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In this supplementary material, we first provide a demo
video and the corresponding implementation detail in Sec-
tion 1. In Section 2, we include additional experimental
evaluation, including the full comparison with the heuristic
and hybrid models, the comparison between the two different
modeling strategies for all the properties, full ablation re-
sults on the color branch, and more visualizations on both the
BlendedMVS and Replica datasets. We conduct more com-
prehensive investigation on multi-task learning and transfer
learning with multiple scene properties within our SS-NeRF
framework in Section 3. Finally, in Section 4, we provide
additional implementation details of the model architecture,
dataset processing, and training procedure.

1. Demo Video
We include a demo video in the supplementary zip file to

show that our SS-NeRF model is capable of generalizing to
arbitrary poses within the scene scope. We pick 9 adjacent
views in scene Room 0 of the Replica dataset as anchor
views and perform a linear interpolation between each pair
of adjacent anchor views. For each pair of anchor views, we
interpolate 24 new views, thus making a total of 24×8+9 =
201 views. We render the RGB, semantic segmentation,
shading, surface normal, keypoint, and edge maps using our
SS-NeRF model for each of the 201 views and yield the
video at a frame rate of 20 FPS.

2. Additional Experimental Evaluation
2.1. Full Results of Heuristic and Hybrid Models

In the main paper, we provided the averaged results for
the Heuristic and Hybrid baselines on the Replica dataset [7].
The full results of these two models are shown in Table 1
(Heuristic) and Table 2 (Hybrid). Combining with the results
presented in Table 1 of the main paper, we can find that
SS-NeRF outperforms both baselines in all the tasks and for
all the scenes. These results further validate the effective
model design of SS-NeRF, and also indicate that the shared
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Scene SL (↑) SN (↓) SH (↓) KP (↓) ED (↓)
Office 3 0.8849 0.0328 0.0379 0.0055 0.0393
Office 4 0.8824 0.0394 0.0639 0.0060 0.0457
Room 0 0.7924 0.0431 0.0419 0.0068 0.0635
Room 1 0.8721 0.0541 0.0365 0.0052 0.0343

Avg. (Heuristic) 0.8580 0.0424 0.0451 0.0059 0.0457
Avg. (SS-NeRF) 0.9243 0.0395 0.0429 0.0038 0.0179

Table 1: Performance of the Heuristic model on the Replica
dataset. SL: Semantic Labels; SN: Surface Normal; SH:
Shading; KP: Keypoint; ED: Edge. Following the standard
practice, for the meansurement of SL, we use mIoU as the
evaluation metric; for the rest of the tasks, we adopt L1 error
as the evaluation metric. SS-NeRF outperforms the heuristic
baseline for all the scenes and all the tasks, indicating the
effectiveness of our SS-NeRF model design.

Scene SL (↑) SN (↓) SH (↓) KP (↓) ED (↓)
Office 3 0.7735 0.0427 0.0612 0.0048 0.0310
Office 4 0.8546 0.0408 0.0732 0.0052 0.0307
Room 0 0.6086 0.0766 0.0721 0.0064 0.0554
Room 1 0.7071 0.0772 0.0625 0.0056 0.0454

Avg. (Hybrid) 0.7360 0.0593 0.0673 0.0055 0.0406
Avg. (SS-NeRF) 0.9243 0.0395 0.0429 0.0038 0.0179

Table 2: Performance of the Hybrid model on the Replica
dataset. SS-NeRF also outperforms the hybrid baseline for
all the tasks, showing that it is non-trivial to synthesize paired
color images and other scene properties.
semantic and geometric scene representation is critical for
synthesizing different scene properties.

