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Abstract

Spiking neural networks (SNNs) have ultra-low energy
consumption and high biological plausibility due to their
binary and bio-driven nature compared with artificial neu-
ral networks (ANNs). While previous research has pri-
marily focused on enhancing the performance of SNNs in
classification tasks, the generative potential of SNNs re-
mains relatively unexplored. In our paper, we put for-
ward Spiking Denoising Diffusion Probabilistic Models
(SDDPM), a new class of SNN-based generative models
that achieve high sample quality. To fully exploit the en-
ergy efficiency of SNNs, we propose a purely Spiking U-
Net architecture, which achieves comparable performance
to its ANN counterpart using only 4 time steps, result-
ing in significantly reduced energy consumption. Exten-
sive experimental results reveal that our approach achieves
state-of-the-art on the generative tasks and substantially
outperforms other SNN-based generative models, achiev-
ing up to 12× and 6× improvement on the CIFAR-10 and
the CelebA datasets, respectively. Moreover, we propose
a threshold-guided strategy that can further improve the
performances by 2.69% in a training-free manner. The
SDDPM symbolizes a significant advancement in the field
of SNN generation, injecting new perspectives and po-
tential avenues of exploration. Our code is available at
https://github.com/AndyCao1125/SDDPM.

1. Introduction
Spiking neural networks (SNNs), being regarded as the

third generation of neural networks, are potential competi-
tors to artificial neural networks (ANNs) due to their dis-
tinguished properties: high biological plausibility, event-
driven nature, and low power consumption. In SNNs,
all information is represented by binary time series data
rather than continuous representation, which allows SNNs
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Figure 1. Comparisons of the SNN-based generative models.
The Fréchet Inception Distance (FID) serves as a measure of im-
age quality, with lower values indicating superior performance.
The Inception Score (IS) acts as an alternate measure of model
performance, where a higher score is desirable. The size of the
markers denotes the IS score. In comparison to other SNN-based
generative models, our models demonstrate state-of-the-art perfor-
mance with fewer time steps.

to adopt low-power accumulation (AC) instead of the tra-
ditional high-power multiply-accumulation (MAC), leading
to significant energy efficiency gains. Existing works re-
veal that on specialized hardware, such as Loihi [7] and
TrueNorth [1], SNNs can save energy by orders of mag-
nitude compared with ANNs. Additionally, SNNs follow
their biological counterparts and inherit complex temporal
dynamics from them, endowing SNNs with powerful abili-
ties to extract spatial-temporal features in a variety of tasks,
including recognition [10, 53, 61], tracking [57], segmenta-
tion [26] and images restoration [31].

However, most of the existing research on SNNs primar-
ily focuses on classification-based tasks, and the regression
capability of SNNs has not been well demonstrated, espe-
cially in image generation tasks. Spiking-GAN [27] is the
first SNN-based image generation model, but its low per-
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formance and limited experimentation on handwritten data
hinder a sufficient demonstration of its generative ability
on high-dimensional data. Kamata et al. [22] propose a
fully spiking variational autoencoder (FSVAE) combined
with discrete Bernoulli sampling and claim that the qual-
ity of the generated images surpasses the ANN-based VAE
in the same setting but the quality of the generated images
is limited for practical applications. [18, 38]. Consequently,
it is imperative to develop a generative algorithm capable of
producing high-quality images while also reducing energy
consumption.

Recently, diffusion models have achieved remarkable
success in generation tasks [11, 23] since they offer sev-
eral advantages compared with other deep generative mod-
els (DGMs). Firstly, diffusion’s regression loss makes its
training more stable than the adversarial loss in the Gener-
ative Adversarial Networks (GANs) and therefore the dif-
fusion model is more suitable for large-scale generation
tasks. [41]. Secondly, the training objective of diffusion
models is derived directly from the likelihood perspective,
so the problem of mode collapse can be avoided when the
model converges. Furthermore, since the diffusion mod-
els can be viewed as a VAE for a given encoder, it is eas-
ier to optimize. These advantages provide the impetus for
us to investigate the feasibility of incorporating SNNs into
the diffusion model, leveraging the generative capabilities
of diffusion models along with the energy efficiency inher-
ent in SNNs.

