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Abstract

Event cameras asynchronously measure brightness
changes in a scene without motion blur or saturation, while
frame cameras capture images with dense intensity and fine
details at a fixed rate. The exclusive advantages of the
two modalities make depth estimation from Stereo Asym-
metric Frame-Event (SAFE) systems appealing. However,
due to the inevitable information absence of one modality in
certain challenging regions, existing stereo matching meth-
ods lose efficacy for asymmetric inputs from SAFE systems.
In this paper, we propose a divide-and-conquer approach
that decomposes depth estimation from SAFE systems into
three sub-tasks, i.e., frame-event stereo matching, frame-
based Structure-from-Motion (SfM), and event-based SfM.
In this way, the above challenging regions are addressed
by monocular SfM, which estimates robust depth with two
views belonging to the same functioning modality. More-
over, we propose a dual sampling strategy to construct cost
volumes with identical spatial locations and depth hypothe-
ses for different sub-tasks, which enables sub-task fusion at
the cost volume level. To tackle the occlusion issue raised
by the sampling strategy, we further introduce a temporal
fusion scheme to utilize long-term sequential inputs with
multi-view information. Experimental results validate the
superior performance of our method over existing solutions.

1. Introduction

Event cameras, based on bio-inspired neuromorphic sen-
sors, output an asynchronous stream of events. An event is
triggered by a pixel intensity change above a certain thresh-
old and characterized by the corresponding pixel location,
timestamp, and polarity. Due to the unique working prin-
ciple, event cameras present several attractive advantages,
including high dynamic range (>120 dB), high temporal
resolution (in the order of microsecond), etc [6]. These
advantages make event cameras a promising alternative to
conventional frame cameras in challenging scenarios, such
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as challenging illumination or high-speed situations. How-
ever, event cameras primarily report events at the edges of
objects, where brightness changes typically occur. They
are incapable of outputting dense intensity, which makes
it challenging to extract sufficient contextual information
from event streams alone. On the other hand, frame cameras
capture images with abundant information, such as color
and texture, but they suffer from motion blur and severe
saturation in challenging environments. Considering the
complementary characteristics of two imaging principles,
there is emerging research interest in constructing Stereo
Asymmetric Frame-Event (SAFE) camera systems, consist-
ing of an event camera and a frame camera, to solve long-
standing challenges in various applications, including de-
blur [23], HDR imaging [10], SLAM [30], etc.

Recently, depth estimation from SAFE systems [32,42]
has also been explored, which aims to estimate accurate
depth in various conditions. To conduct stereo matching
from a pair of frame and event images (converted from event
streams) with significant asymmetry, existing methods pro-
pose to normalize [32] or transform [15] different modali-
ties to a unified form. However, modality asymmetry can
not be eliminated or even mitigated in certain challenging
regions due to the inevitable information absence of one
modality, e.g., high dynamic range regions for frame cam-
eras and regions inside object contours for event cameras.
Therefore, these methods are prone to fail in such condi-
tions. We argue that depth in these regions can be inferred
by monocular Structure-from-Motion (SfM)' in two con-
secutive views with the same functioning modality where
high-quality signals are ready to estimate correspondence.

In this paper, we propose a divide-and-conquer approach
to robustly estimate depth in various scenarios. Instead of
only relying on frame and event images at the current time
step, we utilize past information and decompose depth esti-
mation from SAFE systems into three sub-tasks, including
Frame-Event Stereo Matching (FE-StM), Frame-based SfM
(F-SfM), and Event-based SfM (E-SfM). Concretely, for
regular regions (i.e., symmetric features can be extracted),

!Given that SAFE systems aim at robotics and autonomous driving ap-
plications, it is reasonable to assume sequential inputs.
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we resort to FE-StM in current stereo inputs. For challeng-
ing regions with information absence, we solve them by the
SfM sub-task based on the functioning modality.

