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Abstract

The generation of natural human motion interactions is
a hot topic in computer vision and computer animation. It
is a challenging task due to the diversity of possible human
motion interactions. Diffusion models, which have already
shown remarkable generative capabilities in other domains,
are a good candidate for this task. In this paper, we intro-
duce a novel bipartite graph diffusion method (BiGraphD-
iff) to generate human motion interactions between two per-
sons. Specifically, bipartite node sets are constructed to
model the inherent geometric constraints between skeleton
nodes during interactions. The interaction graph diffusion
model is transformer-based, combining some state-of-the-
art motion methods. We show that the proposed achieves
new state-of-the-art results on leading benchmarks for the
human interaction generation task. Code, pre-trained mod-
els and additional results are available at https://
github.com/CRISTAL-3DSAM/BiGraphDiff.

1. Introduction
Modeling the dynamics of human motion is at the core of

many applications in computer vision and computer graph-
ics. However, the production of real human motion requires
sophisticated equipment (e.g., expensive motion capture
systems) and domain experts. In order to remove the skill
requirements for users and potentially reach the general
public, it is essential to create a human motion generation
model capable of producing diverse motion sequences. Hu-
man motion generation is an active research area in robotics,
computer graphics, and machine learning. It involves de-
veloping algorithms and techniques that enable machines to
generate human-like motion for various applications such
as animation, virtual reality, and robotics. Ongoing research
efforts in this field aim to improve the quality, realism, and
efficiency of motion generation methods, paving the way for
innovative applications and breakthroughs in related fields.

Several approaches have been proposed to predict or

generate human motion for different tasks. Zhou et al. [42]
proposed an LSTM-based approach to generate long hu-
man motions. However the method suffers from error ac-
cumulation, a common problem with LSTMs. The authors
also reported that their generative process sometimes con-
verges toward a mean pose and stops generating motion.
To avoid these issues some approaches used convolutional
neural networks. Kosmas et al. [18] use CNNs to create
a generative model for dance motions from music. How-
ever, using the samples generated by the method suffer from
shaking caused by limited temporal coherency. More re-
cently ACTOR [26], a Transformer-based variational au-
toencoder (VAE) was designed to generate human motion
based on the label. This approach limits the learned dis-
tribution to normal latent distribution since it mainly uses
VAEs [17]. From this point of view, diffusion models are
a better candidate for human motion generation, as they are
free of assumptions about the target distribution. Motion-
Diffuse [41] is a diffusion model-based text-driven motion
generation framework. EDGE [36] uses a diffusion-based
model that generates dance sequences conditioned on mu-
sic. Tevet et al. [35] proposed a motion diffusion model
(MDM) for generating human motion animation given an
arbitrary condition or no condition. However, most works
on human motion generation ignore human interactions and
focus instead on the generation of motion of a single per-
son. However, Human motion interaction modeling is a key
component of video understanding and is indispensable be-
cause it is frequently observed in real video. It has various
applications, such as a human-computer interface, sports,
dance, game development, and an understanding of human
behavior, and prediction. Generating interaction instead of
single-person motion is also more challenging. Indeed, in
addition to modeling the spatial and temporal of each skele-
ton for single-person motion generation, we need to model
the interaction between the two skeletons. The motion of
each skeleton influences the motion of the other. This is
especially challenging since the interaction must be tempo-
rally coherent and require the motion of both persons to be
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synchronous if we want the interaction to be realistic.
In this paper, we address the challenge of generating