In this work, we propose Spiking Denoising Diffusion
Probabilistic Models (SDDPM), a novel category of SNN-
based diffusion models exhibiting exceptional image gen-
eration capabilities. To fully leverage the energy efficiency
of SNNs, we propose the Spiking U-Net architecture that
achieves comparable performance to its ANN counterpart
while employing only 4 spiking time steps, resulting in
significantly reduced energy consumption. Moreover, we
employ a pre-spike structure to ensure the accurate trans-
mission of spikes. We also propose training-free threshold
guidance, which further enhances the quality of the gener-
ated images by adjusting the threshold value of the spiking
neurons. Comprehensive experimental results demonstrate
that threshold guidances contribute to the facilitation of SD-
DPM. Our approach is evaluated on four datasets: MNIST,
Fashion-MNIST, CIFAR-10, and CelebA. As shown in
Fig. 1, we demonstrate that the proposed SDDPM outper-
forms all SNN-based generative models by a significant
margin, requiring only a small number of spiking time steps.
We also conduct extensive ablation studies to reveal the ef-
fectiveness of each component. To sum up, our contribu-
tions lie in four folds:

• To the best of our knowledge, SDDPM is the first
work that employs spiking neural networks on diffu-
sion models.

• To fully exploit the energy efficiency of SNN, We de-
sign a purely Spiking U-Net that can achieve compara-
ble performance to its ANN counterpart while saving
62.5% energy consumption.

• Extensive experiments show that SDDPM achieves
state-of-the-art performances among SNN-based gen-
erative models. Specifically, our proposed SDDPM
outperforms the SNN-based baselines by up to 1200%
and 600% on the CIFAR-10 and CelebA datasets with
only 4 spiking time steps.

• We also introduce a threshold-guidance strategy aimed
at further enhancing performance, which results in a
2.69% improvement without any additional training.

2. Related Work
Training Methods of Spiking Neural Networks. Gener-
ally, there are two ways to obtain deep SNN models: ANN-
to-SNN conversion and direct training. The ANN-to-SNN
conversion [5,9,12,32,53] involves converting a pre-trained
ANN into an SNN by replacing the ReLU activation layers
with spiking neurons, which allows the SNN to simulate the
behavior of the original ANN using spiking neurons. This
conversion method is generally known to achieve higher ac-
curacy compared to direct training methods. However, the
conversion methods typically require a longer training time
compared to direct training methods, resulting in the need
for more training resources. On the other hand, direct train-
ing methods involve training the SNN directly from scratch.
Surrogate gradients [30, 37, 55] are utilized for addressing
the non-differentiability problem of spiking neurons, en-
abling the training of SNNs using gradient-based optimiza-
tion techniques. In our study, we explore the feasibility
of implementing diffusion models in SNNs using the di-
rect train method, aiming to reduce power consumption and
investigate the potential generative abilities of SNNs.

Diffusion Models. Some research focuses on analyz-
ing the theoretical foundation and formulation of diffusion
models [18, 47–49]. What’s more, diffusion model is di-
vided into discrete time diffusion and continuous time dif-
fusion [23, 25, 49] depending on whether the time step in
diffusion is sampled from discrete distribution or continu-
ous distribution. Certain solvers [2, 13, 21, 36] have been
proposed to expedite the sampling process in diffusion mod-
els. Additionally, some studies are dedicated to designing
more efficient diffusion networks [3, 39].

Spiking Neural Network in Generative Models. There
has been some prior research investigating the capabilities
of SNNs in generative tasks. VDIB [46] is a hybrid vari-
ational autoencoder, consisting of an SNN-based encoder
and an ANN-based encoder. Hybrid guided-VAE [50] and
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Figure 2. Illustration of the architecture and pipeline of Spiking Diffusion Models. The SDDPM architecture is suitable for use on
top of any existing diffusion models, where we inherit the most commonly used U-Net backbone and propose the Spiking U-Net. Our
network consists of several Pre-spike Resblocks (colored in green), each of which contains spiking neurons (blue) and Conv-BatchNorm
layers (orange). Given a random Gaussian noise input xt, it is converted into the spikes by an encoding layer and subsequently fed into the
Spiking U-Net along with the time embeddings. The network transmits only spikes, represented by 0/1 vector. The output spikes Sout(t)
are formed as a result of the accumulation of membrane potentials U(t) within the neuron under the influence of the consecutive input
spikes Sin(t). Once the membrane potential exceeds the threshold Vth, the neuron will generate a spike. Eventually, the output spikes are
passed through a decoding layer to obtain the predicted noise ϵ, followed by N times denoising to restore the image x0.

