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Figure 1. Given a single RGB image of interacting multiple people with occlusion, we reconstruct their complete geometry. Our method

estimates the contact signature between people, which provides a strong pose refinement cue in 3D to prevent penetration.

Abstract

This paper introduces a novel pipeline to reconstruct the
geometry of interacting multi-person in clothing on a
globally coherent scene space from a single image. The
main challenge arises from the occlusion: a part of a
human body is not visible from a single view due to the
occlusion by others or the self, which introduces missing
geometry and physical implausibility (e.g., penetration).
We overcome this challenge by utilizing two human priors
for complete 3D geometry and surface contacts. For the
geometry prior, an encoder learns to regress the image of
a person with missing body parts to the latent vectors; a
decoder decodes these vectors to produce 3D features of
the associated geometry; and an implicit network combines
these features with a surface normal map to reconstruct a
complete and detailed 3D humans. For the contact prior,
we develop an image-space contact detector that outputs a
probability distribution of surface contacts between people
in 3D. We use these priors to globally refine the body poses,
enabling the penetration-free and accurate reconstruction
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of interacting multi-person in clothing on the scene space.
The results demonstrate that our method is complete,
globally coherent, and physically plausible compared to
existing methods.

1. Introduction

Knowing people’s underlying geometry makes it possi-

ble to transport the scenes of human interaction to a vir-

tual space, which is the key component for AR/VR appli-

cations such as authentic telepresence and view-consistent

rendering of people for internet broadcasting. Such multi-

person geometry has been often captured by a specialized

infrastructure, e.g., a multi-camera system [29, 45], for two

reasons: 1) it maximizes the visibility of a scene, which en-

ables the 3D reconstruction of people without missing parts;

and 2) multi-camera calibration makes it possible to under-

stand the scene-space 3D body poses. In this paper, we

remove those requirements of an expensive system by in-

troducing a novel pipeline that can capture the scene-space

geometry of interacting multi-person using only a single im-

age as described in Fig. 1.

Monocular multi-person 3D reconstruction is a highly

challenging problem due to self- and inter-occlusion: a
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the final published version of the proceedings is available on IEEE Xplore.
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significant amount of missing body parts in an image is

unavoidable from a single-view perspective during multi-

person interaction. Such incomplete information in 2D, in

turn, affects the 3D reconstruction with missing geometry.

While existing methods [5, 18, 20, 21] have utilized a 3D

body model, e.g., SMPL [26], to capture a complete hu-

man, they are limited to expressing unclothed human ap-

pearance; and the reconstruction of the multi-person is often

physically implausible since it involves unrealistic penetra-

tion artifacts and scene-space positional misalignment (i.e.,

a person’s position in world coordinates is unusually distant

from others compared to their actual physical distance, as

shown in Fig. 2, bottom right).

To address this challenge, we propose to use human pri-

ors for complete 3D geometry and surface contacts. For

the complete geometry, we effectively utilize a 3D genera-

tive model (e.g., gDNA [6]) which is designed to generate

3D features from a latent vector, for a coarse and looking-

plausible human geometry. We upgrade this 3D geometric

coarse prior to 3D geometric detail prior by developing an

implicit network that combines the 3D features [6] and a

surface normal map. It predicts the 3D geometry augmented

in its style, shape, and details (e.g., wrinkles). We finally

glue the different modalities between the image and the 3D

model by designing an image regression network that can

predict the appearance vectors whose distribution matches

the latent space of the 3D generative model [6]. For under-

standing the physical state of multiple people in 3D, we de-

velop a data-driven prior for surface contact map—a proba-

bility distribution of 3D surface contacts of each body part

across people. A neural network learns to predict such prob-

ability maps from the images of interacting multi-person,

which provides strong guidance for accurate pose refine-

ment in scene space. In particular, it is designed to prevent

surface penetration; and to enforce accurate scene-space lo-

calization, e.g., the contact around the torso of two people

in Fig. 2 provides a strong cue to decide their ordinal depth

relation.

