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Figure 1. Given a single RGB image of interacting multiple people with occlusion, we reconstruct their complete geometry. Our method
estimates the contact signature between people, which provides a strong pose refinement cue in 3D to prevent penetration.

Abstract

This paper introduces a novel pipeline to reconstruct the
geometry of interacting multi-person in clothing on a
globally coherent scene space from a single image. The
main challenge arises from the occlusion: a part of a
human body is not visible from a single view due to the
occlusion by others or the self, which introduces missing
geometry and physical implausibility (e.g., penetration).
We overcome this challenge by utilizing two human priors
for complete 3D geometry and surface contacts. For the
geometry prior, an encoder learns to regress the image of
a person with missing body parts to the latent vectors; a
decoder decodes these vectors to produce 3D features of
the associated geometry; and an implicit network combines
these features with a surface normal map to reconstruct a
complete and detailed 3D humans. For the contact prior,
we develop an image-space contact detector that outputs a
probability distribution of surface contacts between people
in 3D. We use these priors to globally refine the body poses,
enabling the penetration-free and accurate reconstruction
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of interacting multi-person in clothing on the scene space.
The results demonstrate that our method is complete,
globally coherent, and physically plausible compared to
existing methods.

1. Introduction

Knowing people’s underlying geometry makes it possi-
ble to transport the scenes of human interaction to a vir-
tual space, which is the key component for AR/VR appli-
cations such as authentic telepresence and view-consistent
rendering of people for internet broadcasting. Such multi-
person geometry has been often captured by a specialized
infrastructure, e.g., a multi-camera system [29,45], for two
reasons: 1) it maximizes the visibility of a scene, which en-
ables the 3D reconstruction of people without missing parts;
and 2) multi-camera calibration makes it possible to under-
stand the scene-space 3D body poses. In this paper, we
remove those requirements of an expensive system by in-
troducing a novel pipeline that can capture the scene-space
geometry of interacting multi-person using only a single im-
age as described in Fig. 1.

Monocular multi-person 3D reconstruction is a highly
challenging problem due to self- and inter-occlusion: a



significant amount of missing body parts in an image is
unavoidable from a single-view perspective during multi-
person interaction. Such incomplete information in 2D, in
turn, affects the 3D reconstruction with missing geometry.
While existing methods [5, 18, 20, 21] have utilized a 3D
body model, e.g., SMPL [26], to capture a complete hu-
man, they are limited to expressing unclothed human ap-
pearance; and the reconstruction of the multi-person is often
physically implausible since it involves unrealistic penetra-
tion artifacts and scene-space positional misalignment (i.e.,
a person’s position in world coordinates is unusually distant
from others compared to their actual physical distance, as
shown in Fig. 2, bottom right).

To address this challenge, we propose to use human pri-
ors for complete 3D geometry and surface contacts. For
the complete geometry, we effectively utilize a 3D genera-
tive model (e.g., gDNA [6]) which is designed to generate
3D features from a latent vector, for a coarse and looking-
plausible human geometry. We upgrade this 3D geometric
coarse prior to 3D geometric detail prior by developing an
implicit network that combines the 3D features [6] and a
surface normal map. It predicts the 3D geometry augmented
in its style, shape, and details (e.g., wrinkles). We finally
glue the different modalities between the image and the 3D
model by designing an image regression network that can
predict the appearance vectors whose distribution matches
the latent space of the 3D generative model [6]. For under-
standing the physical state of multiple people in 3D, we de-
velop a data-driven prior for surface contact map—a proba-
bility distribution of 3D surface contacts of each body part
across people. A neural network learns to predict such prob-
ability maps from the images of interacting multi-person,
which provides strong guidance for accurate pose refine-
ment in scene space. In particular, it is designed to prevent
surface penetration; and to enforce accurate scene-space lo-
calization, e.g., the contact around the torso of two people
in Fig. 2 provides a strong cue to decide their ordinal depth
relation.