Moreover, we propose a dual sampling strategy to fuse
different sub-tasks. Instead of re-projecting and merging
the depth estimates of different sub-tasks, we fuse their ag-
gregated cost volumes, which are deliberately aligned in
terms of both spatial locations and depth hypotheses. In the
strategy, the cost volumes of different sub-tasks are all con-
structed in the spatial locations and depth hypothesis planes
of the same reference view. Specifically, to fuse the sub-task
that does not involve the reference view, we dual sample
pairs of candidates from two source views with the loca-
tions and depth planes of the reference view to construct a
cost volume aligned to the others. The dual sampling strat-
egy intuitively works for most regions without occlusion.
For regions with occlusion, given that currently occluded
regions may be correctly matched previously, we propose
to utilize long-term sequential inputs. To this end, we intro-
duce a temporal fusion scheme that caches the previous cost
volume embeddings of different sub-tasks and propagates
them to the current ones through 3D ConvLSTM cells.

To evaluate the performance of our method, we process
the widely used stereo event camera dataset DSEC to for-
mulate a SAFE dataset. Our method demonstrates distinct
improvements compared with (i) the variants of represen-
tative stereo matching methods, (ii) existing asymmetric
frame-event depth estimation methods, and (iii) potential
solutions using the same sequential inputs as ours.

Contributions of this paper are summarized as follows:

* A novel divide-and-conquer approach to adequately uti-
lize the complementary characteristics of SAFE systems.

¢ A dual sampling strategy to fuse different sub-tasks at the
cost volume level without re-projection.

e The SoTA performance of asymmetric frame-event depth
estimation on the DSEC dataset.

2. Related Works

Symmetric Stereo. As a classical computer vision task,
stereo matching, conducted with symmetric stereo frame
cameras by default, has been extensively studied for
decades [11,26] and substantially advanced by deep learn-
ing techniques recently [3, 14, 19]. Given the widely known
limits of frame cameras in challenging scenarios, e.g. tex-
tureless or HDR scenarios, researchers have initiated ex-
ploration into alternative camera systems, such as active
or passive stereo systems with near infrared (NIR) cameras
[37,39] and stereo event camera systems [1, 8,28, 36, 40].
However, these systems with a single modality are still lim-
ited in certain scenarios. More recently, cross-modal sym-
metric stereo systems with cameras of different modalities
on both sides have been proposed and demonstrate distinct
performance in various scenarios [4,20,21].

Figure 1. The complementary characteristics of SAFE systems.
Frame cameras capture fine details in typical scenarios (a) while
event cameras report high-quality signals in HDR scenarios (b).
Depth in these regions should be inferred by the correspondence
of two consecutive views, i.e., I and I*_; or EF and EF ;.

Asymmetric Stereo. Compared with cross-modal symmet-
ric stereo systems, asymmetric stereo systems with a single
modality on one side, e.g., frame-event [9,32,42] and RGB-
NIR [16,38] systems, possess the same sensing capabilities
and come with half costs. For stereo matching based on
asymmetric stereo, one key challenge is to handle asymme-
try in different modalities in either handcrafted or learning-
based ways. For example, edge images and temporal gra-
dient images are adopted to normalize frame and event im-
ages [15,32], while transformation networks are proposed
to make up the photometric inconsistency of RGB and NIR
images [106, 38]. However, there always is cross-modality
information in asymmetric stereo that can not be normal-
ized or translated and is thus overlooked. In this paper,
we introduce monocular SfM to exploit the complementary
information of SAFE systems, which exists in consecutive
views with the same functioning modality.

Multi-View Stereo. In MVS, multiple images from differ-
ent views are used to estimate the geometry of a scene or an
object [27]. Typically, to boost the estimation of one refer-
ence view, multiple source views are matched with the ref-
erence jointly [34,35] or respectively [12, | 8]. Our method
estimates depth based on the reference view and its depth
plane hypotheses similar to MVS, but we exclusively match
two source views with a dual sampling strategy to utilize
the complementary information of different modalities.
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Figure 2. The proposed depth estimation method with a divide-and-conquer approach that decomposes depth from SAFE systems into
three sub-tasks, i.e., FE-StM, F-SfM, and E-SfM. With a dual sampling strategy, we fuse different sub-tasks at the cost volume level (i.e.,
CVEL CVE,, and CVEL,). Long-term sequential inputs are propagated by the temporal fusion scheme with 3D ConvLSTM.