2.2. Full Results of Two Different Modeling Strate-
gies

For our SS-NeRF model design, we propose two differ-
ent decoding strategies for different scene properties: Fv

dec

which considers the additional view input, and Fnv
dec which

only takes the embedded 3D coordinates. We show the full
comparison between the two modeling strategies for the four
scene properties excluding the surface normal in Table 3.
The conclusion remains the same as the main paper: Fv

dec

works better for SH, KP, and ED, but achieves a slightly
worse performance for SL compared with Fnv

dec. One likely



Setting Office 3 Office 4 Room 0 Room 1
SL (↑) SH (↓) KP (↓) ED (↓) SL (↑) SH (↓) KP (↓) ED (↓) SL (↑) SH (↓) KP (↓) ED (↓) SL (↑) SH (↓) KP (↓) ED (↓)

Fv
dec 0.9361 0.0423 0.0038 0.0155 0.9072 0.0503 0.0035 0.0150 0.9662 0.0293 0.0039 0.0209 0.8597 0.0495 0.0038 0.0202

Fnv
dec 0.9345 0.0602 0.0038 0.0188 0.9162 0.0794 0.0038 0.0183 0.9707 0.0508 0.0039 0.0249 0.8757 0.1075 0.0039 0.0225

Table 3: Full results of the comparison between two different modelling strategies. Fv
dec consistently works better for SH, KP,

and ED; Fnv
dec is a better choice for SL, indicating that SS-NeRF indeed learns a geometry-aware scene representation.

Setting Office 3 Office 4 Room 0 Room 1
SL (↑) SN (↓) SH (↓) KP (↓) ED (↓) SL (↑) SN (↓) SH (↓) KP (↓) ED (↓) SL (↑) SN (↓) SH (↓) KP (↓) ED (↓) SL (↑) SN (↓) SH (↓) KP (↓) ED (↓)

w/ RGB 0.9345 0.0355 0.0423 0.0038 0.0155 0.9162 0.0383 0.0503 0.0035 0.0150 0.9707 0.0323 0.0293 0.0039 0.0209 0.8757 0.0520 0.0495 0.0038 0.0202
w/o RGB 0.8128 0.0430 0.0559 0.0098 0.0504 0.5246 0.0490 0.0638 0.0102 0.0566 0.2112 0.0220 0.0363 0.0147 0.0722 0.5346 0.0619 0.0644 0.0110 0.0450

Table 4: Full comparison of the model with (w/) or without (w/o) the RGB branch. RGB supervision is crucial for building
scene representations so as to benefit the learning of other visual tasks.

reason is that the keypoint, edge, and shading vary from
different view directions, but the semantic labels remain
the same. Therefore, the view inputs are essential for the
three properties but are redundant for the semantic modeling.
The experimental results also support that SS-NeRF indeed
learns a geometry-aware scene representation.

2.3. Full Ablation on Color Branch

In the main paper, we reported the averaged results of
SS-NeRF without the RGB branch. We argue that the color
property is a fundamental property of the scene, and it can be
beneficial to learning the underlying semantic and geometric
scene representations and so can facilitate the learning of the
other tasks. In this section, we further provide the full results
on all the scenes in Table 4 and the visual comparisons in
Figure 1.

We have the following observations: (1) In general, in-
cluding the additional RGB color branch can benefit the
learning of the target scene property, especially for SL, ED,
and KP. (2) From Figure 1, when RGB supervision is miss-
ing, the model inevitably collapses, ending up predicting an
all-zero map. After checking the ground-truth and full model
predictions, we hypothesize that the underlying reason might
be that the annotations of keypoint and edge are sparse and
low-valued so that without other additional objective, it is
hard for the model to learn the underlying feature represen-
tation. (3) For all these results, the color branch is crucial
for building a powerful scene representation, so that it can
benefit the target scene-property synthesis task.

2.4. Results on BlendedMVS

In addition to the Replica dataset, we also evaluate our
model on the BlendedMVS dataset [8]. We show the visual
comparison between our model and the heuristic and hybrid
baselines in Figure 2. Compared with Replica, Blended-
MVS is a relatively easier dataset which mainly contains
single objects and has smaller view variance. Therefore,
the Heuristic baseline works much better in this scenario.
From Figure 2, we can find that SS-NeRF achieves a similar
performance as the Heuristic baseline, but significantly out-
performs the Hybrid baseline, indicating that SS-NeRF has
a good generalization capability for different scenarios.