Using these two priors, we introduce a new design of the

monocular multi-human capturing system. Given an image

of multiple people, we first predict the detailed geometry

for each person in the canonical body poses using our 3D

geometric detail prior. The coarse scene-space 3D body lo-

cation for each person are estimated by solving Perspective-

n-Point (PnP) between the predicted 3D keypoints and a 3D

body model (SMPL [26]). The multi-person poses are then

refined by optimizing their global relation based on the pre-

dicted contact maps and penetration loss.

The experimental results demonstrate the strength of our

method in geometric completeness with the upgraded 3D

geometric detail priors; in global coherence thanks to the

contact priors; and in physical plausibility with minimal

penetration with the effective refinement pipeline.

Our contribution includes (1) a novel pipeline that re-

alizes 3D reconstruction of interacting multi-person using

only a single image with an effective global pose refine-

ment; (2) the innovation to upgrade existing geometric pri-

ors that enable a complete and detailed 3D human recon-

struction from the image of a partial body; and (3) an ef-

fective scene-space pose refinement framework guided by

surface contact priors, which enforces the physical plausi-

bility.

2. Related Work
3D Clothed Single Person Reconstruction. Many exist-

ing methods have explored the 3D reconstruction of human

meshes from a single-view image. Some works [18, 20, 21,

33] predict SMPL parameters [26] from RGB images of

a person with occlusion to reconstruct a complete human

mesh. However, these works cannot express the shape be-

yond the naked body.

Some explicit-based approaches [1, 2, 22, 48] solved this

problem by estimating the offsets at each vertex of the

body mesh to represent the humans in more detail. Those

explicit approaches have demonstrated sub-optimal perfor-

mance when dealing with a single-view input, mainly be-

cause of the fixed 3D mesh topology [26].

To overcome the limitation of the fixed topology con-

strained by explicit 3D mesh models, some existing meth-

ods have utilized an implicit signed distance field (SDF) [3,

40, 45, 46] and occupancy field [7, 11–13, 15, 19, 29–31,

35, 37, 39, 47, 49]. To generate a high-resolution mesh

from a coarse one in the canonical space, Neural-GIF [35]

uses a backward mapping network and a displacement net-

work. LaplacianFusion [19] employed Laplacian coordi-

nates extracted from the mesh to generate the detailed sur-

face. While the above methods demonstrate promising re-

construction results, those methods often suffer from miss-

ing information in 3D when the input images of humans

involve occlusion.

3D Clothed Multi-Person Reconstruction. The multi-

person 3D reconstruction is often considered as a special

case of a single person with occlusion where several meth-

ods [5, 8, 10, 16, 17, 33, 34, 42–44] separately handle each

individual from the scenes of human interaction. However,

the focus of these methods is lying on the reconstruction of

unclothed human models (e.g., SMPL [26]) that cannot rep-

resent the details of human geometry such as clothing, hair,

and shoes.

While DeepMultiCap [45] utilizes the attention module

and temporal fusion to capture high-quality 3D models of

interacting people in clothing, they require multiview im-

ages for the best quality of 3D reconstruction in scene space.

Mustafa et al. [28] introduced an implicit approach for

3D reconstruction of multiple people with 6DOF spatial lo-

cation estimation to accurately estimate the position of peo-
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Figure 2. System overview. Given an image of interacting people, we aim to reconstruct multi-person geometry. Our pipeline is composed

of three stages. (Top): In the generation stage, we extract coarse meshes for the multi-person from the input image. (Bottom): In the

contact estimation stage, we detect the region of contact between individuals in the image. Finally, in the contact-based refinement stage,

we generate detailed multi-person geometry by leveraging the information obtained from the previous two stages.

ple from global scene space. However, the results are lim-

ited to expressing coarse geometry and the method often

fails when it faces people with heavy occlusion.