Using these two priors, we introduce a new design of the
monocular multi-human capturing system. Given an image
of multiple people, we first predict the detailed geometry
for each person in the canonical body poses using our 3D
geometric detail prior. The coarse scene-space 3D body lo-
cation for each person are estimated by solving Perspective-
n-Point (PnP) between the predicted 3D keypoints and a 3D
body model (SMPL [26]). The multi-person poses are then
refined by optimizing their global relation based on the pre-
dicted contact maps and penetration loss.

The experimental results demonstrate the strength of our
method in geometric completeness with the upgraded 3D
geometric detail priors; in global coherence thanks to the
contact priors; and in physical plausibility with minimal
penetration with the effective refinement pipeline.
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Our contribution includes (1) a novel pipeline that re-
alizes 3D reconstruction of interacting multi-person using
only a single image with an effective global pose refine-
ment; (2) the innovation to upgrade existing geometric pri-
ors that enable a complete and detailed 3D human recon-
struction from the image of a partial body; and (3) an ef-
fective scene-space pose refinement framework guided by
surface contact priors, which enforces the physical plausi-
bility.

2. Related Work

3D Clothed Single Person Reconstruction. Many exist-
ing methods have explored the 3D reconstruction of human
meshes from a single-view image. Some works [18, 20,21,
33] predict SMPL parameters [26] from RGB images of
a person with occlusion to reconstruct a complete human
mesh. However, these works cannot express the shape be-
yond the naked body.

Some explicit-based approaches [1,2,22,48] solved this
problem by estimating the offsets at each vertex of the
body mesh to represent the humans in more detail. Those
explicit approaches have demonstrated sub-optimal perfor-
mance when dealing with a single-view input, mainly be-
cause of the fixed 3D mesh topology [26].

To overcome the limitation of the fixed topology con-
strained by explicit 3D mesh models, some existing meth-
ods have utilized an implicit signed distance field (SDF) [3,
40, 45, 46] and occupancy field [7, 11-13, 15, 19, 29-31,
35,37, 39,47, 49]. To generate a high-resolution mesh
from a coarse one in the canonical space, Neural-GIF [35]
uses a backward mapping network and a displacement net-
work. LaplacianFusion [19] employed Laplacian coordi-
nates extracted from the mesh to generate the detailed sur-
face. While the above methods demonstrate promising re-
construction results, those methods often suffer from miss-
ing information in 3D when the input images of humans
involve occlusion.
3D Clothed Multi-Person Reconstruction. The multi-
person 3D reconstruction is often considered as a special
case of a single person with occlusion where several meth-
ods [5, 8,10, 16, 17, 33, 34, 42-44] separately handle each
individual from the scenes of human interaction. However,
the focus of these methods is lying on the reconstruction of
unclothed human models (e.g., SMPL [26]) that cannot rep-
resent the details of human geometry such as clothing, hair,
and shoes.

While DeepMultiCap [45] utilizes the attention module
and temporal fusion to capture high-quality 3D models of
interacting people in clothing, they require multiview im-
ages for the best quality of 3D reconstruction in scene space.

Mustafa et al. [28] introduced an implicit approach for
3D reconstruction of multiple people with 6DOF spatial lo-
cation estimation to accurately estimate the position of peo-
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Figure 2. System overview. Given an image of interacting people, we aim to reconstruct multi-person geometry. Our pipeline is composed
of three stages. (Top): In the generation stage, we extract coarse meshes for the multi-person from the input image. (Bottom): In the
contact estimation stage, we detect the region of contact between individuals in the image. Finally, in the contact-based refinement stage,
we generate detailed multi-person geometry by leveraging the information obtained from the previous two stages.

ple from global scene space. However, the results are lim-
ited to expressing coarse geometry and the method often
fails when it faces people with heavy occlusion.

