Appendix: MFFN: Multi-view Feature Fusion Network for Camouflaged Object Detection

Section A shows the experimental details of MFFN on
the salient object detection (SOD) task and the test results.
We further add more experimental details of MFFN on the
COD task and the evaluation metrics changes during train-
ing in Section B.

A. Experiments on Salient Object Detection

To illustrate the generalizations and soundness of pro-
posed structural design, we evaluated the proposed model
on the salient object detection (SOD) task.

A.1. Datasets

Specifically, we only use SOD dataset DUTS-TR [9]
for MFFN model training, the model performance is evalu-
ated on three existing datasets: ECSSD [12], HKU-IS [2],
DUTS-TE [9]. The DUTS dataset contains 10553 training
images(DUTS-TR) and 5019 test images(DUTS-TE). All
the training images are collected from the ImageNet DET
training/validation set, while the test images are collected
from the ImageNet DET test set and the SUN dataset. The
ECSSD dataset contains 1 000 images obtained from the In-
ternet. This dataset is extended by Complex Scene Saliency
Dataset (CSSD). Salient objects contain complex structures,
and the background has certain complexity. HKU-IS con-
tains 4 447 images, and each image in this dataset meets one
of the following three criteria :1) contains multiple scattered
salient objects; 2) At least one salient object is in the image
boundary; 3) The apparent similarity between the salient
objects and the background.

A.2. Implementation Details

In order to better evaluate the performance of our model,
the compared algorithms are also only trained with DUTS-
TR [9] and adopt the same hyperparameters and training
strategies [8]. Specifically, the initial learning rate is set to
0.05, and follows a linear warm-up and linear decay strat-
egy. In addition, batchsize is set to 8 and trained for 50
epochs, and SGD optimizer is used.

A.3. Comparisons with State-of-the-arts

We compare our proposed model with 10 existing SOD
models. As shown in Tab. 1, our proposed model out-
performs most of the competitors in five evaluation met-
rics, which indicates that our multi-view strategy can be ef-
fectively and efficiently generalized to other segmentation
tasks.

B. Implementation Details and Evaluation Re-
sults on COD

B.1. Implementation Details

In this section, we explain the choice of hyperparame-
ters. The weight A of Ly 47 was initially set as 1.5, and
then the cosine strategy is adopted for dynamic adjustment.
For comparison with the SOTA model ZoomNet [7], we set
the initial image size to 384 x 384. The ratio adopted for
distance views is 1.5 and 2.0. Finally, the size of FPN out-
put by backbone is (12 x 12, 24 x 24, 48 x 48, 96 x 96,
192 x 192), and the number of channels is uniformly ad-
justed to 64. In addition, in the CFU module, the number of
interaction groups in Channel-wise Local Interaction Pro-
cess (CLIP) part is 3, and the step of progressive iteration
in the Overall Progressive Iteration (OPI) is 4. We also
encourage readers to experiment with other parameter set-
tings.

B.2. Early Stopping

We do not focus on exploiting more epoches as there
is no clear evidence that COD detectors will benefit from
longer training. During our experiments, we found that
the first time for the result dropping was appeared in ap-
proximate 40th epoch, as shown in Tab. 2 and illustrated in
Fig. 1. We also provide the results between 40th epoch and
43rd epoch. To achieve a trade-off between performance
and time consumption, we chose the results from the 40th
epoch as our final evaluation results.

B.3. How to get and evaluat the results of our pro-
posed MFFN?