Surface Contact Estimation. Surface contacts provide a

strong cue to understand the physical state between two dif-

ferent surfaces. Thus, there has been a growing interest in

modeling such surface contacts in the process of 3D hu-

man reconstruction for human-to-object [4, 38], human-to-

scene [14, 32], and human-to-human [9]. Fieraru et al. [9]

introduced a representation of part-based contact signatures

at a 3D body model [26] to predict accurate 3D body poses

from the scenes of multiple people. However, the above

methods do not consider the surface geometry of clothed

humans and are brittle under severe occlusions.

3. Method

The overall pipeline is illustrated in Fig. 2. Our method

consists of 3 main stages which will be explained in detail

in the remaining sections.

3.1. Pre-processing

Human Segmentation. We segment each human instance

from an image I by using an existing method [24]. From

this, we could obtain the i-th person’s segmentation mask

mi.

Normal Map. We use an off-the-shelf normal detection

method [30] to estimate the normal map Ni from Ii. While

it generates front and back normal maps from Ii, we used

only the front normal map.

SMPL Parameters. We first initialize the 2D and 3D joints

(J2D, J3D) from a single image by using an existing monoc-

ular keypoints prediction method [5]. The inverse kinematic

method [23] is applied to calculate the SMPL [26] pose pa-

rameter θ and shape parameter β from the estimated 3D

joints J3D.

Camera Parameter and 3D Translation. We estimate

camera parameters Cparam, i.e., scale s, x-translation tx, y-

translation ty , via the singular value decomposition (SVD)

method to align SMPL mesh Msmpl from the image space:

J2D
smpl

⎡
⎣
s
tx
ty

⎤
⎦ = J2D. (1)

The SMPL 2D joints J2D
smpl are obtained from the SMPL 3D

joints J3D
smpl based on the orthogonal projection and J3D

smpl

are differentiably obtained from the mesh Msmpl using the

SMPL skeletal regressor provided by [26]. Additionally,

we calculate 3D location T3D with Cparam and J3D
smpl similar

to [33, 34].

Semantic Part Segmentation and 2D Keypoint
Heatmap. We generate a semantic part segmentation

mask mPart
i by differentiably rendering 75 regions of SMPL

3D mesh Msmpl(θ,β) with different colors. We generate

2D keypoint heatmap hi from 2D joints J2D, by drawing

J2D Gaussian in the positions of 2D joints.
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Figure 3. The details of the pipeline for each module in our system.

3.2. Detailed Clothed Human Generation

In this section, our goal is to generate the human sur-

face, reflecting details such as clothes and hair. As the di-

rect reconstruction of holistic 3D meshes of detailed hu-

mans is non-trivial, we divide the skinning methods into

two disjoint steps: First, we estimate the detailed 3D hu-

man mesh in the canonical space. Second, we transform the

canonical 3D mesh into the posed mesh M corresponding

to SMPL [26] pose θ and shape β parameters using the for-

ward skinning module. In the remainder of this sub-section,

we detailed each sub-module.

Canonical Mesh Estimation Module. Our canonical mesh

estimation module is designed to generate the canonical

mesh M̃. This module is composed of four sub-networks:

a latent feature extractor fz , a 3D voxel feature generator

f 3D, a 2D image-aligned feature extractor f 2D and an ag-

gregation network f agg as shown in the left side of Fig. 3.

The latent feature extractor fz extracts the latent vector

zshape that reflects global feature of human styles from an

input image I. The 3D voxel feature generator f 3D con-

verts it into the feature vector F3D. The 2D image-aligned

feature extractor f 2D extracts the 2D image-aligned feature

F2D from a normal map N.