high-quality 3D human motion interactions. The complex-
ity lies in the nonlinear nature of human motion interac-
tions and the diverse range of interactions between indi-
viduals. To tackle these challenges, we explore several
key questions: how to effectively represent interactions
between humans and how to model and generate diverse
motion interactions. To address these questions, we pro-
pose BiGraphDiff, a graph Transformer denoising diffusion
model that leverages the Transformer architecture. This ap-
proach enables us to generate diverse motion interactions
while capturing the temporal dependencies of skeleton mo-
tion through the use of attention mechanisms. Additionally,
the diffusion process incorporated in BiGraphDiff facili-
tates the generation of high-quality and diverse motions. In
BiGraphDiff, we represent skeleton interactions using a bi-
partite graph [34]. The bipartite graph serves as a means to
capture the interactions between humans, with each human
represented by a skeleton. By formulating the motion inter-
action generation as a reverse diffusion process, we can ef-
fectively generate realistic and diverse motion interactions.
Overall, our contributions are summarized as follows:
• We propose the first Bipartite graph denoising diffusion

model (BiGraphDiff) for human interaction generation.
Our BiGraphDiff is able to generate motion interaction in
a stochastic way, naturally leading to high diversity, and
is able to generate very long motion sequences (>1000
frames).

• BiGraphDiff is a denoising diffusion process that learns
not only the denoising of the motion but also it learns a
Bipartite graph. The Bipartite graph aims to capture the
relations between the two persons.

• BiGraphDiff achieves state-of-the-art quantitatively and
qualitatively in action interaction and dance tasks. A user
study shows that the generated sequences are better qual-
itatively than the sequences generated by state-of-the-art
methods.

2. Related Work
We discuss the relevant literature from two perspectives,

namely, previous methods of Human interaction motion
synthesis and the literature on diffusion models.
Human Interaction Motion Generation. Recently there
has been an increase in motion generation based on differ-
ent modalities, [40] use control signals such as the global
trajectory of the person to generate human motion in long-
term horizons while [1] and [10] generate motion based on
speech audio. Meanwhile, others use only knowledge of
the past motion which allows them to work in real-time
but on shorter motion [7, 25, 32]. More recently, several
works have been dedicated to human pose and motion gen-
eration from text or action labels, as well as its reciprocal

task [5, 9, 24, 28]. These papers focus only on one person,
while our approach is dedicated to the generation of two-
person interactions. [4] propose a multimodal variational re-
current neural network to predict the future motion of both
participants in an interaction based on pasts sequences of
motion. In contrast, we propose to generate human interac-
tion between two persons.
Generative Diffusion Models. Diffusion models [14, 33]
have shown great promise in terms of generative model-
ing by showing impressive results in synthesis applications
ranging from image generation [11], audio-drive motion
synthesis [2], molecule generation [16], to text-driven mo-
tion generation [29]. More recently, some concurrent work
in the field of text-to-motion introduces a diffusion-based
method for generating text-conditioned motion. For ex-
ample, Zhang et al. [41] propose MotionDiffuse, a dif-
fusion model-based text-driven motion generation frame-
work. Tseng et al. [36] propose EDGE, a method for
generating editable dances that is able to create a realis-
tic dance while remaining faithful to the original music.
Dabral et al. [8] introduce MoFusion, a denoising-diffusion-
based framework for high-quality conditional human mo-
tion synthesis that can generate long and temporally plau-
sible motions conditioned based on music or text. De-
spite achieving impressive performance, these methods use
a diffusion-based method for generating the motion of only
one person. In contrast, our proposed method BiGraphDiff
proposes to generate the interaction between two persons
and propose to learn a bipartite graph during the diffusion
process. In addition, BiGraphDiff is applied for both text-
to-motion and text-to-dance, and it is able to generate a long
sequence of dance motions.

3. Background

Denoising diffusion models (DDMs) [33] have emerged
as powerful generative models, achieving outstanding re-
sults not only on image synthesis [13] but also for video
synthesis [31]. DDMs consist of two separate processes
called forward diffusion and reverse diffusion. During the
forward diffusion process, the data gradually is perturbed
by Gaussian noise repeatedly until the data becomes Gaus-
sian noise, while a neural model learns the reverse process
of gradually denoising the sample.

Formally, the forward process on a real sample from a
real data distribution x0∼q(x) consists in a Markov chain
that gradually adds noise following a variance schedule βt

to obtain the posterior q(x1:T |x0) with x1 to xT the latent
data:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI).

