Supplementary Material for
PIDS: Joint Point Interaction-Dimension Search for 3D Point Cloud

In this appendix, we first evaluate PIDS on ModelNet40
to study its effect on classification benchmarks. Then, we
elaborate the detailed structure of hand-crafted PIDS, built
upon efficient 3D point operators within the PIDS search
space. Finally, we discuss the detailed configuration of
Dense-Sparse predictor. Our code is publicly available here.

9.1. Evaluation on ModelNet40 Classification

We run PIDS on ModelNet40 classification benchmark
to search for highly representative classification models. On
ModelNet40, a single training batch in ModelNet40 con-
tains 16 sub-sampled point clouds. We adopt a similar
training pipeline following the original KPConv [7] paper
yet incorporates SimpleView [1] RSCNN training protocol
for fair comparison. Specifically, the SimpleView-RSCNN
protocol adopts random scaling & translation for data aug-
mentation, employ cross-entropy loss to optimize, and uti-
lize a voting scheme on the best test model to best exploit
the potential of searched model.

Table 9. Overall Accuracy (OA) on ModelNet40. *: Use native
protocol instead of SimpleView RSCNN evaluation protocol.

. Params | OA
Architecture (M) (%)
PointCNN [3]] 0.60 92.2
PointConv [9] - 92.5

SPH3D-GCN* [2] 0.8 92.1
FPConv* [4] 2.1 92.5
RSCNN [5] 1.3 92.5
DGCNN [8] 1.8 92.8
KPConv [[7] 14.9 92.9

SimpleView [1]] 0.80 93.2
PointNet++ [6] 1.48 93.3
PIDS (second-order) 1.25 92.6
PIDS (NAS) 0.56 93.1
PIDS (NAS, 2x) 1.21 93.4

We demonstrate the evaluation results on the testing
dataset of ModelNet40 in Table [} PIDS explores more
efficient model designs with higher performance, out-
performing KPConv and other prior arts [[1]] with up to 1.3%
OA while being up to 12 x smaller in size.

9.2. Structure of First-order PIDS

Table 10. Structure of hand-crafted PIDS (first-order). 1/2”
strides means up-sampling by 2 X, and ”O” denotes “Octahedron”
kernel with 7 kernel points. All point operators employ a first-
order point interaction.

. . In Out

Point-Op | Depth | Stride Width | Width E | K
1 1 1 16 16 110
2 2 2 16 24 310
3 3 2 24 32 310
4 4 2 32 64 310
5 3 1 64 96 310
6 3 2 96 160 310
7 1 1 160 320 310
8 1 12 416 160 310
9 1 172 160 96 310
10 1 172 96 64 310
11 1 12 64 32 310

We follow the layer organization to manually craft first-
order PIDS (Table 2), and demonstrate the detailed architec-
ture in Table[T0} echoing the design of search components in
Section 3.3. The hand-crafted architecture contains a total
of 11 point operators (Point-Op). Among them, 7 point op-
erators serve as a classification backbone, and 4 additional
point operators serve as a semantic segmentation head. The
positional setting (i.e., depth, block width) of hand-crafted
PIDS strictly follows MobileNet-V2, which is considered
as a good hand-crafted model design with remarkable ef-
ficiency. For structural settings, we employ an expansion
factor (E) of 3 for all point operators except for the first
one. We leverage the 7-point Octahedron layout for each
point operator for design efficiency. As a result, first-order
PIDS serves as a strong baseline to compare with, when we
evaluate the performance of NAS-crafted PIDS models.

9.3. Details of PIDS Search Space

We present the detailed settings of the PIDS interaction-
dimension search space in Table We jointly search the
point interaction (kernel size and interaction type) and point
dimension (block depth, block width, expansion factor) to
find the best architecture.


https://github.com/lordzth666/WACV23_PIDS-Joint-Point-Interaction-Dimension-Search-for-3D-Point-Cloud

Table 11. Configuration of the PIDS Search Space. ~’1/2” strides means up-sampling by 2.

Hierarchy Stage | Strides Order Type Kernel Type Depth | Expansion Factor Width
1 1 first-order Tetrahedron, Octahedron, Icosahedron 1 1 16
2 2 first-order Tetrahedron, Octahedron, Icosahedron 2,3 2,3,4 16, 24
3 2 first-order/second-order | Tetrahedron, Octahedron, Icosahedron | 2, 3, 4 2,3,4 24,32
Backbone 4 2 first-order/second-order | Tetrahedron, Octahedron, Icosahedron | 3,4, 5 2,3, 4 24,32, 40
5 1 first-order/second-order | Tetrahedron, Octahedron, Icosahedron | 2, 3, 4 2,3, 4 40, 56,72
6 2 first-order/second-order | Tetrahedron, Octahedron, Icosahedron | 3,4, 5 2,3, 4 64, 80, 96
7 1 first-order/second-order | Tetrahedron, Octahedron, Icosahedron 1 2,3, 4 160
8 172 first-order/second-order | Tetrahedron, Octahedron, Icosahedron 1 2,3 64, 80, 96
Segmentation 9 172 first-order/second-order | Tetrahedron, Octahedron, Icosahedron 1 2,3 40, 56, 72
Head 10 1/2 first-order/second-order | Tetrahedron, Octahedron, Icosahedron 1 2,3 24,32, 40
11 172 first-order Tetrahedron, Octahedron, Icosahedron 1 2,3 16, 24

9.4. Design of Dense-Sparse Predictor

We manually configure the architectural hyperparame-
ters of our Dense-Sparse predictor without delicate archi-
tecture engineering. Specifically, we employ a 3-layer MLP
with 64-128-256 layers as the dense architecture to extract
dense neural architecture representations for both positional
organizations and structural settings. The overall architec-
ture that is responsible for processing fused features after
dense-sparse interaction is a 2-layer MLP with 256-256 lay-
ers. We utilize ReLU as the activation function and apply
Dropout of 0.5 before the final regression head to mitigate
overfitting. To ensure fair comparison in Table 3, both the
Dense predictor and the Sparse predictor also adopt a 2-
layer MLP with 256-128 units to keep the same maximum
projection dimension as the Dense-Sparse predictor.
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