3. Motivation

In a SAFE system, a frame camera and an event camera
are used to perceive scenes with different modalities. Depth
estimation from SAFE systems is expected to be accurate in
various scenarios, because the event camera provides high-
quality signals even in high dynamic range or high-speed
regions while the frame camera provides clear intensity sig-
nals in most regions. However, these high-quality outputs
may exist in only one modality due to the inherent limits
of respective imaging principles. For example, in typical
scenarios, the frame camera captures diverse information,
e.g., color, brightness, and texture, while the event camera
only reports at object contours (see Fig. 1(a)). Under chal-
lenging illumination, the event camera maintains the output
quality, while the frame camera suffers from severe satura-
tion (see Fig. 1(b)). In these challenging regions with infor-
mation absence, existing stereo matching methods may lose
efficacy since symmetric features can not be extracted from
such extremely asymmetric inputs from SAFE systems.

Instead of only relying on the current frame and event
images, previous information from SAFE systems should
be utilized. As can be seen in Fig. 1, high-quality sig-
nals exist in two views with the same functioning modal-
ity yet at different time steps, e.g., the cables and the trees
are consistently reported by the event camera in HDR sce-
narios. Given that SAFE systems aim at applications with

frequent movement, intra-modality StM, which infers depth
by the correspondence of two consecutive views, should be
a promising remedy for fragile inter-modality stereo match-
ing in the above challenging regions.

4. Depth from SAFE Systems

Fig. 2 illustrates the proposed method working on SAFE
systems. Without loss of generality, we take the frame cam-
era as the left view and the event camera as the right view.
Our depth estimation network @ predicts depth D, at the
current time step ¢, i.e.,

D, = o(IF1F - IF 5 T, Ty, -, Ty,

E?’ Ef—la e 7E7{{—5’ Tre, K; 9),
with sequential inputs, including the camera intrinsic matrix
K, the transformation matrix from the left view to the right
Trr € T(3), left view frame images I¥ € RH¥>*W>3 and
camera poses T € SFE(3), and the right view event stream
& s = {(xi,ti,pi)|t — 0 < t; < t}. The event stream
is converted into event images Eff € RH*WXB accord-
ing to the event representation proposed by Zhu et al. [41].

The supervised learning problem for depth estimation from
SAFE systems can be formulated as

0* = argmin, [ (]/jt, Dt> , 2)

)]

where [(-, -) is the loss between D, and the ground truth Dy.
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Figure 3. Dual sampling strategy produces uni-modal depth prob-
ability distributions to infer correct depth at most regions (a). The
occlusion regions (b) with multi-modal distributions are handled
by the temporal fusion scheme with long-term sequential inputs.

4.1. Dual Sampling

Originally, there are multiple reference views for differ-
ent sub-tasks, i.e., I” for FE-StM and F-SfM and EF for
E-SfM. In other words, the outcomes of different sub-tasks
are misaligned in terms of both spatial locations and depth
(or disparity) plane hypotheses, and thus vulnerable re-
projection with roughly estimated depth is required to fuse
sub-tasks. To tackle this issue, we propose a dual sampling
strategy to fuse sub-tasks at the cost volume level without
any re-projection. Specifically, we choose the frame image
at the current time step I” as the only reference view and
adopt a unified set of regularly discretized disparity plane
hypotheses P = {1,2,---, N}, where N is the maximum
disparity value. For SfM sub-tasks, we convert [P into equiv-
alent depth plane hypotheses D = {d; = bf/pi|p; € P},
where b and f are the baseline distance and focal length
of the SAFE system respectively. To construct the cost
volumes of different sub-tasks, we sample candidates from
source views, i.e., Eff, EF |, and IF |, according to their
camera pose transformations T, .y With regard to the
reference view IZ and the hypothesized depth d; (or dis-
parity p;). Given a point in the reference view x"¢/ =
[u,v,1]T, its corresponding candidate in a certain source
view x57¢ is determined as

3)

K2

—1re
xe KR | T4
where R and t are the corresponding rotation matrix and
translation vector of Tgycorey-