Surface Contact Estimation. Surface contacts provide a
strong cue to understand the physical state between two dif-
ferent surfaces. Thus, there has been a growing interest in
modeling such surface contacts in the process of 3D hu-
man reconstruction for human-to-object [4, 38], human-to-
scene [14,32], and human-to-human [9]. Fieraru et al. [9]
introduced a representation of part-based contact signatures
at a 3D body model [26] to predict accurate 3D body poses
from the scenes of multiple people. However, the above
methods do not consider the surface geometry of clothed
humans and are brittle under severe occlusions.

3. Method

The overall pipeline is illustrated in Fig. 2. Our method
consists of 3 main stages which will be explained in detail
in the remaining sections.

3.1. Pre-processing

Human Segmentation. We segment each human instance
from an image I by using an existing method [24]. From
this, we could obtain the i-th person’s segmentation mask
m;.

Normal Map. We use an off-the-shelf normal detection
method [30] to estimate the normal map IN; from I;. While
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it generates front and back normal maps from I;, we used
only the front normal map.

SMPL Parameters. We first initialize the 2D and 3D joints
(J?P, J3P) from a single image by using an existing monoc-
ular keypoints prediction method [5]. The inverse kinematic
method [23] is applied to calculate the SMPL [26] pose pa-
rameter @ and shape parameter 3 from the estimated 3D
joints J3P.

Camera Parameter and 3D Translation. We estimate
camera parameters Cpanm, 1.€., scale s, x-translation ¢, y-
translation ¢,,, via the singular value decomposition (SVD)
method to align SMPL mesh My, from the image space:
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The SMPL 2D joints JZ- | are obtained from the SMPL 3D

smpl

joints J3D | based on the orthogonal projection and J3D
are differentiably obtained from the mesh My, using the
SMPL skeletal regressor provided by [26]. Additionally,
we calculate 3D location T3P with Cpyam and J Sn'?p] similar
to [33,34].

Semantic Part Segmentation and 2D Keypoint
Heatmap. We generate a semantic part segmentation
mask mP™ by differentiably rendering 75 regions of SMPL
3D mesh Mnpi(6, 3) with different colors. We generate
2D keypoint heatmap h; from 2D joints J?P, by drawing
J2P Gaussian in the positions of 2D joints.
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Figure 3. The details of the pipeline for each module in our system.

3.2. Detailed Clothed Human Generation

In this section, our goal is to generate the human sur-

face, reflecting details such as clothes and hair. As the di-
rect reconstruction of holistic 3D meshes of detailed hu-
mans is non-trivial, we divide the skinning methods into
two disjoint steps: First, we estimate the detailed 3D hu-
man mesh in the canonical space. Second, we transform the
canonical 3D mesh into the posed mesh M corresponding
to SMPL [26] pose 0 and shape 3 parameters using the for-
ward skinning module. In the remainder of this sub-section,
we detailed each sub-module.
Canonical Mesh Estimation Module. Our canonical mesh
estimation module is designed to generate the canonical
mesh M. This module is composed of four sub-networks:
a latent feature extractor 7%, a 3D voxel feature generator
f3P, a 2D image-aligned feature extractor f?° and an ag-
gregation network f*% as shown in the left side of Fig. 3.

The latent feature extractor f* extracts the latent vector
Zshape that reflects global feature of human styles from an
input image I. The 3D voxel feature generator f3P con-
verts it into the feature vector F3P. The 2D image-aligned
feature extractor f2° extracts the 2D image-aligned feature
F?P from a normal map N.

For any 3D point p, we transform it to p. in canonical
space [6]. We obtain the associated canonical features F%E’
by tri-linear interpolation to the F3P according to p.. 7(p)
is the perspective camera projection from the 3D point p to
the image plane and the local 2D feature FW( ) is obtained

from the F2P by bi-linear interpolation at the projected pixel
coordinates w(p). Then, we concatenate Ff,’?, Ffr]?p) and
P. to make the geometry- and image-aligned feature. Fi-
nally, it is fed to the aggregation network f2€ to obtain the
high fidelity occupancy field o(p). Similar to [29], the occu-
pancy field o(p) € [0, 1] indicates whether p is inside mesh
surface or not. Using the Marching Cube algorithm [27],
we extract the final canonical mesh M from obtained occu-
pancy fields {o(p)}.