hybrid GAN [43] also adopt SNN-ANN architecture. How-
ever, the aforementioned approaches rely on the ANNs,
resulting in the entire model not being fully deployed on
neuromorphic hardware. Spiking GAN [27] incorporates a
fully SNN-based backbone and utilizes a time-to-first-spike
coding scheme. Kamata et al. [22] introduce a fully spiking
variational autoencoder (FSVAE), which samples images
according to the Bernoulli distribution. Recently, Feng et
al. [16] construct a spiking generative adversarial network
with attention-scoring decoding for handling complex im-
ages, and Liu et al. [33] propose a spike-based vector quan-
tized variational autoencoder (VQ-SVAE) to learn a discrete
latent space for images. However, the primary limitation of
existing spiking generative models is their low performance
and poor generated image quality. These drawbacks hin-
der their competitiveness in the field of generative models,
despite their low energy consumption. To tackle this issue,
we introduce the Spiking Denoising Diffusion Probabilistic

Model (SDDPM), which not only delivers substantial im-
provements over existing SNN-based generative models but
also preserves the advantages of SNNs.

3. Background

3.1. Spiking Neural Network

The spiking neural network is a bio-inspired algorithm
that mimics the actual signaling process occurring in brains.
Compared to the artificial neural network, it transmits
sparse spikes instead of continuous representations, offering
benefits such as low energy consumption and robustness. In
this paper, we adopt the widely used Leaky Integrate-and-
Fire (LIF [6,20]) model, which effectively characterizes the
dynamic process of spike generation and can be defined as:

τ
dV (t)

dt
= −(V (t)− Vreset) + I(t), (1)
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where I(t) represents the input synaptic current at time t
to charge up to produce a membrane potential V (t), τ is
the time constant. When the membrane potential exceeds
the threshold ϑth, the neuron will trigger a spike and resets
its membrane potential to a value Vreset (Vreset < ϑth). The
LIF neuron achieves a balance between computing cost and
biological plausibility.

In practice, the dynamics need to be discretized to facil-
itate reasoning and training. The discretized version of LIF
model can be described as:

U [n] = e
1
τ V [n− 1] + I[n], (2)

S[n] = Θ(U [n]− ϑth), (3)
V [n] = U [n](1− S[n]) + VresetS[n], (4)

where n is the time step, U [n] is the membrane potential
before reset, S[n] denotes the output spike which equals 1
when there is a spike and 0 otherwise, Θ(x) is the Heavi-
side step function, V [n] represents the membrane potential
after triggering a spike. In addition, we use the “hard reset”
method [15] for resetting the membrane potential in Eq. (4),
which means that the value of the membrane potential V [n]
after triggering a spike (S[n] = 1) will go back to Vreset = 0.

3.2. Diffusion Models and Classifier Guidance

Diffusion models gradually perturb data with a forward
diffusion process and then learn to reverse such process to
recover the data distribution.

Formally, let x0 ∈ Rn be a random variable with
unknown data distribution q(x0). The forward diffu-
sion process {xt}t∈[0,T ] indexed by time t, can be repre-
sented by the following forward stochastic differential equa-
tions (SDE):

dxt = f(t)xtdt+ g(t)dω, x0 ∼ q(x0), (5)

where ω ∈ Rn is a standard Wiener process. Let q(xt) be
the marginal distribution of the above SDE at time t. Its
corresponding reversal process can be described by another
SDE which recovers the data distribution from noise [49]:

dx =
[
f(t)xt − g2(t)∇xt log q(xt)