Setting Office 3 Office 4 Room 0 Room 1
SL 0.9345 0.9162 0.9707 0.8757

SL + SN 0.9050(-) 0.9188(+) 0.9692(-) 0.8910(+)
SL + SH 0.9406(+) 0.9594(+) 0.8872(-) 0.7243(-)
SL + KP 0.9482(+) 0.9122(-) 0.9669(-) 0.8777(+)
SL + ED 0.9265(-) 0.9038(-) 0.9311(-) 0.8675(-)
SL + All 0.9512(+) 0.9193(+) 0.8785(-) 0.7450(-)

Table 5: Model performance with additional tasks for se-
mantic labels. SL: semantic labels; SN: surface normal; SH:
Shading; KP: keypoints; ED: edges; All: all the four addi-
tional tasks. (+) indicates performance increasing, and (-)
indicates performance drop.

2.5. More Visualizations on Replica

We also visualize the synthesized scene properties of two
additional scenes on Replica in Figure 3 to demonstrate the
robustness and effectiveness of the proposed method.

3. Additional Explorations with Multiple Tasks

3.1. Multi-task Learning

In the main paper, we took the semantic segmentation
task as an example to explore potential task relationships
among all the tasks. Quantitative results in Table 3 of the
main paper show how other tasks influence the semantic
segmentation task. Here we show the full comparison of
the remaining four tasks (SN for surface normal, SL for
semantic labels, KP for keypoint, and ED for edge). Each
time we focus on one task as the target and treat the others
as auxiliary tasks. Displayed in a similar way, experimental
results focused on semantic labels (SL), surface normal (SN),
keypoint (KP), and edge (ED) are shown in Tables 5, 6, 7,
and 8, respectively.

From these results, we have some interesting observations
on task relationships. For example, (1) some tasks, such as
SN, may be scene-dependent; introducing additional tasks
consistently benefits the target task in some scenes, while
hurts in others. (2) Other scene properties have little effect
on the performance of KP in all the scenes, indicating a far
relationship from KP to other scene properties. (3) For each
property, in most cases we can find a better model when
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Figure 1: Visualizations of variants of SS-NeRF with or without the RGB branch. Top row: SS-NeRF with the RGB branch;
Bottom row: SS-NeRF without the RGB branch. SS-NeRF degrades and even fails for KP and ED without the RGB branch,
indicating that the color information is crucial for building a useful feature representation and benefiting the synthesis of other
properties.

RGB Ground Truth Ours Heuristic Model Hybrid Model

Figure 2: Visual comparison on BlendedMVS. Top row: comparison on the surface normal (SN) task; Bottom row:
comparison on the edge (ED) detection task. Note that for the “Heuristic Model” results, the black/white stripes on the margin
of the images mean that we are not able to get information on these regions by projecting from the adjacent frames.

Setting Office 3 Office 4 Room 0 Room 1
SN 0.0355 0.0383 0.0323 0.0520

SN + SL 0.0293(+) 0.0293(+) 0.0188(+) 0.0523(-)
SN + SH 0.0250(+) 0.0351(+) 0.0232(+) 0.0631(-)
SN + KP 0.0247(+) 0.0257(+) 0.0231(+) 0.0526(-)
SN + ED 0.0270(+) 0.0315(+) 0.0212(+) 0.0534(-)
SN + All 0.0234(+) 0.0258(+) 0.0213(+) 0.0586(-)

Table 6: Model performance with additional tasks for surface
normal. SL: semantic labels; SN: surface normal; SH: Shad-
ing; KP: keypoints; ED: edges; All: all the four additional
tasks. (+) indicates performance increasing, and (-) indicates
performance drop.