We initialize our f3P using the pre-trained model in [6],
while further training f?, f?° and f¢ to upgrade their
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method in a way that (1) infers the style code from the 2D
images; (2) extracts geometric details from the normal map
N; and (3) combines information from both normal map
and RGB images.

To train f?, we use the mean squared error (MSE) loss
as follows:

LEDNA

LZ(fz) = sthape - shape ||2a 2

denotes the fitted latent code by gDNA [6]. To
train f2P and f?2, we use the binary cross entropy (BCE)

loss [47],
> 7-0°

PES
(1=9)(1 =% (p))log(1 —o(p)), (3)

where S is the set of sampled points and - denotes the ratio
of points outside the surface in .S, which helps to train the
network more stably. 0T (p) is the ground-truth occupancy
at the sampled point p.

Forward Skinning. We use the pre-trained network [6] to
deform canonical mesh M towards the posed mesh M with
SMPL [26] pose 6 and shape 3 parameters. It generates ma-
trix W € RNv*24 that transforms NN,, canonical mesh ver-
tices into skinning weight fields for 24 bones, conditioned
on Zsnape and 3. As a result, given target # and W, canoni-
cal mesh vertices v on M can be transformed to the posed
space v’ on the posed mesh M.

3.3. Contact Map-based Refinement

where thape

Lo

) - log(o(p))

+

Contact Estimation Stage. To predict contact estimation
from images, we design a contact estimation network that
takes an image, semantic part segmentation and 2D key-
point heatmap as inputs; and outputs contact signatures [9],
i.e., a representation that indicates whether there exist sur-
face contacts between the body parts of two people from
the 3D mesh model, as shown in Fig. 2. We concatenate
I, mb™, mb* h;, and h, to feed them to the contact dis-
criminator "t and the contact segmentation estimator

fCS.



The contact discriminator f€°"®! is designed to classify
whether there exist contacts between two interacting per-
sons. The contact segmentation estimator f©5 is designed
to predict the contact segmentation s; € [0,1]7*! and
sy € [0,1]7*! for two persons. These are 75-dimensional
vectors whose values indicate whether each region out of
the overall 75 regions is contacted or not. These two inter-
mediate vectors are further fed to MLP layers f%¢ whose
output vectors are used to infer the final contact signature
C € [0,1]*7 based on their dot products followed by a
nonlinearity, i.e., sigmoid.

The overview of the network for this stage is shown on
the right side of Fig. 3. To better distinguish the contact
signature features of two interacting people, we employ the
two-path architecture for each person and jointly estimat-
ing segmentation and signature is synergistic as described
in [9].

To train fComact fCS and fsi¢, we use the balanced binary
cross entropy (BBCE) loss as follows:

“)

where ¥, y and B denote the ground-truth, estimated value
and balance term.

Refinement Stage. We further refine the scene-space 3D
body poses considering people’s contacts and their geome-
try surface. To this end, we select two meshes {M;, M}
where ¢ # j, and refine the SMPL pose 6, shape 3 and
3D location T3P of two meshes M. Note that, if fConact
predicts that there is “no contact”, we skip this stage. We
optimize T3P of the meshes using the contact 10ss Leontact
proposed in [9] as the following formula:

Lppor = —(Bylog(y) + (1 —g)log(1 - y))

&)

T = arg min Lconlact(TSD)

T3D
where L =37 el )D( ) d
contact — ri=1 ro=1 T, T2 r1,7T2). 71 an
ro are 75 regions of each person. C is the estimated con-
tact signature between two regions of interacting persons.
It represents 1 if there is contact between r; and r9, other-
wise 0. D(r1,72) denotes the distance between two regions
which is formulated as:

D(ry,ry) = Z min d(f1, f2) + Z

fier fa€r2 fa€mra
where f; and f, are the faces which belong to two regions
rq and ro, respectively. d is the Euclidean distance between
the centers of the two faces f1 and fs.