(1)
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The reverse diffusion process, pθ(x0:T ), is a Markov
chain that eliminates the noise from xT recursively until we
obtain x1. The reverse process can also be conditioned on
an arbitrary condition c. With p(xT ) = N (xT ;0, I):

p(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt),

pθ(xt−1|xt) := N (xt−1;µθ(xt, t, c),Σθ(xt, t, c)).

(2)

During the denoising process the goal is to estimate
µθ(xt, t, c) and Σθ(xt, t, c). Based on [15] we can set
Σθ(xt, t, c)=σ2

t I with σt a constant and replace µθ(xt, t, c)
as follow:

µθ(xt, t, c) =
1

√
αt

(xt −
1− αt√
1− αt

ϵθ(xt, t, c)), (3)

this means that we only need to estimate ϵθ(xt, t, c) to be
able to denoise the latent data since we can recover xt−1

using:

xt−1 =
1

√
αt

(xt −
1− αt√
1− αt

ϵθ(xt, t, c)) + σtγ, (4)

with γ∼N (0, I). In our model we set

σt= log(βt
1− αt−1

1− αt
) following [15] recommenda-

tion. To estimate ϵθ(xt, t, c), we will train a Bipartite
Graph Interaction Transformer (defined in section 4.2) to
minimize the loss:

L :=Et∈[1,T ],x0∼q(x0),ϵ∼N (0,I)[∥ϵ− ϵθ(xt, t, c)∥2]
:=Et∈[1,T ],x0∼q(x0),ϵ∼N (0,I)[∥ϵ− ϵθ(

√
αtx0

+ ϵ
√
1− αt, t, c)∥2].

(5)

4. Bipartite Graph Diffusion Model
4.1. Framework Overview

As shown in Figure 1, our goal is to generate a human
motion interaction x1:N given an arbitrary condition c. Let
us consider x1:N={x1, . . . , xN} an arbitrary sequence of
joints that compose the two skeletons, xi∈Rk×3×2, where
k is the number of joints (3 the number of dimensions, 2 the
number of skeletons). The motion generation is formulated
as a reverse diffusion process that requires sampling a ran-
dom noise x1:N

T from noise distribution to generate a motion
sequence as explained in section 3. We propose Transform-
ers to learn the denoising function and a bipartite graph to
represent the relationship between the joints of the skele-
ton. The Bipartite Graph Interaction Transformer used by
BiGraphDiff is based on the original Transformer [39]. It is
composed of a text encoder, embedding and positional en-
coding layers, self-attention modules, cross-attention mod-
ules, a Bipartite graph module, feed-forward modules, and

a final linear layer. The architecture is composed of a text
encoder to encode the class label and a motion decoder to
learn the interaction motion. This decoder deals with each
skeleton separately with self-attention and cross-attention
then our bipartite graph network learns a graph that repre-
sents the interaction and encodes this information in each
skeleton. The proposed Transformer learns not only the de-
noising function but also the bipartite graph.

4.2. Bipartite Graph Interaction Transformer

The text encoder is used to encode the class label c. We
use a simple four layers Transformer encoder as described
in [39] that uses multi-head self-attention. To avoid train-
ing the encoder from scratch, we initialize the weight with
those of CLIP [27]. By using a text encoder instead of a
simpler label encoder working with one hot vector, we al-
low our architecture to be directly used on more complex
interaction datasets where motion is composed of several
sub-motions when this kind of dataset will be available.
The motion decoder uses x1:N

t and the output of the text en-
coder to obtain ϵθ(xt, t, c). First we split x1:N