]
dt+ g(t)dω̄, (6)

where ω̄ ∈ Rn is a reverse-time standard Wiener pro-
cess and this reversal SDE starts from xT ∼ q(xT ).
In Eq. (6), the only unknown term is the score function
∇xt log q(xt). To estimate this term, prior works [18,23,49]
employ a noise network ϵθ(xt, t) to estimate scaled score
function σ(t)∇xt

log q(xt) via denoising score matching
(DSM) [52], which ensures that the optimal solution sat-
isfies ϵθ(xt, t) = −σ(t)∇xt

log q(xt), where σ(t) denotes
the variance of q(xt|x0) ∼ N (xt|a(t)x0, σ

2(t)I), which is
related to the notation in Eq. (5) as shown in Eq. (7),

f(t) =
d log a(t)

dt
, g2(t) =

dσ2(t)

dt
− 2σ2(t)

d log a(t)
dt

. (7)

Hence, sampling can be achieved by discretizing the reverse
SDE in Eq. (6) by replacing the ∇xt log q(xt) with noise
network − ϵθ(xt,t)

σ(t) . Furthermore, to enable conditional sam-
pling, such as sampling cat images, we can refine the reverse
stochastic differential equation (SDE) presented in Eq. (6)
as follows [11]:

ϵθ(xt, c) = ϵθ(xt)− sσ(t)∇xt
log pϕ(c|xt, t), (8)

Here, pϕ(c|xt, t) represents the classifier, s denotes the tem-
perature controlling the intensity of guidance, and Eq. (8)
indicates that a conditional sample can be generated using
only a pre-trained noise network and a classifier. Ho et
al. [19] introduced classifier-free guidance, which signifi-
cantly enhances the diversity of generated samples. This
methodology has found extensive application in practical
scenarios [45], as demonstrated by the works of Ho . [19].

Furthermore, it is important to note that the guidance
mentioned above is not limited to a specific category, which
can be applied to various forms of guidance. For example,
in some studies [4, 59], energy-based guidance is proposed
to facilitate image translation and molecular design. Addi-
tionally, Kim et al. [24] introduce discriminator guidance to
mitigate estimation bias of the noise network, resulting in
state-of-the-art performance on the CIFAR-10 dataset.

4. Method
In this section, we introduce our methodologies in three

stages. In Sec. 4.1, we introduce our proposed Spiking U-
Net and provide a comprehensive explanation of its network
architecture. Then, we present the pre-spike residual struc-
ture in Sec. 4.2. Eventually, we put forward a threshold-
guiding strategy and its corresponding theory in Sec. 4.3.
The computational formulations for calculating the energy
consumption of the SNNs are given in the Supplementary
Material.

4.1. Spiking U-Net Structure

The overview of the architecture and sampling pipeline
is illustrated in Fig. 2. Spiking U-Net is the main com-
ponent of the whole SDDPM structure. Unlike previous
work [43, 46, 50] that use hybrid architecture consisting of
SNN and ANN, we introduce a purely SNN-based structure,
thereby fully leveraging the enhanced energy efficiency in-
herent to SNNs.

The ANN-based U-Net utilized in DDPM [18] is charac-
terized by a residual block (resblock) defined as:

Ol = Convl(Swish(GN l(Ol−1))) +Ol−1, (9)

where Ol is the output representation at layer l, GN sig-
nifies the group normalization operation, and Swish [40]
represents the activation function.
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However, directly employing GN in SNNs may result in
performance degradation due to distribution mismatch [53].
Consequently, we substitute the GN in the U-Net archi-
tecture with batch normalization, which is a more SNN-
compatible normalization technique [14, 61]. This modi-
fication allows the model to better capture spatial features.
The residual block in our Spiking U-Net can be formulated
as follows:

Ol = BN l(Convl(Sl−1)) + Sl−1, (10)

Sl = SpikeNeuron(Ol), (11)

Ol+1 = BN l+1(Convl+1(Sl)) + Sl, (12)

Sl+1 = SpikeNeuron(Ol+1), (13)

where Sl is the output spikes at layer l, BN denotes the
batch normaliztion operation and SpikeNeuron means the
spiking activation function in Eq. (3).