Finally, we globally refine SMPL pose (€) and shape (3)
parameters as well as T3P via the contact 108S Leontact COM-
bined with the penetration 10ss Lpene [25], Gaussian mix-
ture model prior loss Lgym [21] and regularizer Ly, as fol-
lows:

0", 3%, T = arg min_ Lo (8,3, TP) )
6,3, T3P

]}}1612 d(fr, f2) (6
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where

Lopt(07 /87 TBD) )\chonlaCl(ea ﬁ7 TSD)

+ ApLpenet(8, 8, TP)
+ AgLeymm(0)
+ A Leeg(6,8) )

where Lyenet = _,cv; .0 SPF2(0) + X- ey, . SDF1(v)
prevents collisions between two people’ meshes. The first
term of Lpe, means the sum of signed distance fields
(SDFy;) that measures the distance between the second per-
son’s mesh surface and the first person’s mesh vertices
V1 penet» Which are penetrating the surface of the second per-
son’s mesh. The second term of L represents the op-
posite situation. SDF; denotes the signed distance fields
of the first person’s mesh. V5 is the second human ver-
tex set inside the first person’s mesh. Gaussian mixture
model prior loss Lgmy reduces the probability of predict-
ing the pose that deviates from distribution and regularizer
Lyeg = ||0 — Oinit||3+ ||B — Binit||3 ensures the refined SMPL
pose and shape parameters do not diverge much from the
initial parameters {Binit, Ginit}- A, Ap, Ar, Ag balances the
weights over the losses.

Updating the Posed Mesh. After obtaining the refined pa-
rameters 8%, 3%, T°P*, we re-obtain our posed mesh M*
using the forward skinning with new SMPL parameter (3*
and 8". We also translate the re-posed mesh M* to scene
space by adding the T3P to the posed mesh.

4. Experiments
4.1. Datasets

Generation. We conduct our experiments using THu-
man2.0 [41], MultiHuman [45], and 3DPW [36] datasets.
THuman2.0 [41] is publicly available, and provides 500
high-fidelity 3D human scans with different clothing styles
and poses. The 3D scans have the corresponding texture
map and SMPL parameters. We use this dataset to train
our f#, P, and f*¢. MultiHuman [45] consists of 150
high-quality 3D human scans with the corresponding tex-
ture map. We use it for evaluation. It provides 3D scans
with occlusion by humans or objects. Each sample contains
1 to 3 people and each person wears different clothing. This
dataset is divided into 5 categories by the level of occlusions
and the number of people. In addition, we use 3DPW [36]
for evaluation. It provides SMPL [26] pose parameters and
clothed mesh.

Contact estimation. We use FlickrCI3D [9] to train our
contact estimators. It provides the paired data of images
and the labels of contact validity and its signature. Among
them, we filter out noisy ground truth and select 5K paired
data for training.



Categories single occluded single  two natural-inter  two closely-inter three
Methods CD P2S CD P2S CD P2S CD P2S CD P2S
PIFu [29] 23240 2.5473 33008 3.1365 3.6404 3.5573 4.0191 4.2739 33058 3.4899
PIFuHD [30] | 1.9745 2.0258 4.2392 4.5324 3.3252 3.0838 3.3901 3.3945 3.2487 3.1508
ICON [40] 3.6610 4.6765 4.6721 5.0283 5.0958 6.1449 5.0285 6.2282 4.1542 5.0633
DMCT [45] 2.5878 4.0971 3.1396 4.6999 2.5335 43184 3.2481 53352 3.8079 5.7033
Ourst w/o N | 1.4069 1.9364 1.6574 1.8731 1.1996 19692 1.8038 2.7844 1.7642 2.7325
Ours' 1.3730 1.8441 1.6329 1.8898 1.1933 19578 1.8382 2.8614 1.7608 2.7112
Ours’ w R. - - - - 1.1723  1.9065 1.3358 2.0669 1.5399 2.2636

Table 1. The comparison of our method to the state-of-the-art approaches on MultiHuman [45]. { denotes that model uses the estimated
SMPL parameters from [5]. Ours w/o N denotes the results without using a normal map input IN. Ours is without refinement based on the
contact signature. Ours w R. is our full method. Refinement is not available to “single’” and “single occluded” because they have only one

person.