t into x1:N
1,t and

x1:N
2,t which represent the first and second skeleton, respec-

tively. Each skeleton passes through an embedding layer
followed by a positional encoding layer introduced by [39]
that encodes the temporal information from each frame of
the sequence. Then the data goes through self-attention and
cross-attention layers. Attention is used to find correlations
within the data. To reduce the complexity of attention lay-
ers, we use efficient attention [30]. Each attention layer (self
and cross) is followed by a stylization block. This module,
introduced by [41], allows the generative process to keep
track of the current diffusion timestep t improving the gen-
eration. The output of this module is added to the input of
the attention through a residual connection. We then use a
Bipartite graph module to learn the interaction between the
two skeletons. After the bipartite graph module, the data
of each skeleton goes through a feed-forward network. It
is composed of linear projections, dropout, and GELU ac-
tivation functions. It is followed by a stylization block to
ensure that the information about the current timestep is not
lost. The output is added to the input of the feed-forward
network thanks to a residual connection. The Motion de-
coder contains eight identical layers and the input of layer
m is the output of layer m − 1. Following those eight lay-
ers, the data of the two skeletons are concatenated and goes
through a final linear projection to obtain ϵθ(xt, t, c) that we
can use in our loss and to retrieve x1:N

t−1.

4.2.1 Bipartite Graph

Here we describe in more detail the Bipartite graph mod-
ule used in the motion decoder. Following the self-attention
and cross-attention module, we obtain embeddings for both
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Figure 1. BiGraphDiff overview. Top: the forward diffusion process to add noise to the motion sequence. Middle: the proposed Bipartite
Graph Interaction Transformer to learn the denoising function. Bottom reverse diffusion process to generate motion sequence from noise.

Figure 2. Illustration of the proposed bipartite graph method.

skeletons, i.e., z1:N1,t and z1:N2,t (size N × dl, dl size of the
embedding of a single skeleton). These embeddings go
through the bipartite graph module. The proposed bipar-
tite graph aims to capture the long-range cross relations be-
tween the two embeddings Sa=z1:N1,t and Sb=z1:N2,t in a bi-
partite graph via GCNs. Each node in Sa is connected to all
the nodes in Sb, as shown in Figure 2.

Firstly, Sa and Sb are separately fed into two encoders to
obtain the feature Fa and Fb, respectively. We then reduce
the dimension of Fa with the function φa(Fa)∈RC×Da ,
where C is the number of feature map channels, and Da

is the number of nodes of Fa. Meanwhile, we reduce the
dimension of Fb with the function θb(Fb)=H⊺

b ∈RDb×C ,
where Db is the number of nodes of Fb. Next, we project Fa

to a new feature Va in a bipartite graph using the projection
function HT

b . Thus we have:

Va = H⊺
b φa(Fa) = θb(Fb)φa(Fa), (6)

where both functions θb(·) and φa(·) are implemented us-
ing a 1×1 convolutional layer. This results in a new fea-
ture Va∈RDb×Da in the bipartite graph, which represents
the cross relations between the nodes of the skeleton Fb and
the skeleton Fa.

After projection, we employ a fully connected bipartite
graph with adjacency matrix Aa∈RDb×Db . We then use
a graph convolution to learn the long-range cross relations
between the nodes from both skeletons, which can be rep-
resented as:

Ma = (I−Aa)VaWa, (7)

where Wa∈RDa×Da denotes the trainable edge weights.
We use Laplacian smoothing [6, 20] to propagate the node
features over the bipartite graph. The identity matrix I can
be viewed as a residual sum connection to alleviate opti-
mization difficulties. We randomly initialize both the adja-
cency matrix Aa and the weights Wa and then train them
by gradient descent.

After the cross-reasoning process, the new updated fea-
ture Ma is mapped back to the original coordinate space for
further processing. Next, we add the result to the original
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Table 1. Classification score on NTU-26.