In MVS, whether the hypothesized d; is the actual depth
or not is inferred by the similarity of x"¢/ and x5"¢. In-
stead, our dual sampling strategy infers depth by the sim-
ilarity of two candidate source points x3"°* and x{"? for
SfM sub-tasks. The strategy intuitively works in most re-
gions as illustrated in Fig. 3(a). Specifically, for a point
x"¢f (a green circle), its two pairs of candidate points at
the i*" and ground-truth depth planes are x{"°! (a yellow
star) with x;"°* (a blue triangle) and x57°" with x5/ (two
green circles), respectively. Apparently, only one unique
pair of candidate points on the ground-truth depth planes
(ie., ngd and xggd) that can be correctly matched be-
cause they correspond to the same scene point. In other
words, the similarity of candidate pairs sampled according
to the dual sampling strategy produces a uni-modal depth
probability distribution to infer the correct depth. One ex-
ception is where more than one object is located in the ray
from x"¢f, i.e., scenarios with occlusion. In these regions,
there are “pseudo” matched candidate pairs to interfere with
depth estimation, e.g., x3"°! with x57“2 (two yellow stars)
and xjml with xj’”d (two blue triangles), as can be seen
in Fig. 3(b). We solve these regions by infusing long-term

temporal information, which is explained in Sec. 4.3.

4.2. Divide-and-Conquer

As aforementioned, to enable robust stereo depth estima-
tion in challenging regions by utilizing the complementary
information of SAFE systems, we explicitly decompose the
task into three branches, including FE-StM between I and
E[, F-SfM between I and I” |, and E-SfM between Ef
and Ef ;. Before constructing the cost volumes for dif-
ferent branches, we extract features F € R% > XC1 from
frame and event images by two feature extractors ®¥¥ and
®LE with the same architecture and independent weights,

F! = 0}5(1"), F¥ = ¢} ,(E") )

Frame-Event Stereo Matching. FE-StM conducts stereo
matching using the reference view I and a source view
Ef. After feature extraction, the 4D cost volume CVH ¢
R X% X T *C2 of FE-StM is constructed by the disparity
plane sweeping, i.e., concatenating and matching F! with
corresponding shifted F¥ for each disparity p; in P (IV is
scaled by 4 since we sweep at the downsampled features):

CVEI(”; U, Pis ) = @ﬂl(@{F{(u’ v, ')7 F{E(u_piv v, )})a

)
where @ stands for concatenation at the feature channel di-
mension and ®/ is a 2D convolutional matching module
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to extract compact 3D features from the concatenated input,
similar to those of [3,29]. Then, CVF/ is aggregated by an
hourglass-like cost regularization module ®%/ consisting of
multiple 3D convolutional layers, i.e.,

CVi, = ®pl(CVE). 6)

Event-based Structure-from-Motion. E-SfM with two
source views (EZ and EZ ) could be recognized as a two-
view SfM problem [31] with known camera poses (e.g.,
from the inertial measurement unit, IMU). According to the
proposed dual sampling strategy, both EF and EF , are re-
quired to be sampled by Eq. (3) with transformation ma-
trices Ty, and T RLT;_lth respectively. Note that the
camera intrinsic matrix K is required to be scaled. With the
depth plane sweeping, the cost volume CV¥ of E-SfM is
formulated as:

CVE(Xz{?piv ) = (I)ﬁ(@{FtE(ifv ')’ FtE—l(if‘—la )})a

(7
where X and X7 , is the sampled source points of Ef* and
E[ | corresponding to the reference point x; of I at dis-
parity plane d; = bf/p; (f is required to be scaled), and
®%, is the matching module of the E-SfM branch. We use
differentiable bilinear interpolation [13] to sample points
since the transformed coordinates are not integers. Similar
to the FE-StM branch, a regularization module ®%_ aggre-
gates the cost volume and output CVge.

Frame-based Structure-from-Motion. To construct the
cost volume C'V’, F-SfM samples points x| from I |
with T 711 T, according to Eq. (3), i.e.,

CVI(xtvaia ) - @&(@{F{(X{, ')7 FtI—l(i{—h )})7
®)
and matches them with reference points x! from I by a
matching module (bfw. The aggregated cost volume CV{;ze
is then generated by @fze.

