
Appendix for:
Are Straight-Through gradients and Soft-Thresholding

all you need for Sparse Training?

Antoine Vanderschueren
UCLouvain, Belgium

antoine.vanderschueren@uclouvain.be

Christophe De Vleeschouwer
UCLouvain, Belgium

christophe.devleeschouwer@uclouvain.be

This appendix contains the following additional information:

1. An additional ablation study on the use of LAMP combined with ST-3

2. The full hyper-parameter list for our training

3. Our ST-3(σ)algorithm in pseudo-code format

4. The numerical values for the ImageNet results

1. Comparison to LAMP pruning
Figure 1 repeats the same experiences as Figure 5 in the main text, but with the addition of LAMP instead of l1-based

pruning. The conclusions about the usefulness of our added rescaling and soft thresholding remain the same: rescaling is
only useful when combined with soft-thresholding. LAMP doesn’t show any additional performance increase aver traditional
l1-based pruning while being more expensive FLOPS-wise. Although not shown on this graph, LAMP, combined with STE
alone, has the advantage of not suffering from layer collapse due to its formal definition.

Figure 1. (left) A study dissecting the impact of straight-through estimation, soft-thresholding and weight-rescaling during sparse training
with LAMP-based sparse-weight-selection. (right) FLOPS/Sparsity trade-off comparing l1 and LAMP sparse training. A log-scale is used
for the x-axes.



2. Training parameters
All training configuration files and precise network structures are uploaded made open-source at https://github.

com/vanderschuea/stthree. A quick rundown is provided below for easy comparison.

2.1. Hyper-parameters

These are the hyper-parameters used for our retraining of the following networks. All results on Cifar-10(0) are reported
from a train/val/test split of sizes 45k/5k/10k. The results on ImageNet are reported on the validation set.

Model ResNet-20/VGG-11/WideResNet-34x2 ResNet-50/MobileNetv1
epochs 160 100

optimizer SGD
lr 0.1 0.2

momentum 0.9
batch-size 128 256

weight-decay 1e-4 see below
lr-decay Step-lr@[80,120] cosine-lr (+ warmup)

grad. clip. 3.0

Due to the double regularization-effect of pruning and weight-decay, the weight-decay parameter is slowly decreased as
follows at different sparsity ratios:

• ResNet50: 1e-4 (80-95), 1e-5 (96.5-98), 0.0 (99)

• MobileNetv1: 1e-4 (80), 1e-5 (89-95)

We do not apply decaying on the weight-decay parameter for the cifar-10(0) models as they don’t benefit much from such
optimizations.

2.2. Augmentations

Cifar-10(0) The standard 4x4 padding is applied before a 32x32 crop is taken. The data is normalized and also randomly
horizontally flipped.

ImageNet Images are randomly cropped and resized to 224x224. The data is normalized and also randomly horizontally
flipped. (Test images are resized to 256x256 and a centercrop of size 224x224 is taken for evaluation)

https://github.com/vanderschuea/stthree
https://github.com/vanderschuea/stthree


3. Pseudo-code

Algorithm 1 PyTorch-like Pseudo-code for ST-3 σ without and with Sparsity Distribution Suggestion

1: for i = 1 → n epochs do
2: for batch = 1 → len(train loader) do
3: sp ratio = get sp ratio(i, batch) ▷ update sparsity ratio
4: weights = torch.tensor([]) ▷ aggregate all weights
5: for module in model.modules do
6: w = module.weight
7: weights.append(w.flatten() *

√
w.shape.sum() )

8: th = weights.abs().quantile(sp ratio)
9: Wsparse = {} ▷ aggregate sparsified weights

10: for name, module in model.named modules do
11: mth = th /

√
w.shape.sum()

12: with STE(): ▷ straight-through gradients
13: w = module.weight ▷ dense weights
14: wsparse = sign(w) * (∥w∥-mth).clip(0) ▷ soft-th
15: wsparse *= get scale(w, mth) ▷ apply rescaling
16: Wsparse[name] = wsparse

17: inputs = trainloader[batch]
18: loss = model(Wsparse, inputs)
19: loss.backward() ▷ + update all dense model weights

4. Table of results
Below are the exact numerical values used for the graphs presenting the results on ImageNet. The values for the other

methods, are taken from their respective papers which use the same training times and data-augmentations. No ’best’ values
are put in bold as it would depend on whether comparison is made on Accuracy or GFLOPS as the common denominator.
For a better understanding, we refer to the figures presented in the paper’s main body.

Method Accuracy [%] Sparsity [%] GFLOPS

GMP 67.7 74.11 163
STR 68.35 75.28 101
STR 66.52 79.07 81
RigL+ERK 68.39 75 296
ST-3σ (Ours) 68.67 80 135
ST-3 (Ours) 69.1 80 181

STR 64.83 85.8 55
GMP 61.8 89.03 82
STR 62.1 89.01 42
STR 61.51 89.62 40
RigL+ERK 62.33 90 154
ProbMask 65.19 89 63
ST-3σ (Ours) 66.15 89 86
ST-3 (Ours) 66.67 89 119

RigL+ERK 56.27 95 103
ProbMask 60.1 94.1 34
ST-3σ (Ours) 60.94 94.1 52
ST-3 (Ours) 61.19 94.1 74

Table 1. Numerical Values for the figures with results on ImageNet w/ MobileNetv1



Method Accuracy [%] Sparsity [%] GFLOPS

RigL 74.6 80 940
RigL+ERK 75.1 80 1717
DNW 76 80 818
GMP 75.6 80 818
STR 76.19 79.55 766
STR 76.12 81.27 705
GraNet 76 80 1431
ST-3σ (Ours) 76.44 80 739
ST-3 (Ours) 76.95 80 1215

RigL 72.0 90 531
RigL+ERK 73.0 90 981
DNW 74 90 409
GMP 73.91 90 409
STR 74.73 87.7 402
STR 74.31 90.23 343
STR 74.01 90.55 341
GraNet 74.5 90 818
ProbMask 74.68 90 381
ST-3σ (Ours) 75.28 90 397
ST-3 (Ours) 76.03 90 764

RigL 67.5 95 327
RigL+ERK 70 95 491
DNW 68.3 95 204
GMP 70.59 95 204
STR 70.97 94.8 182
STR 70.4 95.03 159
STR 70.21 95.15 162
ProbMask 71.5 95 205
ST-3σ (Ours) 73.69 95 219
ST-3 (Ours) 74.46 95 436

RigL 64.5 96.5 164
RigL+ERK 67.2 96.5 286
STR 67.78 96.11 127
STR 67.22 96.53 117
ST-3σ (Ours) 72.62 96.5 167
ST-3 (Ours) 73.31 96.5 351

DNW 58.2 98 82
GMP 57.9 98 82
STR 62.84 97.78 80
STR 61.46 98.05 73
STR 59.76 98.22 64
ProbMask 66.83 98 105
ST-3σ (Ours) 69.75 98 116
ST-3 (Ours) 70.46 98 220

GMP 44.78 99 41
STR 54.79 98.79 54
STR 51.82 98.98 47
STR 50.35 99.1 44
ProbMask 61.07 99 55
ST-3σ (Ours) 63.25 99 69
ST-3 (Ours) 63.88 99 120

Table 2. Numerical Values for the figures with results on ImageNet w/ ResNet-50