Method GT ACTOR [26] MotionDiffuse [41] BiGraphDiff

Classification Accuracy ↑
Punching 76.0% 1.0% 43.0% 49.0%
Kicking 86.0% 14.0% 61.0% 86.0%
Pushing 97.0% 77.0% 86.0% 74.0%

Pat on back 88.0% 4.0% 72.0% 80.0%
Point Finger 83.0% 0.0% 52.0% 76.0%

Hugging 97.0% 59.0% 90.0% 97.0%
Giving object 91.0% 34.0% 68.0% 86.0%
Touch pocket 93.0% 35.0% 81.0% 84.0%
Shaking hands 89.0% 16.0% 80.0% 90.0%
Walking toward 93.0% 72.0% 98.0% 99.0%
Walking apart 95.0% 90.0% 90.0% 90.0%
Hit with object 44.0% 8.0% 23.0% 28.0%

Wield knife 50.0% 7.0% 31.0% 41.0%
Knock over 85.0% 4.0% 61.0% 61.0%
Grab stuff 74.0% 0.0% 57.0% 62.0%

Shoot with gun 57.0% 1.0% 46.0% 44.0%
Step on foot 89.0% 5.0% 85.0% 90.0%

High five 90.0% 4.0% 75.0% 78.0%
Cheers and drink 90.0% 16.0% 69.0% 92.0%

Carry object 96.0% 98.0% 92.0% 95.0%
Take a photo 87.0% 19.0% 63.0% 80.0%

Follow 94.0% 68.0% 90.0% 81.0%
Whisper 83.0% 0.0% 72.0% 79.0%

Exchange things 88.0% 6.0% 65.0% 78.0%
Support somebody 94.0% 100.0% 94.0% 92.0%
Rock paper scissor 91.0% 6.0% 75.0% 91.0%

Average 84.6% 30.7% 70.0% 77.0%

feature Fa to form a residual connection, as follows:

F̃a = ϕa(HbMa) + Fa, (8)

where we reuse the projection matrix Hb and apply a linear
projection ϕa(·) to project Ma back to the original coordi-
nate space. Therefore, we obtain the feature F̃a, which has
the same dimension as the original one Fa.

Similarly, we can obtain the new feature F̃b. Overall,
the proposed method reasons the cross relations between
feature maps of different skeletons using a bipartite graph.

5. Experiments
5.1. Datasets

There are few 3D motion two-person interaction
datasets. Therefore we focus on two complementary
datasets. The NTU RGB+D 120 dataset [21], among its
120 classes, contains 26 classes labeled as “Mutual Actions
/ Two Person Interactions” which show two persons per-
forming simple interaction motions. We take this 26-class
subset that we call NTU-26 and split each class randomly to
obtain our training and testing set. The testing set contains
2,600 samples (100 per class), and the training set is 19,787
samples. The framerate for NTU-26 is 30fps. The second
dataset is DuetDance [19], which contains five classes of
two-person dance motions for a total of 406 sequences. The
motions are more complex than the one from NTU-26 and
harder to classify, even for a human observer. The origi-
nal dataset contains motions with great variations in lengths

from 100 frames to more than 4,000. The average length is
483 frames with a median of 360 frames. While our model
can generate very long motions it causes a problem when
obtaining quantitative results and lower the quality of the
generation due to the limited presence of some sequence of
certain lengths. We decided to split the sequences into sub-
sequences of 300 frames or less. This increases the number
of samples to train our network with. This increased num-
ber of samples will also help the diffusion model since it
needs a lot of data. This leaves us with 698 training sam-
ples and 125 test samples (25 per class randomly selected).
The skeletons from DuetDance are extracted from YouTube
videos. The frame rate is either 25 fps or 30 fps, depend-
ing on the video. We use the same normalization for both
datasets. First, we compute the means of the x,y, and z val-
ues of both skeletons. Then we subtract these means from
the x,y, and z values. We divide the results by the Froben-
nius norm. Finally, we center the two skeletons around a
point that is the middle of a segment that links the torso
joints of both skeletons.

5.2. Implementation Details

We train our model on an NVIDIA A100 80Go GPU
with PyTorch with a batch size of 128 for NTU and 64 for
DuetDance. We train on NTU for 1,500 epochs and for
30,000 epochs on DuetDance.