The Spiking U-Net receives an input of a 2D image batch
Is ∈ RB×C×H×W , with B,C,H , and W standing for
batch size, channel, height, and width, respectively. Ini-
tially, the image is replicated T times, resulting in a se-
quence of images I ∈ RT×B×C×H×W , a necessary op-
eration for the SNN to incorporate temporal dimension in-
formation. However, the 2D convolution and BN cannot di-
rectly process the added T dimension. To circumvent this,
we fuse the T and B dimensions, represented mathemati-
cally as Ifused ∈ RTB×C×H×W , which allows the network
to concurrently analyze spatial and temporal features.

4.2. Pre-spike Residual Learning

In this section, we further explore the structure of the
Spiking U-Net. Although the above design can fully ap-
ply the U-Net into SNN, it could cause the output range of
the residual block to overflow. This is due to the fact that
the previous shallow network output Sl−1 and the residual
mapping representation Sl are both spike series ({0, 1}),
thus their summation Ol would result in a value domain
of {0, 1, 2}, where {2} is a pathological case without any
biological plausibility. This could lead to a larger range of
spike signals when the layers become deeper [60], incurring
higher energy consumption.

Inspired by [35,58] , we for the first time apply pre-spike
residual learning with the structure of Activation-Conv-
BatchNorm in our Spiking U-Net, so as to overcome the
problem of gradient explosion/vanishing and performance
degradation in convolution-based SNNs. Through the pre-
spike blocks, the residuals, and outputs are summed by
floating point addition operation, ensuring that the repre-
sentation is accurate before entering the next spiking neuron
while avoiding the pathological condition mentioned above.
The whole pre-spike residual learning process inside a res-

Conv3D + BN

Conv

BN

(a) ANN Resblock (b) SNN Resblock

Conv

BN

(c) Pre-spike Resblock

BN

Conv

Figure 3. Comparisons of the residual structures and Pre-spike
structure. Standard SNN resblock (b) entirely inherits from ANN
structure (a). In contrast, pre-spike resblock activates first.

block can be formulated as below:

Sl = SpikeNeuron(Ol−1), (14)

Ol = BN l(Convl(Sl)) +Ol−1, (15)

Sl+1 = SpikeNeuron(Ol), (16)

Ol+1 = BN l+1(Convl+1(Sl+1)) +Ol. (17)

Through the pre-spike residual mechanism, the output of
the residual block can be summed by two floating points
BN l(Convl(Sl)), Ol−1 at the same scale and then enter
the spiking neuron at the beginning of the next block, which
guarantees that the energy consumption is still very low. We
illustrate the diagram of different resblocks in Fig. 3. Ex-
periments to verify the superiority of the pre-spike structure
can be found in Sec. 5.5.

4.3. Threshold Guidance in SDDPM

Recall that sampling can be achieved by substituting the
score ∇xt

log q(xt) with either the score network sθ(xt, t)

or the scaled noise network - ϵθ(xt,t)
σ(t) while discretizing the

reverse SDE as presented in Eq. (6). Because of the in-
accuracy of the network estimates, we have the fact that
sθ(xt, t) ≈ − ϵθ(xt,t)

σ(t) ̸= ∇xt
log q(xt) in most cases.

Therefore, in order to sample better results, we can dis-
cretize the following rectified reverse SDE [24]:

dx =
[
f(t)xt − g2(t)[sθ + cθ](xt, t)

]
dt+ g(t)dω̄, (18)

where sθ(xt, t) represents the score network or scaled noise
network, while cθ(xt, t) = ∇xt

log q(xt)
pθ(xt,t)

denotes the rec-
tified term for the original reverse stochastic differential
equation (SDE) with the estimation errors of neural net-
work. The omission of the rectified term cθ(xt, t) reduces
discretization errors and improves sampling performance.
However, the practical calculation of cθ(xt, t) presents chal-
lenges due to the intractability of q(xt) and pθ(xt, t).