Cost Volume Level Fusion and Disparity Estimation.
After aggregation by regularization modules, the 4D ag-
gregated cost volumes of different branches, i.e., CV% s
CVZE,, and CV%,, not only contain abundant contextual
information in different modalities but also implicitly en-
code depth probability distributions in different branches
[14]. Although depth (disparity) can already be estimated
from these cost volumes and then merged, a more flexible
and reasonable fusion (i.e., considering the pros and cons
of different modalities in various regions) could be realized
by a learning-based module with the information and depth
hints in the cost volumes. Therefore, instead of clumsily
merging their depth estimates, we propose to fuse at the cost
volume level. In specific, we adopt the variance-based cost
metric [34] to obtain a compact cost volume CV ;.. Then
CV 4 is further processed by a fusion module @gz to ob-
tain the final cost volume cvﬁg, ie.,

CVie = @1 (CVuar), ©)
where @gz consists of an hourglass-like 3D convolutional
network to fuse and two 3D transposed convolutional lay-
ers to upsample. We obtain depth estimate D; with the
sub-pixel maximum a posteriori approximation proposed
by [29] that computes the expectation around the hypothe-
sized depth with minimum matching cost as the final depth.

4.3. Temporal Fusion

In our method, the outcomes of different branches are
fused without depth re-projection thanks to the proposed
dual sampling strategy. In non-occlusion regions that
occupy the majority, the effectiveness of the strategy is
demonstrated intuitively. In regions with occlusion, there
are “pseudo” matched candidate pairs to interfere with
depth estimation. Specifically, although these “pseudo”
matched candidate pairs indeed reveal the exact geometry
of certain 3D scene points (e.g., the yellow star and the blue
triangle in Fig. 3(b)), they can not infer the ground-truth
depth for the reference view since the 3D scene points they
represent are occluded by the scene points closer to the ref-
erence camera plane (e.g., the green circle). In this way, the
depth probability distributions in these regions are inher-
ently multi-modal and may not indicate the correct depth.

To address this issue, we propose a temporal fusion
scheme to utilize the long-term sequential inputs of SAFE
systems given that currently occluded regions might be
matched in previous time steps. Instead of explicitly prop-
agating the previously estimated depth D;_, we choose to
propagate the intermediate features of different branches at
the previous time step ¢t — 1 to those at the current time step ¢
by ConvLSTM cells following [5]. %peciﬁcally, we use the
bottleneck features X € R32 %32 %352 X5 of regularization
modules as the inputs of 3D ConvLSTM cells, which are
the variants with 3D convolutional layers to process the 4D
features. The 3D ConvLSTM cells fuse the past scene ge-
ometry encoded at the previous hidden state H;_; and cell
state C;_; with the current geometry encoded at X, and
output the current states H; and C;:

Ht,Ct = Cell(Xt,Ht_l,Ct_l). (10)
The detailed logic inside 3D ConvLSTM cells is as follows:
iz,f;, 04 = split(sigmoid (w, * Xy + wp, « Hy 1))
g: = ELU (layernorm (wq * X; + wpg * Hy 1))

C; = layernorm (f; © C;—1 +i; © g;)

H; = o, ©ELU (Cy),

where * and © denote 3D convolution and Hadamard prod-
uct while i, f;, and o; are the gates of the 3D ConvLSTM
cells. After temporal fusion, the hidden states H; with en-
hanced scene geometry are fed into the decoder part of reg-
ularization modules as illustrated in Fig. 2. Such a temporal

fusion scheme is conducted in the regularization modules of
different sub-tasks and the final fusion module.

(1)
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Table 1. Comparison of different methods on the DSEC dataset. The best results are highlighted with bold fonts.

Method Disparity Metrics Depth Metrics

MAE] RMSE] IPE| 2PE| 3PE||MAE| MAE,,; ]| RMSE] A <1.05'1 A<1.0527 A <1051
RAFT-Stereo [17] 0.6263 1.2120 1538 3.59 1.64 | 1.0689  0.0395  2.1439 77.83 92.38 96.39
AANet [33] 0.6555 1.3243 1528 3.92 201 | 1.1119 0.0416  2.2804 77.62 91.94 95.85
PSMNet [2] 0.5886 1.1968 13.15 2.87 1.40 | 1.0063  0.0374  2.0437 79.38 93.44 96.91
E2VID [24] + RAFT-Stereo [17] | 0.7788 1.4640 2195 5.78 256 | 1.3165 0.0484  2.5197 70.03 88.7 94.41
E2VID [24] + AANet [33] 0.7757 14376 22.08 5.70 244 | 1.2987 0.0480  2.4529 70.30 88.74 94.65
E2VID [24] + PSMNet [2] 0.6971 1.3085 1855 438 1.92 | 1.1997 0.0446  2.3105 73.25 90.54 95.52
HDES [42] 0.6978 1.3074 19.02 497 2.14 | 1.1617 0.0432  2.2675 74.38 80.48 95.43
DCNet [32] 0.5869 1.1927 13.05 2.85 1.38 | 1.0052 0.0373  2.0378 79.43 93.47 96.93
Ours 0.5434 1.1751 1097 223 1.09 | 09548 0.0353  2.0028 81.54 94.03 97.26