5.3. Baselines

As there are currently limited interaction generation
methods available, we compared our architecture to single-
person motion generation methods. To ensure a fair com-
parison, we focused on generation methods conditioned on
text or class labels and excluded methods conditioned on
music, such as EDGE [36]. We compared our BiGraphDiff
method to two state-of-the-art methods: MotionDiffuse [41]
and ACTOR [26]. MotionDiffuse is a recent architecture
based on diffusion and transformers that generate single-
person motion from the text. We used the code provided by
the authors and ran the model with the recommended pa-
rameters. To ensure consistency, we used the same batch
size and number of epochs as for our BiGraphDiff method.
We chose MotionDiffuse over other diffusion methods be-
cause it has available code and its results are among the
best, comparable to, or better than MoFusion [8]. ACTOR
is a Transformer VAE method that also generates single-
person motion. We used the code provided by the authors
and retrained it on our datasets with recommended param-
eters. We had to deactivate the SMPL [22] loss function
because it is not available in the NTU RGB+D and Duet-
Dance datasets. These two methods are mainly intended to
generate the motion of a single individual. However, we can
use them to generate the motion of two individuals by modi-
fying their inputs. These methods assume that the motion is

5337



Table 2. FVD and Multimodality on NTU-26.

Method FVD↓ Multimodality↓
ACTOR [26] 25298.73 34.91

MotionDiffuse [41] 1292.32 14.94
BiGraphDiff 1048.13 11.28

Table 3. Classification score on DuetDance.

Method GT ACTOR [26] MotionDiffuse [41] BiGraphDiff

Classification Accuracy ↑
Cha-cha 28.0% 36.0% 32.0% 32.0%

Jive 52.0% 16.0% 20.0% 16.0%
Rumba 56.0% 16.0% 48.0% 68.0%
Salsa 88.0% 0.0% 64.0% 76.0%

Samba 52.0% 80.0% 32.0% 52.0%
Average 55.2% 29.6% 39.2% 48.8%

represented by a matrix with dimensions of 3k×N (k is the
number of joints, and N is the number of frames). Instead,
we introduce a matrix twice as large, with dimensions of
6k × N , which consists of the concatenation of two skele-
tons. By doing so, neural networks observe an increase in
the number of joints and can generate interacting motion.

5.4. Quantitative Results

We perform the quantitative evaluation by using classifi-
cation accuracy, Frechet Video Distance (FVD) score [37],
and Multimodality.
Fréchet Video Distance (FVD) adapts the Fréchet Incep-
tion distance (FID) [12] for video sequences [38]. FVD
computes the distance between the generated data distribu-
tion and the ground truth using deep features.
MultiModality. Multimodality measures the diversity of
generated samples in each class. It is defined as the aver-
age deep features distance of the samples generated by a
method compared to the average deep features distance of
the ground truth on a specific class. The deep features are
extracted from the classifier used for classification accuracy
To compute the average deep features distance we split the
set of features of each class into two equal sets and compare
the Euclidean norm between the pairs formed by a member
of each set and compute the average over the size of the sub-
sets. The Multimodality score is similar the multimodality
from [41] but in our experimental results, we directly com-
pare it with the multimodality of the ground truth.
The classification accuracy is obtained using a simple
Transformer encoder followed by an MLP. The classifier is
trained and tested on the same set as the generative methods.

NTU-26. Table 1 shows that our method outperforms the
two the-state-of-art methods in terms of average accuracy.
BiGraphDiff outperforms MotionDiffuse by 7.0% and AC-
TOR by 46.3%. We are also very close to the accuracy of
the classifier on the ground truth. This shows that the se-

Table 4. FVD and Multimodality on DuetDance.