In light of the existence of estimation errors, the formu-
lation in Eq. (18) motivates us to explore if we can improve
the sampling performance without additional training by
computing cθ(xt, t). Although a direct computation of this
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Dataset Model Method #Param (M) Time Steps IS↑ FID↓

MNIST∗

DDPM [18] ANN 64.47 / - 28.70

FSVAE [22] SNN 3.87 16 6.209 97.06
SGAD [16] SNN - 16 - 69.64
Spiking-Diffusion [33] SNN - 16 - 37.50
SDDPM SNN 63.61 4 - 29.48

Fashion
MNIST∗

DDPM [18] ANN 64.47 / - 20.24

FSVAE [22] SNN 3.87 16 4.551 90.12
SGAD [16] SNN - 16 - 165.42
Spiking-Diffusion [33] SNN - 16 - 91.98
SDDPM SNN 63.61 4 - 21.38

CelebA∗

DDPM [18] ANN 64.47 / - 20.34

FSVAE [22] SNN 6.37 16 3.697 101.60
SGAD [16] SNN - 16 - 151.36
SDDPM SNN 63.61 4 - 25.09

LSUN bedroom∗ DDPM [18] ANN 64.47 / - 29.48

SDDPM SNN 63.61 4 - 47.64

CIFAR-10

DDPM [18] ANN 64.47 / 8.380 19.04
DDPMema [18] ANN 64.47 / 8.846 13.38

FSVAE [22] SNN 3.87 16 2.945 175.50
SGAD [16] SNN - 16 - 181.50
Spiking-Diffusion [33] SNN - 16 - 120.50
SDDPM SNN 63.61 4 7.440 19.73
SDDPM SNN 63.61 8 7.584 17.27
SDDPM (TG) SNN 63.61 4 7.482 19.20
SDDPM (TG) SNN 63.61 8 7.655 16.89

Table 1. Results for different dataset. In all datasets, SDDPM (Ours) outperforms all SNN-based baselines and even some ANN models
in terms of sample quality, which is mainly measured by FID↓ and IS↑. Results of ▽ and ♮ are taken from [22] and [16], respectively.
ema indicates the utilization of EMA training method [51]. For fair comparisons, we re-evaluate the results of DDPM [18] using the same
U-Net architecture as SDDPM. We employ the symbol ‘/’ to represent ‘None’ since ANN does not have the concept of time step. ∗ denotes
that only FID is used for measurement since these data distributions are far from ImageNet, making Inception Score less meaningful.

term is infeasible, we can seek suitable approximations to
enhance the effectiveness of our sampling process. Mean-
while, a crucial parameter in the SNN is the spike threshold
Vth, which influences the SNN’s output. We put forward a
threshold guidance (TG) by adjusting the threshold by:

sθ(xt, t, V
′
th)

≈ sθ(xt, t, V
0
th) +

dsθ(xt, t, Vth)

dVth
dVth +O(dVth)

≈ sθ|V 0
th

+ s′θ|V 0
th
dVth +O(dVth)

≈ sθ(xt, t) + cθ(xt, t), (19)

which means that we can adjust the threshold in SNNs to es-
timate the rectified term cθ(xt, t). V 0

th represents the thresh-
old utilized during the training stage, while V ′

th denotes the
adjusted threshold employed during the inference stage in
Eq. (19). The first equation is derived through Taylor ex-
pansion. Eq. (19) indicates that adjusting the threshold can

enhance the final sampling outcomes when the derivative
term is correlated with the rectified term. Moreover, modi-
fying the threshold allows for the manipulation of both the
overall quality and diversity of the generated images, par-
ticularly in scenarios where image generation is not highly
accurate. A lower threshold encourages the occurrence of
more spikes. Experiments show that TG can improve sam-
ple quality without extra training. We label cases with de-
creasing thresholds as inhibitory guidance and the opposite
as excitatory guidance.

5. Experiment
5.1. Experiment Settings

Datasets and Baselines To demonstrate the effective-
ness and efficiency of the proposed algorithm, we con-
duct experiments on 32×32 MNIST [29], 32×32 Fashion-
MNIST [54], 32×32 CIFAR-10 [28], 64×64 CelebA [34]
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Figure 4. Unconditional image generation results on Fashion-MNIST, CIFAR-10, CelebA and LSUN bedroom by using SDDPM.

