
Appendix: MFFN: Multi-view Feature Fusion Network for Camouflaged Object Detection

Section A shows the experimental details of MFFN on

the salient object detection (SOD) task and the test results.

We further add more experimental details of MFFN on the

COD task and the evaluation metrics changes during train-

ing in Section B.

A. Experiments on Salient Object Detection

To illustrate the generalizations and soundness of pro-

posed structural design, we evaluated the proposed model

on the salient object detection (SOD) task.

A.1. Datasets

Specifically, we only use SOD dataset DUTS-TR [9]

for MFFN model training, the model performance is evalu-

ated on three existing datasets: ECSSD [12], HKU-IS [2],

DUTS-TE [9]. The DUTS dataset contains 10553 training

images(DUTS-TR) and 5019 test images(DUTS-TE). All

the training images are collected from the ImageNet DET

training/validation set, while the test images are collected

from the ImageNet DET test set and the SUN dataset. The

ECSSD dataset contains 1 000 images obtained from the In-

ternet. This dataset is extended by Complex Scene Saliency

Dataset (CSSD). Salient objects contain complex structures,

and the background has certain complexity. HKU-IS con-

tains 4 447 images, and each image in this dataset meets one

of the following three criteria :1) contains multiple scattered

salient objects; 2) At least one salient object is in the image

boundary; 3) The apparent similarity between the salient

objects and the background.

A.2. Implementation Details

In order to better evaluate the performance of our model,

the compared algorithms are also only trained with DUTS-

TR [9] and adopt the same hyperparameters and training

strategies [8]. Specifically, the initial learning rate is set to

0.05, and follows a linear warm-up and linear decay strat-

egy. In addition, batchsize is set to 8 and trained for 50

epochs, and SGD optimizer is used.

A.3. Comparisons with State­of­the­arts

We compare our proposed model with 10 existing SOD

models. As shown in Tab. 1, our proposed model out-

performs most of the competitors in five evaluation met-

rics, which indicates that our multi-view strategy can be ef-

fectively and efficiently generalized to other segmentation

tasks.

B. Implementation Details and Evaluation Re-

sults on COD

B.1. Implementation Details

In this section, we explain the choice of hyperparame-

ters. The weight λ of LUAL was initially set as 1.5, and

then the cosine strategy is adopted for dynamic adjustment.

For comparison with the SOTA model ZoomNet [7], we set

the initial image size to 384 × 384. The ratio adopted for

distance views is 1.5 and 2.0. Finally, the size of FPN out-

put by backbone is (12 × 12, 24 × 24, 48 × 48, 96 × 96,

192 × 192), and the number of channels is uniformly ad-

justed to 64. In addition, in the CFU module, the number of

interaction groups in Channel-wise Local Interaction Pro-

cess (CLIP) part is 3, and the step of progressive iteration

in the Overall Progressive Iteration (OPI) is 4. We also

encourage readers to experiment with other parameter set-

tings.

B.2. Early Stopping

We do not focus on exploiting more epoches as there

is no clear evidence that COD detectors will benefit from

longer training. During our experiments, we found that

the first time for the result dropping was appeared in ap-

proximate 40th epoch, as shown in Tab. 2 and illustrated in

Fig. 1. We also provide the results between 40th epoch and

43rd epoch. To achieve a trade-off between performance

and time consumption, we chose the results from the 40th

epoch as our final evaluation results.

B.3. How to get and evaluat the results of our pro­
posed MFFN?