For any 3D point p, we transform it to pc in canonical

space [6]. We obtain the associated canonical features F3D
pc

by tri-linear interpolation to the F3D according to pc. π(p)
is the perspective camera projection from the 3D point p to

the image plane and the local 2D feature F2D
π(p) is obtained

from the F2D by bi-linear interpolation at the projected pixel

coordinates π(p). Then, we concatenate F3D
pc

, F2D
π(p) and

pc to make the geometry- and image-aligned feature. Fi-

nally, it is fed to the aggregation network f agg to obtain the

high fidelity occupancy field o(p). Similar to [29], the occu-

pancy field o(p) ∈ [0, 1] indicates whether p is inside mesh

surface or not. Using the Marching Cube algorithm [27],

we extract the final canonical mesh M̃ from obtained occu-

pancy fields {o(p)}.

We initialize our f 3D using the pre-trained model in [6],

while further training fz , f 2D and f agg to upgrade their

method in a way that (1) infers the style code from the 2D

images; (2) extracts geometric details from the normal map

N; and (3) combines information from both normal map

and RGB images.

To train fz , we use the mean squared error (MSE) loss

as follows:

Lz(f
z) = ||zshape − zgDNA

shape ||22, (2)

where zgDNA
shape denotes the fitted latent code by gDNA [6]. To

train f 2D and f agg, we use the binary cross entropy (BCE)

loss [47],

Lo =
∑
p∈S

γ · oGT(p) · log(o(p))

+ (1− γ)(1− oGT(p)) log(1− o(p)), (3)

where S is the set of sampled points and γ denotes the ratio

of points outside the surface in S, which helps to train the

network more stably. oGT(p) is the ground-truth occupancy

at the sampled point p.

Forward Skinning. We use the pre-trained network [6] to

deform canonical mesh M̃ towards the posed mesh M with

SMPL [26] pose θ and shape β parameters. It generates ma-

trix W ∈ R
Nv×24 that transforms Nv canonical mesh ver-

tices into skinning weight fields for 24 bones, conditioned

on zshape and β. As a result, given target θ and W , canoni-

cal mesh vertices v on M̃ can be transformed to the posed

space v′ on the posed mesh M.

3.3. Contact Map-based Refinement

Contact Estimation Stage. To predict contact estimation

from images, we design a contact estimation network that

takes an image, semantic part segmentation and 2D key-

point heatmap as inputs; and outputs contact signatures [9],

i.e., a representation that indicates whether there exist sur-

face contacts between the body parts of two people from

the 3D mesh model, as shown in Fig. 2. We concatenate

I, mPart
1 , mPart

2 , h1, and h2 to feed them to the contact dis-

criminator fContact and the contact segmentation estimator

fCS.
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The contact discriminator fContact is designed to classify

whether there exist contacts between two interacting per-

sons. The contact segmentation estimator fCS is designed

to predict the contact segmentation s1 ∈ [0, 1]75×1 and

s2 ∈ [0, 1]75×1 for two persons. These are 75-dimensional

vectors whose values indicate whether each region out of

the overall 75 regions is contacted or not. These two inter-

mediate vectors are further fed to MLP layers f sig whose

output vectors are used to infer the final contact signature

C ∈ [0, 1]75×75 based on their dot products followed by a

nonlinearity, i.e., sigmoid.

The overview of the network for this stage is shown on

the right side of Fig. 3. To better distinguish the contact

signature features of two interacting people, we employ the

two-path architecture for each person and jointly estimat-

ing segmentation and signature is synergistic as described

in [9].

To train fContact, fCS and f sig, we use the balanced binary

cross entropy (BBCE) loss as follows:

LBBCE = −(Bȳ log(y) + (1− ȳ) log(1− y)) (4)

where ȳ, y and B denote the ground-truth, estimated value

and balance term.

Refinement Stage. We further refine the scene-space 3D

body poses considering people’s contacts and their geome-

try surface. To this end, we select two meshes {Mi,Mj}
where i �= j, and refine the SMPL pose θ, shape β and

3D location T3D of two meshes M. Note that, if fContact

predicts that there is “no contact”, we skip this stage. We

optimize T3D of the meshes using the contact loss Lcontact

proposed in [9] as the following formula:

T3D∗ = argmin
T3D

Lcontact(T
3D) (5)

where Lcontact =
∑75

r1=1

∑75
r2=1 C(r1, r2)D(r1, r2). r1 and

r2 are 75 regions of each person. C is the estimated con-

tact signature between two regions of interacting persons.

