows the ablation of pretraining datasets in
terms of two downstream tasks, VQAv2 and MSRVTT.

Pretraining Datasets Modality VQAv2 MSRVTT

Image Video Text Acc R@1

Random Init (Standard Gaussian) 48.6 6.2
ImageNet-21k (ViT-B/32) ✓ 62.3 12.1
ImageNet-21k (ViT-B/32) + CC ✓ ✓ 68.2 24.6
ImageNet-21k (ViT-B/32) + Webvid ✓ ✓ 67.5 25.1
ImageNet-21k (ViT-B/32) + CC + Webvid ✓ ✓ ✓ 69.2 26.8

Table 3. Comparison of different pretraining datasets on VQAv2
and MSRVTT. ImageNet-21k (ViT-B/32) refers to weight initial-
ization from the ViT-B/32 checkpoint pretrained on ImageNet-21k
(main paper Sec. 4.3).

Positional Encoding Weight init

Random Init ImageNet-21k (ViT-B/32)

Learned (default) 49.5 62.3
Fourier 49.7 62.2

Table 4. Comparison of different position encodings for latent
array on VQAv2.

Initializing PERCEIVER-VL parameters with ViT-B/32
ImageNet-21k pretrained weights (main paper Sec. 4.3)
greatly improves the performance over random initializa-
tion. Further pretraining on image-text (CC) or video-text
(Webvid) datasets further improves the performance. One
interesting observation is that, pretraining on the data of the
same format as the downstream task has slightly more ad-
vantages over data of different format – compared to video-
text data, pretraining on image-text data gives more perfor-
mance gain on image-text task (VQAv2), and vice versa.
The best performance is achieved by PERCEIVER-VL pre-
trained on both datasets, showing that our framework bene-
fits from input data from both formats.

C.3. Learned vs. Fourier Positional Encodings for
Latent Array

In Table 4, we compare the learned [11, 32] and Fourier
feature [30, 26, 16] positional encodings on VQAv2, as dis-
cussed in main paper Sec. 3.2. We do not see meaningful
difference between the two positional encodings on two dif-
ferent weight initialization settings. Thus, we simply use
the learned positional encoding as default positional encod-
ing for the latent array.

Weight init MSRVTT R@1

One-stage 36.3
Two-stage 45.9

Table 5. Comparison of one-stage vs. two-stage training for CLIP
weight initializaiton on MSRVTT.



Model Pretraining Datasets Visual Backbone Text-to-Video Retrieval (R@1/R@5/R@10) ↑ QA Accuracy ↑ GFLOPs ↓ Time (ms) ↓
MSRVTT DiDeMo LSMDC ActivityNet TGIF-QA (A/T/F) MSRVTT-QA

Models using other input modalities (e.g., audio)
HERO [21] TV/HT100M ResNet152+Slowfast [12, 8] 20.5 / 47.6 / 60.9 - - - - - 935.2 2200.0
MMT [9] HT100M S3D+VGG+DenseNet161 [35, 13, 14] 26.6 / 57.1 / 67.1 - 12.9 / 29.9 / 40.1 - - - - -
AVLNET [29] HT100M ResNet152+ResNeXt [12, 34] 27.1 / 55.6 / 66.6 - 17.0 / 38.0 / 48.6 - - - 153.4 2000.0

Models with CLIP initialization
Hunyuan [27] - CLIP (ViT-B/16) 55.0 / 80.4 / 86.8 52.1 / 78.2 / 85.7 29.7 / 46.4 / 55.4 57.3 / 84.8 / 93.1 - - 2022.8 -
CLIP2TV [10] - CLIP (ViT-B/16) 49.3 / 74.7 / 83.6 45.5 / 69.7 / 80.6 - 44.1 / 75.2 / 98.4 - - 2212.3 -
DRL [33] - CLIP (ViT-B/32) 47.4 / 74.6 / 83.8 49.0 / 76.5 / 84.5 26.5 / 47.6 / 56.8 46.2 / 77.3 / 88.2 - - 511.0 320.0
CAMoE(+DSL) [5] - CLIP (ViT-B/32) 47.3 / 74.2 / 84.5 - 25.9 / 46.1 / 53.7 - - - 399.7 -
MDMMT-2 [19] - CLIP (ViT-B/32) 48.5 / 75.4 / 83.9 - 26.9 / 46.7 / 55.9 - - - - -
OursN=32 + CLIP CC+Webvid CLIP (ViT-B/16) 45.9 / 71.0 / 82.1 - - - - - 80.0 80.0