We use the open source COD evaluation tool to eval-
vate our prediction results, and we have submitted the
test results of the COD10K dataset together with the sup-
plementary material (due to size limitation, we cannot
submit the test results of CHAMELEON and NC4K to-
gether). You can use the open source tool https://
github.com/DengPingFan/CODToolbox for eval-
vation. The changes of five metrics (F,, FEJ , MAE, Fg,
E,,) over time (epoch) and early stopping are illustrated in
Fig. 1a, 1b, Ic, 1d, le.


https://github.com/DengPingFan/CODToolbox
https://github.com/DengPingFan/CODToolbox

Table 1: Comparison of evaluation results of different Salient object detection(SOD) models on ECSSD [12], HKU-IS [2]
and DUTS-TE [9]. The best results are highlighted in red, green and blue

ECSSD HKU-IS DUTS-TE
Model ‘ Backbone ‘ Swt F§t MAE| Fst Ent|Sat F§t MAEL Fst Ent| St F§t MAEL Fgt Bat
PAGEnet [10] Vggl6 0912  0.886 0.042 0.904 0947 | 0903 0.865 0.037 0.884 0948 | 0.854 0.769 0.052 0.793  0.896
PiCANet [4] ResNet50 0917 0.867 0.046 0.890 0.952 | 0.904 0.840 0.043 0.866  0.950 | 0.869 0.755 0.051 0.791  0.920
PoolNet [3] ResNet50 0.926  0.904 0.035 0918 0.956 | 0919 0.888 0.030 0.903 0.958 | 0.887 0.817 0.037 0.840 0.926
HRS [13] ResNet50 0.883  0.859 0.054 0.894 0934 | 0.882 0.851 0.042 0.883  0.941 | 0.829 0.746 0.051 0.791  0.899
GCPANet [ 1] ResNet50 0.927  0.903 0.035 0916 0955 | 0.920 0.889 0.031 0.901 0958 | 0.891 0.821 0.038 0.841  0.929
SAMNet [6] Handcraft 0.907 0.858 0.050 0.883 0945 | 0.898 0.837 0.045 0.864 0946 | 0.849 0.729 0.058 0.768  0.901
VST [5] T2T-ViTt-14 | 0.932 0910 0.033 0.920 0.964 | 0.928 0.897 0.029 0.907 0.968 | 0.896 0.828 0.037 0.845 0.939

Auto-MSFNet [14] ResNet50 0914 0916 0.033 0.927 0954 | 0.908 0.903 0.027 0912 0959 | 0.877 0.841 0.034 0.855 0.931
SGL-KRN [11] ResNet50 0.923 0910 0.036 0.924 0954 | 0921 0.904 0.028 0915 0961 | 0.893 0.847 0.034 0.865  0.939

CTDNet [15] ResNet50 0.925 0915 0.032 0.927 0956 | 0.921  0.909 0.027 0918 0.961 | 0.893 0.847 0.034 0.862 0935
MINet [&] ResNet50 0.925 0911 0.033 0.923 0957 | 0919 0.897 0.029 0.909 0960 | 0.884 0.825 0.037 0.844  0.927
MFFN(ours) ResNet50 0.929 0917 0.032 0.927 0959 | 0921 0.903 0.028 0913 0959 | 0.888 0.833 0.038 0.850  0.924
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Figure 1: Metrics evaluation and early stopping



Table 2: Our model performs earlystopping at epoch 43, and finally we choose the 40th epoch as our final result, and we
provide the following table of the evaluation results between 40th and 43rd epoch.

CHAMELEON CODI10K NC4K
epoch | g, 4+ Fgt MAE| Fzt Em?t | Smt F§t MAE| Fzt Ent| Swt F§t MAE| Fgt Ent
40 0.905 0.852 0.021 0.871 0.963 | 0.846 0.745 0.028 0.782 0917 | 0.856 0.791 0.042 0.827 0915
41 0.906 0.850 0.021 0.872  0.965 | 0.841 0.744 0.030 0.783 0919 | 0.854 0.793 0.044 0.825 0913
42 0.907 0.851 0.023 0.871 0.964 | 0.844 0.745 0.029 0.782 0917 | 0.855 0.790 0.043 0.824 0916
43 0.907 0.851 0.022 0.870 0.963 | 0.845 0.746 0.028 0.783 0918 | 0.856 0.791 0.042 0.826 0915
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