Office Call Hug ShakeHands
Methods CD P25 CD P25 CD P2S
PIFu [29] 526 361 577 381 4.60 2380
PIFuHD [30] | 493 3.19 6.30 443 430 3.10
ICON [40] 480 4.07 545 424 405 3.14
DMC' [45] 430 3.68 6.67 630 436 395
Ours’™ w R. 216 1.79 322 284 293 2.60

Table 2. We compare our proposed method with state-of-the-art
methods on 3DPW [36].  denotes that model uses the estimated
SMPL parameters from [5].

4.2. Metrics

Following the measuring protocols from existing
works [29,45], we use two metrics to measure the recon-
struction quality.

Chamfer Distance (CD). It measures the bidirectional
point distance between the predicted and ground truth
meshes based on their closest-set Euclidean distance where
the smaller Chamfer distance means more accurate recon-
struction results.

Point to Surface (P2S). It measures the directional surface
distance from the prediction to the ground truth based on
their closest-set Euclidean distance. The smaller number is
the better.

4.3. Baselines

We compare our model with other state-of-the-art meth-
ods [29, 30,40, 47]. PIFu [29] and PIFuHD [30] use the
pixel-aligned implicit function so that they can generate the
pixel-aligned clothed human mesh. ICON [40] uses the
front and back normal map and fuses their features with a
signed distance field to generate the detailed clothed human
mesh. However, these methods can not reconstruct invisible
parts of humans occluded by objects or other people. Deep-
MultiCap [45] fuses multi-view features by the proposed at-
tention module. While it requires multi-view images as in-
puts for the best performance, we use a single image for the
fair comparison. For the quantitative evaluation of PIFu, PI-
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FuHD, and ICON, we manually transform their results from
the image to the scene space using the ground-truth meshes:
this means that the errors from 3D scene-space pose esti-
mation are factored out from their methods. For qualitative
results in Fig 7, we visualize their methods without such
advantages since predicting the scene-space position of hu-
mans is not a part of their algorithms.

4.4. Results

The comparison results of SOTA and our method are
shown in Tab. 1 and Fig 7. Overall, our method achieves
state-of-the-art performance on MultiHuman [45] where in
Tab. 1. Based on Tab. 1 and Fig 7, pixel-aligned meth-
ods [29, 30, 40] show the weak reconstruction results for
the occluded body parts including a significant amount of
artifacts such as missing information. While DeepMulti-
Cap [45] produces a mesh that is less noisy compared to
other baselines, its geometry reconstruction results are still
coarse, and its performance is often affected by the quality
of global coordinates estimation of SMPL meshes. Unlike
other approaches, our method is able to reconstruct clothed
meshes from highly occluded people. Thanks to the global
pose refinement with contact signatures, our method is ro-
bust to the occlusion, and the active utilization of the up-
graded human geometry prior enables the complete and de-
tailed reconstruction of multiple people under occlusion.
In addition, Tab. 2 shows the comparison on in-the-wild
data [36]. It highlights that our method is generalizable and
is able to reconstruct human meshes with details even from
unconstrained data. More qualitative results are presented
in Supple.

4.5. Ablation Study

We conduct an ablation study to confirm the effect of our
module. In Tab. 1, we study the performance of our implicit
model f%¢ without a normal map input (Ours w/o N); and
the 3D reconstruction results with the refined body pose and
shape (Ours w R.). Refinement with surface contact priors
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Figure 4. Ablation study on normal map N. (a) and (c) are the
input RGB image and normal map input, respectively. (b) and (d)
show the result without and with normal map, respectively. Nor-
mal map N provides more detailed surface information for recon-

structing mesh.