5. Experiments
5.1. Dataset and Evaluation Metrics

To evaluate the performance of our method, we opt for
the DSEC dataset [7], which comprises a pair of frame and
event cameras on both left and right sides. DSEC is a large
scale stereo dataset collected by driving in various challeng-
ing scenarios. It provides high-quality ground-truth dispar-
ity for the development and evaluation of different stereo
methods. We choose the left frame camera and the right
event camera to formulate a SAFE system. The left frame
images with the resolution of 1440 x 1080 are downsam-
pled to the resolution of the event camera (640 x 480). We
conduct stereo rectification for the SAFE system with the
provided camera intrinsic and extrinsic matrices and distor-
tion coefficients. The disparity of DSEC is provided in the
coordinate of the original left frame camera. We re-project
the disparity data with higher resolution into the rectified
left camera of the SAFE system. Note that we do not submit
estimated disparity to the benchmark website of DSEC, be-
cause it requires estimated disparity maps in the view of the
original left camera but re-projecting disparity maps from
those with the same resolution would suffer from grid-like
artifacts. Moreover, the disparity of the original test set is
not released. Therefore, we randomly split 35 sequences of
the original training set (41 sequences) on DSEC as the new
training set and the others as the new test set.

Our method is evaluated by standard metrics in terms
of both disparity and depth. The standard disparity met-
rics include mean absolute error (MAE), root mean squared
error (RMSE), and N-Pixel-Error (NPE). The standard
depth metrics include MAE, mean absolute relative error
(MAE,.;), RMSE, and inlier ratios with threshold 1.05,
1.052, and 1.05% (A < 1.05™). All these metrics are the
lower the better except for the inlier ratios.

5.2. Implementation Details

We set the resolution of inputs as 640x480 and the max-
imum disparity as 96. We use the event representation in
[41] to convert events within a duration of 50 ms into an
event image with the number of time bins B = 15. We first
train our network ® without the temporal fusion scheme

with a learning rate of 0.0001 and use pre-trained weights to
initialize ® except for 3D ConvLSTM cells. ® is then fine-
tuned with an initial learning rate of 0.0001 and a decreased
learning rate of 0.00005 after the 50, 000" iteration. The
loss of both stages [(+, -) is the sub-pixel cross-entropy pro-
posed in [29] with the diversity of the Laplace distribution
b = 2. We use the ADAM solver (3,=0.9, 51=0.99) and set
batch size as 2 and subsequence length § as 3.

5.3. Comparison on SAFE systems

Methods. We adopt three categories of comparison meth-
ods. The first category includes three representative stereo
matching networks with different cost volume aggrega-
tion ideas, i.e., PSMNet [2] with 3D convolutional layers,
AANet [33] with 2D deformable convolutional layers, and
RAFT-Stereo [17] with 2D convolutional GRUs. We use
two feature extractors with the same architecture and in-
dependent weights for them to extract features from frame
and event images. The second category uses E2VID [24]
to reconstruct intensity images from event streams and then
conduct stereo matching with the methods adopted in the
first category. The methods in the third category are specif-
ically designed for SAFE systems, including DCNet [32]
(a depth completion network that combines the dense esti-
mate of PSMNet and the sparse estimate computed with the
edge maps of frame and event images), HDES [42] (a depth
estimation network with pyramid attention), and ours.