Setting Office 3 Office 4 Room 0 Room 1
KP 0.0038 0.0035 0.0039 0.0038

KP + SL 0.0042(-) 0.0035 0.0037(+) 0.0039(-)
KP + SN 0.0036(+) 0.0035 0.0037(+) 0.0040(-)
KP + SH 0.0037(+) 0.0036(-) 0.0037(+) 0.0041(-)
KP + ED 0.0037(+) 0.0036(-) 0.0039 0.0041(-)
KP + All 0.0037(+) 0.0036(-) 0.0039 0.0041(-)

Table 7: Model performance with additional tasks for key-
point detection. SL: semantic labels; SN: surface normal;
SH: Shading; KP: keypoints; ED: edges; All: all the four
additional tasks. (+) indicates performance increasing, and
(-) indicates performance drop.
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Figure 3: Two additional qualitative results of testing views on Replica. Top row: ground-truth; Bottom row: our predictions.
The predicted image is from the SL task. SS-NeRF is able to generate realistic and matched images and other properties.

Setting Office 3 Office 4 Room 0 Room 1
ED 0.0155 0.0150 0.0209 0.0202

ED + SL 0.0149(+) 0.0163(-) 0.0206(+) 0.0226(-)
ED + SN 0.0181(+) 0.0147(+) 0.0209 0.0214(-)
ED + SH 0.0249(-) 0.0144(+) 0.0204(+) 0.0439(-)
ED + KP 0.0157(-) 0.0140(+) 0.0207(+) 0.0214(-)
ED + All 0.0143(+) 0.0146(+) 0.0205(+) 0.0223(-)

Table 8: Model performance with additional tasks for edge
detection. SL: semantic labels; SN: surface normal; SH:
Shading; KP: keypoints; ED: edges; All: all the four addi-
tional tasks. (+) indicate performance increasing, (-) indicate
performance drop.

introducing additional properties for jointly training, indicat-
ing that the SS-NeRF framework can learn shared knowledge
across different tasks. More comprehensive conclusions can
be drawn when we apply SS-NeRF to more tasks and more
scenes, which we leave as interesting future work.

3.2. Knowledge Transfer

We also provide the full results of transfer learning for all
the scene properties in this section. The data setting remains
the same as the main paper for all the scene properties. For
each target scene property, we first train our model from
another source property, and transfer the knowledge learned
by the source to the target through initializing the learned
encoding network Fenc. We focus on the typical transfer
learning setting with limited data (6 training views) for the
target property. The results for SL, SN, KP, and ED are

Settings Office 3 Office 4 Room 0 Room 1
Limited Views 0.7773 0.8283 0.7370 0.5834

SN → SL 0.8875 0.9400 0.9318 0.8267
SH → SL 0.8840 0.9207 0.8172 0.8395
KP → SL 0.8528 0.9271 0.7642 0.8190
ED → SL 0.8607 0.9220 0.7865 0.8374

Table 9: Model performance with transfer learning. With the
learned shareable knowledge from other scene properties, the
transferred model can consistently have better performance,
indicating the good generalization of SS-NeRF.

shown in Tables 9, 10, 11, and 12 respectively.

We have the following observations and conclusions: (1)
For all the transfer learning scenarios except one outlier, the
transferred models are able to consistently achieve better per-
formance, since they benefit from learned shareable knowl-
edge from other scene properties, indicating the effective
generalization of the SS-NeRF framework. (2) Task rela-
tionships are easier to find in this difficult transfer learning
scenario: SL and SN, KP and ED have closer relationships
compared with the other pairs. This conclusion is consistent
with human cognition and also the previous work on dis-
criminative multi-task learning [6, 10]. (3) Combined with
the results in Table 1 of the main paper, SN → SL achieves
an even better result on “Office 4” with fewer labelled data,
indicating that the knowledge from one property can be
transferred to another through our SS-NeRF framework.