We use the open source COD evaluation tool to eval-

uate our prediction results, and we have submitted the

test results of the COD10K dataset together with the sup-

plementary material (due to size limitation, we cannot

submit the test results of CHAMELEON and NC4K to-

gether). You can use the open source tool https://

github.com/DengPingFan/CODToolbox for eval-

uation. The changes of five metrics (Fm, Fω
β , MAE, Fβ ,

Em) over time (epoch) and early stopping are illustrated in

Fig. 1a, 1b, 1c, 1d, 1e.
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Table 1: Comparison of evaluation results of different Salient object detection(SOD) models on ECSSD [12], HKU-IS [2]

and DUTS-TE [9]. The best results are highlighted in red, green and blue

Model Backbone
ECSSD HKU-IS DUTS-TE

Sm ↑ F
ω
β ↑ MAE ↓ Fβ ↑ Em ↑ Sm ↑ F

ω
β ↑ MAE ↓ Fβ ↑ Em ↑ Sm ↑ F

ω
β ↑ MAE ↓ Fβ ↑ Em ↑

PAGEnet [10] Vgg16 0.912 0.886 0.042 0.904 0.947 0.903 0.865 0.037 0.884 0.948 0.854 0.769 0.052 0.793 0.896

PiCANet [4] ResNet50 0.917 0.867 0.046 0.890 0.952 0.904 0.840 0.043 0.866 0.950 0.869 0.755 0.051 0.791 0.920

PoolNet [3] ResNet50 0.926 0.904 0.035 0.918 0.956 0.919 0.888 0.030 0.903 0.958 0.887 0.817 0.037 0.840 0.926

HRS [13] ResNet50 0.883 0.859 0.054 0.894 0.934 0.882 0.851 0.042 0.883 0.941 0.829 0.746 0.051 0.791 0.899

GCPANet [1] ResNet50 0.927 0.903 0.035 0.916 0.955 0.920 0.889 0.031 0.901 0.958 0.891 0.821 0.038 0.841 0.929

SAMNet [6] Handcraft 0.907 0.858 0.050 0.883 0.945 0.898 0.837 0.045 0.864 0.946 0.849 0.729 0.058 0.768 0.901

VST [5] T2T-ViTt-14 0.932 0.910 0.033 0.920 0.964 0.928 0.897 0.029 0.907 0.968 0.896 0.828 0.037 0.845 0.939

Auto-MSFNet [14] ResNet50 0.914 0.916 0.033 0.927 0.954 0.908 0.903 0.027 0.912 0.959 0.877 0.841 0.034 0.855 0.931

SGL-KRN [11] ResNet50 0.923 0.910 0.036 0.924 0.954 0.921 0.904 0.028 0.915 0.961 0.893 0.847 0.034 0.865 0.939

CTDNet [15] ResNet50 0.925 0.915 0.032 0.927 0.956 0.921 0.909 0.027 0.918 0.961 0.893 0.847 0.034 0.862 0.935

MINet [8] ResNet50 0.925 0.911 0.033 0.923 0.957 0.919 0.897 0.029 0.909 0.960 0.884 0.825 0.037 0.844 0.927

MFFN(ours) ResNet50 0.929 0.917 0.032 0.927 0.959 0.921 0.903 0.028 0.913 0.959 0.888 0.833 0.038 0.850 0.924
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(a) The change of Fm with the increase of training epochs be-
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β with the increase of training epochs be-
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(c) The change of MAE with the increase of training epochs
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Figure 1: Metrics evaluation and early stopping
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Table 2: Our model performs earlystopping at epoch 43, and finally we choose the 40th epoch as our final result, and we

provide the following table of the evaluation results between 40th and 43rd epoch.

epoch
CHAMELEON COD10K NC4K

Sm ↑ F
ω
β ↑ MAE ↓ Fβ ↑ Em ↑ Sm ↑ F

ω
β ↑ MAE ↓ Fβ ↑ Em ↑ Sm ↑ F

ω
β ↑ MAE ↓ Fβ ↑ Em ↑

40 0.905 0.852 0.021 0.871 0.963 0.846 0.745 0.028 0.782 0.917 0.856 0.791 0.042 0.827 0.915

41 0.906 0.850 0.021 0.872 0.965 0.841 0.744 0.030 0.783 0.919 0.854 0.793 0.044 0.825 0.913

42 0.907 0.851 0.023 0.871 0.964 0.844 0.745 0.029 0.782 0.917 0.855 0.790 0.043 0.824 0.916

43 0.907 0.851 0.022 0.870 0.963 0.845 0.746 0.028 0.783 0.918 0.856 0.791 0.042 0.826 0.915
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