It represents 1 if there is contact between r1 and r2, other-

wise 0. D(r1, r2) denotes the distance between two regions

which is formulated as:

D(r1, r2) =
∑
f1∈r1

min
f2∈r2

d(f1, f2) +
∑
f2∈r2

min
f1∈r1

d(f1, f2) (6)

where f1 and f2 are the faces which belong to two regions

r1 and r2, respectively. d is the Euclidean distance between

the centers of the two faces f1 and f2.

Finally, we globally refine SMPL pose (θ) and shape (β)

parameters as well as T3D via the contact loss Lcontact com-

bined with the penetration loss Lpenet [25], Gaussian mix-

ture model prior loss Lgmm [21] and regularizer Lreg as fol-

lows:

θ∗,β∗,T3D∗ = arg min
θ,β,T3D

Lopt(θ,β,T
3D) (7)

where

Lopt(θ,β,T
3D) = λcLcontact(θ,β,T

3D)

+ λpLpenet(θ,β,T
3D)

+ λgLgmm(θ)

+ λrLreg(θ,β) (8)

where Lpenet =
∑

v∈V1,penet
SDF2(v) +

∑
v∈V2,penet

SDF1(v)
prevents collisions between two people’ meshes. The first

term of Lpenet means the sum of signed distance fields

(SDF2) that measures the distance between the second per-

son’s mesh surface and the first person’s mesh vertices

V1,penet, which are penetrating the surface of the second per-

son’s mesh. The second term of Lpenet represents the op-

posite situation. SDF1 denotes the signed distance fields

of the first person’s mesh. V2 is the second human ver-

tex set inside the first person’s mesh. Gaussian mixture

model prior loss Lgmm reduces the probability of predict-

ing the pose that deviates from distribution and regularizer

Lreg = ‖θ−θinit‖22+‖β−βinit‖22 ensures the refined SMPL

pose and shape parameters do not diverge much from the

initial parameters {θinit,βinit}. λc, λp, λr, λg balances the

weights over the losses.

Updating the Posed Mesh. After obtaining the refined pa-

rameters θ∗,β∗,T3D∗, we re-obtain our posed mesh M∗

using the forward skinning with new SMPL parameter β∗

and θ∗. We also translate the re-posed mesh M∗ to scene

space by adding the T3D* to the posed mesh.

4. Experiments

4.1. Datasets

Generation. We conduct our experiments using THu-

man2.0 [41], MultiHuman [45], and 3DPW [36] datasets.

THuman2.0 [41] is publicly available, and provides 500

high-fidelity 3D human scans with different clothing styles

and poses. The 3D scans have the corresponding texture

map and SMPL parameters. We use this dataset to train

our fz , f 2D, and f agg. MultiHuman [45] consists of 150

high-quality 3D human scans with the corresponding tex-

ture map. We use it for evaluation. It provides 3D scans

with occlusion by humans or objects. Each sample contains

1 to 3 people and each person wears different clothing. This

dataset is divided into 5 categories by the level of occlusions

and the number of people. In addition, we use 3DPW [36]

for evaluation. It provides SMPL [26] pose parameters and

clothed mesh.