Method FVD↓ Multimodality↓
ACTOR [26] 2641.08 67.79

MotionDiffuse [41] 1133.51 12.24
BiGraphDiff 997.92 4.33

quences generated by our method are realistic and corre-
spond to the input class. In more detail, we can see that
we outperform or equate the other methods on 22 classes
out of 26. MotionDiffuse and ACTOR are both better in
2 classes. However, we can see that ACTOR results being
actually better is debatable as some classes have very low
accuracy, down to 0%. We can also see that the classes in
which we perform the worse (i.e., “Hit with object” 28%,
“Wield knife” 41%, and “Shoot with gun” 44%) are the
ones where the results are also low for the ground truth.
Those are classes where the main difference is the object
used which is something we can not see using 3D skele-
ton data. Table 2 shows the FVD and multimodality results.
In terms of FVD and Multimodality, our method also out-
performs the two other methods indicating that our method
produces sequences closer to the real data. One issue when
using the NTU dataset is that it is very noisy (see the ground
truth in the qualitative results). This means that it is harder
to generate noiseless sequences but also that a method that
generates samples without noise might be disadvantaged in
the quantitative results since they are compared with the
ground truth and the classifier is trained on the noisy data.
DuetDance. Table 3 shows the classification results on the
DuetDance dataset. We can see that, as on NTU-26, we
have the best performance on average. The accuracy of
our method is 9.6% higher than on MotionDiffuse and only
6.4% lower than on the ground truth. We can note that the
accuracy for the ground truth is much lower than for NTU-
26. This is due to the nature of the motion in DuetDance.
The dance motions are much harder to recognize even for
a human and also longer so it is not surprising that the re-
sults are worse. ACTOR, on the other only achieves results
slightly higher than chance (20%) we will see in the quali-
tative results that on DuetDance, ACTOR does not produce
any motion, we will discuss this in detail in the qualitative
results. In the “jive” class, all methods only achieve chance
level or lower accuracy. But the results are not so low for the
ground truth with means that all methods have trouble gen-
erating motion of the “jive class”. In Table 4, we show that
we outperform the other methods on both metrics meaning
that the results of our method are more realistic.

5.5. Qualitative Results

NTU-26. Figure 3 shows visuals of sequences generated
for the “Cheers and drinks” class. This class of motion is
more complex than others because it is composed of two
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Figure 3. Examples of diverse motion generation for a given text prompt “Cheers and Drink” action from NTU.

separate motions “cheers” and “drink”. All methods gen-
erate a proper motion but ACTOR shows a low intensity
for “cheers” and does not really generate the “drink” mo-
tion. MotionDiffuse generates a good motion with both
“cheers” and “drink” but there is some noise and the arm
length grows over time. Our method generates the proper
motion with the two steps and does not produce the noise
that is present in the ground truth. In our case, one charac-
ter drinks while grabbing the glass with one hand while the
other uses both hands showing the diversity in the generated
motions. Overall we see that our motion is more realistic,
temporally, and spatially coherent and manages well to keep
the interaction coherent.
DuetDance. Figure 4 shows examples of motion genera-
tion of the “salsa” class. The dance motions are more com-
plex and the sequences are longer than NTU-26 sequences.
ACTOR does not produce motion. We believe this to be
due to the great variability of motions from the same class.
ACTOR converges to a mean and finds that an unmoving
pair of skeletons is the best generation for its losses. We
see that MotionDiffuse produces a dance motion without
noise. This is because there is less noise in DuetDance than
in NTU-26. Our method also generates a dance motion but
is better than MotionDiffuse, we reproduce the motion of
characters changing sides that is present in the ground truth
and the interaction is better as the arm of both characters
does not overlap.

5.6. User Study

The user study compared BiGraphDiff with two leading
methods (i.e., ACTOR [26], MotionDiffuse [41]) and the
ground truth sequence. For both datasets, we randomly se-
lect 20 samples for each class from the test data. For each
comparison, 30 participants are asked to answer two ques-
tions, i.e., ‘Q1: Which skeleton sequence is more realistic?’,
and ‘Q2: Which skeleton sequence matches the input text
better?’. The numbers indicate the preference percentage of
users who favor the results of the corresponding methods or

Table 5. User study results (%).

Method NTU-26 DuetDance

Q1 Q2 Q1 Q2

ACTOR [26] 6.1 7.8 5.6 5.9
MotionDiffuse [41] 22.4 24.3 21.8 23.7

BiGraphDiff 31.6 32.7 28.5 30.1
GT 39.9 35.2 44.1 40.3

the GT skeleton sequence. The results highlight the quality
of the sequence generated by our method.