(b) Initial (e L

Figure 5. Ablation study on the elements of Ley. First row shows
the results in front view. Second row shows the results in top view.
(a) is RGB image input. (b) shows initial posed meshes. (c) shows
the results without using Lpener. (d) shows the results without using
pose and shape prior loss, Ly, and Lemm. (€) shows the results of
our full method.
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highly improves the performance from the scenes of multi-
person (two or three people) under occlusion. Although uti-
lizing a normal map N slightly improves the performance,
it can help to express the details of the reconstructed surface
as shown in Fig 4.

We further study the effect of the loss used in our re-
finement pipeline in Loy. We use the estimated SMPL pa-
rameters as initial SMPL parameters from [5]. As shown
in Fig 5, Lyener prevents penetration between two people.
Lgynm and Ly, prevent divergence of SMPL [26] parame-
ters. Our full Ly refines the SMPL parameters and 3D
location more realistically based on contact signature.

We perform an ablation study in Fig. 6 where the recon-
struction error (i.e. chamfer distance) is highly suppressed
by our refinement module with surface contact and inter-
penetration priors. Our refinement module is robust to pose
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Noisy SMPL ™= Refined SMPL
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Figure 6. The reconstruction accuracy (CD) with noisy and refined
SMPL parameters. The noisy pose is synthetically generated by
adding the fraction of Gaussian noise which perturbs ground-truth
SMPL parameters.

25

noise. In the supplemental, we include more ablative and
comparative studies.

5. Conclusion

We introduce a novel system for scene-space 3D recon-
struction of interacting multi-person in clothing from a sin-
gle image. We address the core challenge of occlusion by
utilizing the human priors for complete 3D human geometry
and surface contacts. For the geometry, we upgrade the ex-
isting generative 3D features by newly designing an implicit
network that combines these features and a surface normal
map to produce fine-detailed and complete 3D geometry.
For the surface contacts, we design an image-based detector
that signals the surface contact information between peo-
ple in 3D. Using these priors, we globally refine 3D body
poses to reconstruct accurate and penetration-free human
models in scene space. The comparative evaluation and ab-
lation study demonstrate that our method has strong and ac-
curate performance with detailed geometry reconstruction
even under heavy occlusion.

Limitation. When the occlusion is seriously severe, e.g.,
only a head part is visible, our method will not be working
well due to the complete failure of the initial 3D pose esti-
mation. The geometric diversity is not completely reflective
of in-the-wild distribution due to the fundamental domain
constraints of 3D human geometric prior, e.g., gDNA [6].
In our future work, we would like to explore the modeling
of a better 3D geometric prior and its adaptation to the in-
the-wild environment.

Acknowledgements. This work was supported by IITP
grants (No. 2021-0-01778 Development of human im-
age synthesis and discrimination technology below the per-
ceptual threshold 10%; No. 2020-0-01336 Artificial in-
telligence graduate school program (UNIST) 10%; No
2021-0-02068 Artificial intelligence innovation hub 10%;
No. 2022-0-00264 Comprehensive video understanding
and generation with knowledge-based deep logic neural net-
work 20%) and the NRF grant (No. RS-2023-00252630
10%), all funded by the Korean government (MSIT). This
work was also supported by Korea Institute of Marine Sci-
ence & Technology Promotion(KIMST) funded by Ministry
of Oceans and Fisheries (RS-2022-KS221674) 20% and re-
ceived support from Al Center, CJ Corporation. (20%).



=
e

e
=

=

A

P gane

P

(a) Input (b) PIFu (c) PIFuHD (d) ICON (e) DMC (f) Ours (2) GT

Figure 7. Comparison of qualitative result with state-of-the-art methods, including (b) PIFu [29], (c¢) PIFuHD [30], (d) ICON [40], (e)
DMC [45]. DMC uses the estimated SMPL parameters from [5] and our method uses refined SMPL parameters. Our method generates
complete human and more detailed human mesh than other methods.
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