Contact estimation. We use FlickrCI3D [9] to train our

contact estimators. It provides the paired data of images

and the labels of contact validity and its signature. Among

them, we filter out noisy ground truth and select 5K paired

data for training.
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Categories single occluded single two natural-inter two closely-inter three

Methods CD P2S CD P2S CD P2S CD P2S CD P2S

PIFu [29] 2.3240 2.5473 3.3008 3.1365 3.6404 3.5573 4.0191 4.2739 3.3058 3.4899

PIFuHD [30] 1.9745 2.0258 4.2392 4.5324 3.3252 3.0838 3.3901 3.3945 3.2487 3.1508

ICON [40] 3.6610 4.6765 4.6721 5.0283 5.0958 6.1449 5.0285 6.2282 4.1542 5.0633

DMC† [45] 2.5878 4.0971 3.1396 4.6999 2.5335 4.3184 3.2481 5.3352 3.8079 5.7033

Ours† w/o N 1.4069 1.9364 1.6574 1.8731 1.1996 1.9692 1.8038 2.7844 1.7642 2.7325

Ours† 1.3730 1.8441 1.6329 1.8898 1.1933 1.9578 1.8382 2.8614 1.7608 2.7112

Ours† w R. - - - - 1.1723 1.9065 1.3358 2.0669 1.5399 2.2636

Table 1. The comparison of our method to the state-of-the-art approaches on MultiHuman [45]. † denotes that model uses the estimated

SMPL parameters from [5]. Ours w/o N denotes the results without using a normal map input N. Ours is without refinement based on the

contact signature. Ours w R. is our full method. Refinement is not available to “single” and “single occluded” because they have only one

person.

Methods
Office Call Hug ShakeHands

CD P2S CD P2S CD P2S

PIFu [29] 5.26 3.61 5.77 3.81 4.60 2.80

PIFuHD [30] 4.93 3.19 6.30 4.43 4.30 3.10

ICON [40] 4.80 4.07 5.45 4.24 4.05 3.14

DMC† [45] 4.30 3.68 6.67 6.30 4.36 3.95

Ours† w R. 2.16 1.79 3.22 2.84 2.93 2.60

Table 2. We compare our proposed method with state-of-the-art

methods on 3DPW [36]. † denotes that model uses the estimated

SMPL parameters from [5].

4.2. Metrics

Following the measuring protocols from existing

works [29, 45], we use two metrics to measure the recon-

struction quality.

Chamfer Distance (CD). It measures the bidirectional

point distance between the predicted and ground truth

meshes based on their closest-set Euclidean distance where

the smaller Chamfer distance means more accurate recon-

struction results.

Point to Surface (P2S). It measures the directional surface

distance from the prediction to the ground truth based on

their closest-set Euclidean distance. The smaller number is

the better.

4.3. Baselines

We compare our model with other state-of-the-art meth-

ods [29, 30, 40, 47]. PIFu [29] and PIFuHD [30] use the

pixel-aligned implicit function so that they can generate the

pixel-aligned clothed human mesh. ICON [40] uses the

front and back normal map and fuses their features with a

signed distance field to generate the detailed clothed human

mesh. However, these methods can not reconstruct invisible

parts of humans occluded by objects or other people. Deep-

MultiCap [45] fuses multi-view features by the proposed at-

tention module. While it requires multi-view images as in-

puts for the best performance, we use a single image for the

fair comparison. For the quantitative evaluation of PIFu, PI-

FuHD, and ICON, we manually transform their results from

the image to the scene space using the ground-truth meshes:

this means that the errors from 3D scene-space pose esti-

mation are factored out from their methods. For qualitative

results in Fig 7, we visualize their methods without such

advantages since predicting the scene-space position of hu-

mans is not a part of their algorithms.

4.4. Results

The comparison results of SOTA and our method are

shown in Tab. 1 and Fig 7. Overall, our method achieves

state-of-the-art performance on MultiHuman [45] where in

Tab. 1. Based on Tab. 1 and Fig 7, pixel-aligned meth-

ods [29, 30, 40] show the weak reconstruction results for

the occluded body parts including a significant amount of

artifacts such as missing information. While DeepMulti-

Cap [45] produces a mesh that is less noisy compared to

other baselines, its geometry reconstruction results are still

coarse, and its performance is often affected by the quality

of global coordinates estimation of SMPL meshes. Unlike

other approaches, our method is able to reconstruct clothed

meshes from highly occluded people. Thanks to the global

pose refinement with contact signatures, our method is ro-

bust to the occlusion, and the active utilization of the up-

graded human geometry prior enables the complete and de-

tailed reconstruction of multiple people under occlusion.