Settings Office 3 Office 4 Room 0 Room 1
Limited Views 0.0832 0.1028 0.0672 0.1302

SL → SN 0.0696 0.0749 0.0493 0.1001
SH → SN 0.0781 0.0853 0.0530 0.1134
KP → SN 0.0730 0.0754 0.0590 0.1075
ED → SN 0.0721 0.0775 0.0563 0.1199

Table 10: Model performance with transfer learning. With
the learned shareable knowledge from other scene properties,
the transferred model can consistently have better perfor-
mance, indicating the good generalization of SS-NeRF.

Settings Office 3 Office 4 Room 0 Room 1
Limited Views 0.0061 0.0063 0.0051 0.0079

SL → KP 0.0061 0.0075 0.0056 0.0069
SN → KP 0.0082 0.0082 0.0064 0.0073
SH → KP 0.0101 0.0137 0.0084 0.0138
ED → KP 0.0059 0.0075 0.0050 0.0065

Table 11: Model performance with transfer learning. With
the learned shareable knowledge from other scene properties,
the transferred model can consistently have better perfor-
mance, indicating the good generalization of SS-NeRF.

Settings Office 3 Office 4 Room 0 Room 1
Limited Views 0.0504 0.0436 0.0368 0.0651

SL → ED 0.0292 0.0358 0.0350 0.0327
SN → ED 0.0298 0.0334 0.0347 0.0300
SH → ED 0.0332 0.0361 0.0722 0.0450
KP → ED 0.0271 0.0326 0.0379 0.0311

Table 12: Model performance with transfer learning. With
the learned shareable knowledge from other scene properties,
the transferred model can consistently have better perfor-
mance, indicating the good generalization of SS-NeRF.

4. Additional Implementation Details

4.1. Detailed Model Architecture Design

Our model architecture follows NeRF [3] and Semantic-
NeRF [11]. Outputs of the tasks modeled by our Fv

dec de-
coder are predicted by a fully-connected layer from the hid-
den layer and the 2D direction (θ, ϕ), which is prior to the
original RGB prediction. Likewise, outputs of the tasks mod-
eled by our Fnv

dec are predicted by a fully-connected layer
from only the hidden layer which is prior to the original vol-
ume density prediction. For the modelling of surface normal,
since it is independent of the view direction (θ, ϕ) physi-
cally, but dependent on the camera poses which determine
the observed value of surface normal, we use Fnv

dec to model
it but additionally encode the 12-dim pose matrix p with the
same positional embedding used by NeRF [3]:

γ(p) =
(
sin (20πp), cos (20πp), . . . , sin (2L−1πp), cos (2L−1πp)

)
,

(1)
where L is set to 10 in our implementation.

4.2. Dataset Processing

Both Replica [7] and BlendedMVS [8] have accurate 3D
mesh and depth annotations. Replica also has the accurate se-
mantic labels. We render the other ground-truth annotations
by ourselves. First, for the surface normal, as mentioned in
the main paper, we directly derive them from depth with:

SN(x, y, z) = (−dz

dx
,−dz

dy
, 1), (2)

where (x, y, z) are the 3D coordinates and dz
dx , dz

dy are the
gradients of x and y with respect to z, respectively. We gen-
erate the edge annotations with a Canny edge detector [2]
and the keypoint annotations with the SURF [1] algorithm,
following Taskonomy [10]. For shading, we render it with a
pre-trained model XTConsistency [9]1. Notice that the cam-
era poses released by Semantic-NeRF [11] are designated
for their own training; we regenerate the camera poses with
COLMAP [4, 5].

4.3. Other Implementation Details

For each scene in the Replica dataset, we normalize the
maximum scale of the camera parameters to 10m and set
near and far sample bounds to 0.1m and 10m, respectively.
Also, since the views are captured in the face-forwarding
manner, we did not use the normalized device coordinate
(ndc) provided by NeRF.

For the transfer learning setting, we first freeze Fenc and
warm up the decoding network for 50k iterations with a
learning rate of 5× 10−4. Then we train the whole network
jointly with an initial learning rate of 1× 10−5 for another
150k iterations to get the transferred model.
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