Quantitative Results. Table 1 shows the quantitative re-
sults of different methods on the DSEC datasets. Among
the methods from the first category, PSMNet demonstrates
the best performance. It is different from the results of
symmetric frame-based stereo matching where AANet and
RAFT-Stereo are the more advanced network architectures
than PSMNet. We attribute the discrepancy to the diffi-
culty of asymmetric stereo matching. The 3D cost volumes
of AANet and RAFT-Stereo constructed by the correlation
of asymmetric features are insufficient to reveal the actual
geometry of scenes, while the 4D cost volume of PSM-
Net contains more contextual information and benefits the
cost aggregation with asymmetric inputs. The performance
of the second category degrades severely since the E2VID
framework loses efficacy and generates unsatisfactory in-
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tensity images, exacerbating the difficulty of matching. For
the third category, HDES does not construct cost volume
to capture correspondence and thus presents inferior perfor-
mance, while DCNet obtains negligible improvements over
PSMNet indicating that the asymmetry caused by the infor-
mation absence of a certain modality can not be mitigated
by the edge maps. In contrast, our method introduces SfM
sub-tasks to estimate reliable depth from two consecutive
views with the same functioning modality, thus outperform-
ing all comparison methods by a large margin in all metrics.
Visual Results. The visual results of two exemplar scenes
are shown in Fig. 4. In these scenes, comparison methods
that only rely on the inputs at the current time steps can not
present the correct disparity, since a certain modality fails
to report high-quality signals in some challenging regions,
e.g., the railing and the trunks in the first scene for event
cameras and the chains in the second one for frame cam-
eras. In contrast, our method obtains more robust results,
indicating the effectiveness of our divide-and-conquer ap-
proach that solves these regions by SfM sub-tasks.

5.4. Comparison with Symmetric Systems

To demonstrate the advantages of SAFE systems over
stereo symmetric frame-based (FF) and event-based (EE)
systems, we adopt two representative methods proposed for
these systems, including PSMNet [2] and DDES [28] (de-
noted as FF-PSMNet and EE-DDES). Instead of a quanti-
tative comparison, we conduct a qualitative comparison on

7 (\)
&

PSMNet E2VID+RAFTStereo E2VID+AANet

Ground Truth

PSMNet E2VID+RAFTStereo E2VID+AANet

DCNet Ours

Ground Truth
Figure 4. Disparity maps of two exemplar scenes on the DSEC dataset. Our method produces the best results in regions with complex
geometry (e.g., the railings and trunks in the first scene) and regions with challenging illumination (e.g., the chains in the second scene).

Frame Image

SAFE-Ours

SAFE-DCNet

SAFE-DCNet

SAFE-Ours

‘Event Image

Figure 5. Visual comparison of SAFE systems with stereo sym-
metric event-based (EE-DDSE) and frame-based (FF-PSMNet)
systems. SAFE-Our estimates robust depth in various scenarios
while the others fail in certain scenarios (e.g., EE-DDSE in the
flickering light region and FF-PSMNet in the low-light region).

the DSEC dataset, because three system setups on DSEC
have considerably different baseline distances and focal
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Table 2. Comparison of the dual sampling strategy with other possible solutions using the same sequential inputs of SAFE systems.

Method Disparity Metrics

Depth Metrics

MAE| RMSE] 1PE| 2PE| 3PE||MAE| MAE,;| RMSE| A <1.05'1 A<1.05°1 A<1.05°1

Depth Re-projection (Forward Warping) | 0.6555 1.3734 15.18 3.98
Depth Re-projection (Backward Warping) | 0.6628 1.3744 15.80 4.09
MVSNet [34] 0.5993 1.3176  12.85 2.69

Dual Sampling (w/o Temporal Fusion) | 0.5627 1.2307 11.56 2.40

2.04

1.17

11111 0.0410 22281 76.96 91.54 95.68
1.1088  0.0411 2.2291 76.82 91.41 95.73
1.0288  0.0392  2.1748 79.95 93.28 96.88
09710  0.0364  2.0382 81.15 93.85 97.10

Table 3. Ablation study of different components in our method.