and 64×64 LSUN bedroom [56]. We use existing spiking
generative models FSVAE [22], SGAD [16] and Spiking-
Diffusion [33] as our baselines. We also compare our results
with ANN baselines.
Evaluation Metrics. The qualitative results are compared
according to Fréchet Inception Distance (FID [17], lower is
better) and Inception Score (IS [44], higher is better). IS
evaluates the quality of synthetic images by maximizing the
average entropy of Inception V3 model’s probability distri-
bution. FID computes the KL divergence between the as-
sumed Gaussian latent spaces of real and generated images.
Both metrics are calculated using 50,000 generated images.
Implementation Details. Our Spiking U-Net inherits the
standard U-Net [42] architecture and no attention blocks are
used. For the hyper-parameter settings, we set the decay
rate e

1
τ in Eq. (2) as 1.0 and the spiking threshold ϑth as

1.0. The SNN simulation time step is 4/8. The learning rate
is set as 1e-5 with batch size 128 and we train the model
without exponential moving average (EMA [51]). U-Net
also does not employ attention blocks, and its training pro-
cess is consistent with Spiking U-Net. More details of the
model and the implementation codes can be found in the
Supplementary Material.

5.2. Comparisons with the state-of-the-art

In Tab. 1, we present a comparative analysis of our
Spiking Denoising Diffusion Probabilistic Models (SD-
DPM) with state-of-the-art generative models in uncondi-
tional generations. To ensure a comprehensive comparison,
we also include results derived from ANNs as benchmarks.
Fig. 4 provides a visual representation of the qualitative re-
sults obtained. Our results demonstrate that SDDPM out-
performs SNN baselines across all datasets by a significant
margin, even with smaller spiking simulation steps (4/8). In
particular, on the CelebA dataset, SDDPM has 4× and 6×
FID improvement in comparison to FSVAE and SGAD, re-
spectively. Both of these competing models require 16 time
steps. On the CIFAR-10 dataset, the enhancement factor is
even more substantial, with SDDPM achieving 11×, 12×
and 7× improvements over FSVAE, SGAD and Spiking-

Diffusion, respectively. Moreover, the quality of generated
samples escalates with an increase in the number of time
steps. In specific, our SDDPM attains a level of sample
quality that is comparable to the ANN benchmarks with
the same U-Net architecture. In certain instances, such as
an FID score comparison of 17.27 (SDDPM) against 19.04
(DDPM), the SDDPM even outperforms the ANN models.
This outcome highlights the superior expressive capability
of SNNs employed in our model. SDDPM also demon-
strates the generative ability on large-scale datasets. On
the LSUN bedroom dataset, which contains more than 3
million images, SDDPM demonstrates commendable qual-
itative results as depicted in Fig. 4.

5.3. Effectiveness of Threshold Guidance

In Sec. 4.3, we propose a training-free method: Thresh-
old Guidance (TG), which could improve the quality of the
generated images by simply changing the threshold of the
spiking neurons slightly during inference. As illustrated
in Tab. 2, inhibitory guidance helps to further improve the
quality of the generated images on two metrics: the Fréchet
Inception Distance drops from 19.73 to 19.20 upon decreas-
ing the threshold by 0.3% and the IS score increased from
7.44 to 7.55 upon reducing the threshold by 0.2%. On the
other hand, the excitatory guidance also improves sampling
quality in some conditions. Those quantitative results sug-
gest that threshold guidance can provide an effective boost
to model performance after the model has been trained,
while not costing additional training resources.

5.4. Evaluation of the Computational Cost

To further emphasize the low-energy nature of our SD-
DPM, we perform a comparative analysis of the FID and
energy consumption between the proposed SDDPM and its
corresponding ANN model. As shown in Tab. 3, when the
(spiking) time step is set at 4, the SDDPM presents sig-
nificantly lower energy consumption, amounting to merely
37.5% of that exhibited by the ANN model. Moreover, the
FID of SDDPM also improved by 0.47, indicating that our
model can effectively minimize energy consumption while
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Method Threshold FID↓ IS↑
Baseline 1.000 19.73 7.44

Inhibitory
Guidance

0.999 19.25 7.48
0.998 19.38 7.55
0.997 19.20 7.47

Excitatory
Guidance

1.001 20.00 7.47
1.002 19.98 7.48
1.003 20.04 7.46

Table 2. Results on CIFAR-10 by different threshold guid-
ances. The top-1 and top-2 results are colored in red and blue,
respectively. The findings indicate that TG can further enhance
the FID score by adjusting the spike threshold.