5.7. Ablation Study

We report ablation results in Table 6 on the NTU-26
dataset. We compare a simple two-stream Transformer
(S1), a two-stream Transformer in a diffusion process (S2),
a two-stream Transformer in a diffusion process with a sim-
ple GCN (S3), and finally our method with bipartite graphs
(S4).

The results of S1 are extremely bad. It is explained by
the fact the Transformer is a deterministic method and has a
low generation diversity which explains the very high FVD.
Furthermore, the noisy data from the NTU dataset makes
it even harder to provide well-generated sequences. S2 pro-
vides much better results both in classification accuracy and
FVD, the results are similar to the results obtained by Mo-
tionDiffuse. With S3 the simple GCN helps enhance the
generation leading to better accuracy and FVD. This high-
lights the ability of the GCN to model more accurately the
spatio-temporal dependencies from each skeleton. Adding
a bipartite graph network in S4 provides a stronger increase
in performance. It shows that modeling the interactions be-
tween the two skeletons is more important than trying to
refine the interactions inside each skeleton as S3 did. It val-
idates the use of the bipartite graph network in BiGraphDiff
architecture.
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Figure 4. Examples of diverse motion generation for a given text prompt “Salsa” action from DuetDance.

Figure 5. Example of generation of very long sequences on the “rumba” class from DuetDance. Under each skeleton the frame number.

Table 6. Ablation study on NTU.

Method Classification↑ FVD↓
S1: Two Stream Transformer 3.9% 21215.21
S2: Two Stream Transformer + Diffusion 69.3% 1406.09
S3: S2 + Simple GCN 73.2% 1123.88
S4: S2 + Bipartite Graph 77.0% 1048.16

6. Very Long Generation
Long-term motion generation plays an important role in

real-world applications. Our method is able to generate
longer sequences, as shown in Figure 5. We train the net-
work on the original DuetDance dataset with a maximum
sequence length of 4050 frames. We use 376 samples for
training and 40 (8 per class) for testing. Figure 5 shows an
example of 1580 frames from the “rumba” class. We can
see that we generate dance-like motion for the entire dura-
tion of the sequence. However, it is very noticeable that we
generate better motion for the first few hundred frames, we
see that the motion quality around 300 frames is good, but
then around 600 frames, we see deterioration that gradually
becomes worse. This is due to the length of the sequences
in the DuetDance dataset distribution which are usually not
very long (average: 483 frames, median: 360 frames). Be-
cause of this, we do not use many very long positional en-
codings during training, preventing a good generation of
very long motion.

7. Conclusion, Limitations and Future Work
We introduce the first approach for 3D human motion in-

teractions based on denoising diffusion models. Both quan-

titative and qualitative evaluations show that BiGraphDiff
outperforms state-of-the-art methods. The proposed Bi-
GraphDiff framework generates coherent human motion se-
quences that are longer and more diverse than the results
of previous approaches. The proposed BiGraphDiff suffers
however from the common limitations of diffusion models:
the need for large datasets and the long training and testing
duration. While the use of Bipartite graph improve perfor-
mance by modeling the interaction, it also increase the com-
plexity of the model. Our method has 221,476,320 train-
able parameters while MotionDiffuse only has 86,990,688
and ACTOR 14,795,866. Recently modifications to the dif-
fusion process have been investigated to improve the com-
plexity of diffusion models [3, 23]. The method is also still
slightly sensitive to noise in the training data and can some-
times generate deformed skeletons. This is due in part to
the quality of the data used but also because we do not set
any constraint related to the input data, e.g., bone length or
relative position of joint for 3D skeletons. This means that
BiGraphDiff can be used for tasks other than human inter-
action generation. As long as the input data can be split
into two sets and has a temporal or positional component
BiGraphDiff can be used for generation.
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