Temporal Disparity Metrics
E-STM - F-SM Fusion | MAE| RMSE| IPE| 2PE| 3PE|
(A) X X X 0.6084 1.3556 1326 297 1.50
(B) 4 X X 0.5802 1.2934 12.05 270 1.41
©) X 4 X 0.5780 1.2560 1191 249 1.22
(D) '4 v X 0.5627 1.2307 11.56 240 1.17
(E) 4 v v 0.5434 1.1751 1097 223 1.09

lengths. As can be seen in Fig. 5, our method in SAFE sys-
tems overcomes the limits of both modalities and presents
high-quality results in these scenes. On the one hand, ex-
cess events are triggered in the flickering light region and
event images suffer from “saturation” (i.e., the first scene
in Fig. 5). EE-DDES predicts over-smooth disparity, while
our method in SAFE systems obtains sharper results similar
to those of FF-PSMNet. On the other hand, frame cam-
eras suffer in low-light scenarios and present rare details in
dark regions compared with event cameras (i.e., the second
scene in Fig. 5). Therefore, FF-PSMNet can not reveal the
3D geometry in these regions as accurately as SAFE-Ours
and EE-DDES. In short, our method realizes robust depth
estimation in challenging scenarios by effectively leverag-
ing the complementary characteristics of two modalities.

5.5. Ablation Study

Dual Sampling. To demonstrate the effectiveness of the
dual sampling strategy, we compare our method with other
possible solutions using the same sequential inputs of SAFE
systems. The first solution is to re-project disparity or depth
from the FE-StM, F-SfM, and E-SfM branches (without the
sampling strategy). Specifically, the re-projection solution
uses IF as the reference view of FE-StM and F-SfM while
using EF as the reference of E-SfM. The estimate from E-
SfM is re-projected to the coordinate of I by either dif-
ferentiable forward [22] or backward warping [13]. The
estimates of FE-StM and F-SfM and the re-projected esti-
mate of E-SfM are fed into a U-Net [25] to obtain the final
estimate. The second solution follows the spirit of MVS-
Net [34] which uses ItL as the reference view and the others
as the source views and constructs a cost volume to aggre-
gate by matching the reference view with the source views
separately. As can be seen in Table 2, our method without
the temporal fusion scheme (to guarantee equal input infor-
mation) consistently outperforms these solutions in terms of
all metrics. It clearly demonstrates the distinct advantage of
the dual sampling strategy which avoids depth re-projection
and enables the cost volume level fusion. In contrast, the re-

Frame Image Ours (D) Ours (E) Frame Image

Ours (D) Ours (E)

Figure 6. Visual comparison of our method with (E) and without
(D) the temporal fusion scheme in regions with occlusion.

projection solutions conduct independent matching in dif-
ferent branches and can only fuse the final depth estimates,
thus overlooking the abundant contextual information and
encoded depth or disparity probability distributions in the
cost volumes. Although MVSNet aggregates information
in a unified cost volume, it does not conduct matching be-
tween EF and E* | to make full use of the exclusive infor-
mation in event streams, indicating the inferior performance
compared with our method.

Divide-and-Conquer. To validate the effectiveness of dif-
ferent SfM sub-tasks in our method, we conduct ablation
studies as can be seen in Table 3. When both SfM sub-tasks
are ablated (i.e., (A) in Table 3), our method degrades to
asymmetric stereo matching and presents performance sim-
ilar to PSMNet due to the consistency of cost aggregation.
Both F-StM ((B) vs. (A)) and E-StM ((C) vs. (A)) contribute
to the distinct performance of our method, demonstrating
the effectiveness of our divide-and-conquer approach to ex-
ploit the exclusive advantages of both modalities.
Temporal Fusion. Compared with our method without the
temporal fusion scheme (D), our full method (E) obtains
considerate performance gains in all metrics (see Tab. 3),
indicating the benefit of utilizing long-term temporal infor-
mation. Itis also demonstrated by the visual results in Fig. 6
where our full method estimates better geometry than that
without temporal fusion for occlusion regions.

6. Conclusion

This paper aims to utilize the complementary character-
istics of SAFE systems and realize robust depth estimation
in scenarios that challenge the stereo symmetric systems
with a single modality. As validated by experiments, our
divide-and-conquer approach with a dual sampling strategy
and a temporal fusion scheme demonstrates superior per-
formance over various comparison methods. We expect our
method could generalize to other stereo asymmetric sys-
tems and leave it as a future work.
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