In addition, Tab. 2 shows the comparison on in-the-wild

data [36]. It highlights that our method is generalizable and

is able to reconstruct human meshes with details even from

unconstrained data. More qualitative results are presented

in Supple.

4.5. Ablation Study

We conduct an ablation study to confirm the effect of our

module. In Tab. 1, we study the performance of our implicit

model f agg without a normal map input (Ours w/o N); and

the 3D reconstruction results with the refined body pose and

shape (Ours w R.). Refinement with surface contact priors
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Figure 4. Ablation study on normal map N. (a) and (c) are the

input RGB image and normal map input, respectively. (b) and (d)

show the result without and with normal map, respectively. Nor-

mal map N provides more detailed surface information for recon-

structing mesh.

Figure 5. Ablation study on the elements of Lopt. First row shows

the results in front view. Second row shows the results in top view.

(a) is RGB image input. (b) shows initial posed meshes. (c) shows

the results without using Lpenet. (d) shows the results without using

pose and shape prior loss, Lreg and Lgmm. (e) shows the results of

our full method.

highly improves the performance from the scenes of multi-

person (two or three people) under occlusion. Although uti-

lizing a normal map N slightly improves the performance,

it can help to express the details of the reconstructed surface

as shown in Fig 4.

We further study the effect of the loss used in our re-

finement pipeline in Lopt. We use the estimated SMPL pa-

rameters as initial SMPL parameters from [5]. As shown

in Fig 5, Lpenet prevents penetration between two people.

Lgmm and Lreg prevent divergence of SMPL [26] parame-

ters. Our full Lopt refines the SMPL parameters and 3D

location more realistically based on contact signature.

We perform an ablation study in Fig. 6 where the recon-

struction error (i.e. chamfer distance) is highly suppressed

by our refinement module with surface contact and inter-

penetration priors. Our refinement module is robust to pose
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Figure 6. The reconstruction accuracy (CD) with noisy and refined

SMPL parameters. The noisy pose is synthetically generated by

adding the fraction of Gaussian noise which perturbs ground-truth

SMPL parameters.

noise. In the supplemental, we include more ablative and

comparative studies.

5. Conclusion
We introduce a novel system for scene-space 3D recon-

struction of interacting multi-person in clothing from a sin-

gle image. We address the core challenge of occlusion by

utilizing the human priors for complete 3D human geometry

and surface contacts. For the geometry, we upgrade the ex-

isting generative 3D features by newly designing an implicit

network that combines these features and a surface normal

map to produce fine-detailed and complete 3D geometry.

For the surface contacts, we design an image-based detector

that signals the surface contact information between peo-

ple in 3D. Using these priors, we globally refine 3D body

poses to reconstruct accurate and penetration-free human

models in scene space. The comparative evaluation and ab-

lation study demonstrate that our method has strong and ac-

curate performance with detailed geometry reconstruction

even under heavy occlusion.

Limitation. When the occlusion is seriously severe, e.g.,

only a head part is visible, our method will not be working

well due to the complete failure of the initial 3D pose esti-

mation. The geometric diversity is not completely reflective

of in-the-wild distribution due to the fundamental domain

constraints of 3D human geometric prior, e.g., gDNA [6].

In our future work, we would like to explore the modeling

of a better 3D geometric prior and its adaptation to the in-

the-wild environment.
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(a) Input (c) PIFuHD (d) ICON (e) DMC (f) Ours (g) GT(b) PIFu

Figure 7. Comparison of qualitative result with state-of-the-art methods, including (b) PIFu [29], (c) PIFuHD [30], (d) ICON [40], (e)

DMC [45]. DMC uses the estimated SMPL parameters from [5] and our method uses refined SMPL parameters. Our method generates

complete human and more detailed human mesh than other methods.
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