HT100M [25] HT100M ResNet152+ResNeXt [12, 34] 14.9 / 40.2 / 52.8 - 7.1 / 19.6 / 27.9 - - - 164.3 1100.0
ClipBERT [20] COCO / CC ResNet50 [17] 22.0 / 46.8 / 69.9 20.4 / 48.0 / 60.8 - 21.3 / 49.0 / 63.5 82.8 / 87.8 / 60.3 37.4 340.0 700.0
Frozen-in-Time [2] CC / Webvid Timesformer-B/16 [3] 31.0 / 59.8 / 72.4 31.0 / 59.8 / 72.4 15.0 / 30.8 / 39.8 - - - 89.0 260.0
OursN=128 CC / Webvid ViT-B/32 [6] 32.6 / 62.1 / 71.6 30.5 / 59.7 / 73.0 15.8 / 37.6 / 40.1 33.9 / 62.1 / 76.4 91.4 / 94.9 / 69.2 43.2 43.9 72.0

Table 6. Full metrics of finetuning performance on text-to-video retrieval and video question answering benchmarks. We report
R@1/R@5/R@10 for text-to-video retrieval tasks and report QA accuracy on the FrameQA task. GFLOPs shows the inference cost
on a single sample, and Time (ms) indicates the average inference time across all samples on MSRVTT val split. For a fair comparison, we
gray out 1) the models that use input modalities other than video and text (e.g., audio) and 2) the models that use CLIP visual encoder [28]
(the cross-attention layers of PERCEIVER-VL cannot be initialized with CLIP parameters and trained from scratch; see the discussion in
Sec. 5.1). N=128 means latent size N=128.

Model Pretraining Datasets Visual Backbone Text-to-Image-to Retrieval ↑ QA Accuracy ↑ GFLOPs ↓ Time (ms) ↓
Flickr30k (R@1/R@5/R@10) VQAv2 NLVR2 (dev/test-P)

Models using additional object tag inputs
VinVL-Base [36] COCO / CC / SBU / Flickr / OI* Faster-RCNN [36] - 75.95 82.05 / 83.08 1023.3 800.0
OSCAR-Base [23] COCO / CC / SBU / Flickr* Faster-RCNN [1] - 73.16 78.07 / 78.36 956.4 1000.0

UNITER-Base [4] COCO / CC / SBU / VG Faster-RCNN [1] 72.5 / 92.4 / 96.1 72.70 75.85 / 75.80 949.9 1000.0
ViLT-B/32 [18] COCO / CC / SBU / VG ViT-B/32 [6] 64.4 / 88.7 / 93.8 71.26 75.70 / 76.13 55.9 32.0
OursN=128 COCO / CC / SBU / VG ViT-B/32 [6] 62.4 / 87.1 / 93.2 71.62 75.45 / 75.53 30.5 18.0

LXMERT [31] COCO / VG* Faster-RCNN [1] - 72.42 94.90 / 74.50 952.0 1100.0
VisualBERT [22] COCO Faster-RCNN [1] - 70.80 67.40 / 67.00 425.0 1000.0
Pixel-BERT-R50 [15] COCO / VG ResNet50 [12] 53.4 / 80.4 / 88.5 71.35 71.70 / 72.40 136.8 150.0
OursN=128 COCO / VG ViT-B/32 [6] 61.7 / 86.7 / 92.1 70.45 73.30 / 74.87 30.5 18.0

Frozen-in-Time [2] CC / Webvid Timesformer-B/16 [3] 61.0 / 87.5 / 92.7 - - 63.9 70.0
OursN=64 CC / Webvid ViT-B/32 [6] 61.0 / 86.6 / 93.0 70.12 74.04 / 74.52 17.0 8.0
OursN=128 CC / Webvid ViT-B/32 [6] 61.8 / 88.0 / 92.9 70.91 75.30 / 75.44 30.5 18.0

Table 7. Finetuning performance on text-to-image retrieval and visual question answering benchmarks. For NLVR2, we show Test-P
accuracy. For Flickr30k, we show text-to-image retrieval R@1. Note that for brevity, we only show the image or video source datasets for
Pretraining Datasets; the datasets that added additional text annotations are not included in the column (we use * to highlight them). For
example, LXMERT is trained with image-text datasets COCO and VG, as well as the three QA datasets based on COCO and VG images,
i.e., VQAv2, VGQA and GQA. We also gray out models that use additional object tags in the first block and are not comparable to our
model. GFLOPs shows the inference cost on a single sample, Time (ms) indicates the average inference time over all samples in VQAv2
minival split; For a fair comparison, we gray out models that are pretrained with more data. N=128 means latent size N=128.

C.4. Two-stage training for CLIP weight initializa-
tion

In Table 5, we compare the two-stage and one-stage
training for weight initialization form CLIP, as discussed in
main paper Sec. 4.2. We use the architecture with latent size
N = 32. We see significant improvement with two-stage
training on MSRVTT and suggest the training strategy for
weight initialization from transformer architecture such as
CLIP.

D. Full Experiment Results

In Table 6 and Table 7, we provide the full experiment
results with R@1/R@5/R@10 scores for retrieval tasks.
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