Models DDPM-ANN SDDPM-4T SDDPM-8T

FID↓ 19.04 19.20 16.89
Energy (mJ)↓ 29.23 10.97 22.96

Table 3. Comparisons of energy and FID of SNN and ANN
models. In comparison to ANN, SNN models exhibit reduced en-
ergy consumption while attaining superior FID outcomes.

maintaining competitive performance. As time steps grow
from 4 to 8, we witness a corresponding decline in the FID
at the cost of elevated energy consumption. This observa-
tion points to a trade-off between FID improvement and the
associated energy expenses as time steps increase.

5.5. Ablation Study

Impact of different residual learnings. To showcase the
superiority of the pre-spike learning approach we utilize,
we compare the FID score with that of the traditional spik-
ing residual block on CIFAR-10 dataset. The results of our
study, presented in Tab. 4, reveal that our pre-spike-based
model outperforms its traditional counterpart in terms of
FID score, thus demonstrating the supremacy of the pre-
spike learning approach within the context of SNN.

Effectiveness of TG on different time steps. Another crit-
ical aspect of our study concerns the examination of our
TG strategy’s effectiveness with varying spiking time steps.
As demonstrated in Tab. 5, our observations confirm a cor-
relation between an increasing number of time steps and
an improvement in the performance of SDDPM. Moreover,
the implementation of the TG strategy further amplifies this
improvement. For instance, with the application of TG, the
FID score improves from 19.73 to 19.20, indicating a rela-
tive enhancement of approximately 2.69%. This improve-
ment suggests that the TG strategy is a significant contribut-
ing factor to the overall performance of our SNN model. It
is also worth noting that there is an additional enhancement
of the FID performance by further refining the TG strategy
and increasing the time steps.

Method IS↑ FID↓
SNN Resblock 6.25 48.69

Pre-Spike Resblock 7.44 19.73

Table 4. Ablation study on spiking resblock structures. We
evaluate the performances of two SNN residual methods on the
CIFAR-10 dataset. The results demonstrate the superiority of the
pre-spike residual method.

Method Time Steps TG FID↓ ∆ (%)

SDDPM

4 19.73 +0.00
4 ✓ 19.20 (-0.53) +2.69
8 17.27 +0.00
8 ✓ 16.89 (-0.38) +2.20

Table 5. Ablation study on proposed TG and time step. The
experiments are conducted on SDDPM with 1k denoising steps. ∆
represents the improvement of FID. The performance of SDDPM
is enhanced by both TG and the increasing time steps.

6. Discussion
SDDPM presents a promising opportunity for devel-

oping SNN-based generative models, owing to its high-
quality generation capabilities. Nonetheless, one limitation
of our study is that we have not examined higher-resolution
datasets (e.g., ImageNet [8], LSUN [56]). Additionally, em-
ploying alternative diffusion solvers, such as DDIM [47],
and Analytic-DPM [2], merits consideration in an effort to
decrease the number of sampling steps. In future research,
we plan to explore SNN generative models with more neural
states and investigate further applications of SDDPM in the
generation domain, attempt to combine it with quantization
methods for improving model performance and explore the
use of distillation learning in terms of sampling methods.

7. Conclusion
In this work, we propose a new class of SNN-based dif-

fusion models named Spiking Denoising Diffusion Prob-
abilistic Models (SDDPM) that combine the energy effi-
ciency of SNNs with superior generative performance. As
a pioneering endeavor employing SNNs on diffusion mod-
els, SDDPM provides remarkable advances in generative
performances, significantly surpassing existing SNN bench-
marks with mere 4 time steps. Moreover, we introduce a
purely Spiking U-Net architecture, designed to maximize
the inherent energy efficiency of SNNs. The architecture
demonstrates the feasibility of matching the performance of
its ANN counterpart while simultaneously offering energy
savings of up to 62.5%. Further, we propose an innovative
threshold-guidance strategy to further enhance performance
without training. This research signifies a vital step forward
in the field of SNN generation, paving the way for future
exploration and development in this area.
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