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Abstract

The limited availability of labelled data in Action Qual-
ity Assessment (AQA), has forced previous works to fine-
tune their models pretrained on large-scale domain-general
datasets. This common approach results in weak generali-
sation, particularly when there is a significant domain shift.
We propose a novel, parameter efficient, continual pretrain-
ing framework, PECoP, to reduce such domain shift via
an additional pretraining stage. In PECoP, we introduce
3D-Adapters, inserted into the pretrained model, to learn
spatiotemporal, in-domain information via self-supervised
learning where only the adapter modules’ parameters are
updated. We demonstrate PECoP’s ability to enhance the
performance of recent state-of-the-art methods (MUSDL,
CoRe, and TSA) applied to AQA, leading to considerable
improvements on benchmark datasets, JIGSAWS (↑ 6.0%),
MTL-AQA (↑ 0.99%), and FineDiving (↑ 2.54%). We also
present a new Parkinson’s Disease dataset, PD4T, of real
patients performing four various actions, where we surpass
(↑ 3.56%) the state-of-the-art in comparison. Our code,
pretrained models, and the PD4T dataset are available at
https://github.com/Plrbear/PECoP.

1. Introduction

The analysis and evaluation of the quality of human ac-
tion performance have a rich application in various real-
world scenarios, such as sports events [42, 47, 49], health-
care [9, 32], and skill assessment [35, 38]. Despite recent
advances [9,18,28,36,42,46,47,49], AQA methods are af-
fected by insufficient quantities of annotated data for train-
ing deep networks [36]. This is further exacerbated when
extra effort is needed to produce very precise labels, e.g.
for health-related applications, such as Parkinson’s Disease
(PD) severity assessment [9, 12, 33, 34]. A common solu-
tion to address such problems is to start with a model that is
originally pretrained on a large source dataset, commonly
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Figure 1. (a) Previous works directly transfer the model pretrained
on domain-general data to AQA downstream tasks with target data
fine-tuning, (b) in our proposed PECoP framework, the pretrained
model continues to learn towards a specific AQA task through an
additional pretraining stage, where only a small set of 3D-Adapter
parameters are updated on unlabeled domain-specific data in a
SSL approach, while the baseline model’s weights remain frozen.

Kinetics-400 [27] (K400), and finetune it on one’s target
AQA dataset [42, 47, 49] (see Fig 1(a)). While better than
training from scratch, deploying such pretrained models is
sub-optimal for AQA, due to the domain/task discrepancy
between action classification and action assessment. For ex-
ample, in PD action performance scoring, one or two inter-
ruptions during the regular rhythm of a patient’s movement
performing an action can result in a different quality score
and this is in contrast to the source pretraining task, where
subtle or even more pronounced differences in performing
an action should not affect action classification [29].

A promising route to address the shortcomings of this
direct jump from classical pretraining to finetuning can be
to further pretrain using domain-specific unlabeled data, i.e.
continual pretraining – a strategy that has had a remarkable
impact in natural language processing (NLP) [19, 20, 45]
and recently in image/object classification [1, 40]. When it
comes to video-domain tasks (e.g. as in AQA), this addi-
tional pretraining stage on in-domain data may be compu-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

42



tationally prohibitive or impractical, due to the requirement
for updating all parameters and storing pretrained parameter
sets for each separate task.

BatchNorm tuning [15, 40] could be used to equip the
pretrained model with domain-specific information by only
updating the affine parameters of BatchNorm layers, while
other pretrained parameters are frozen. Although this tech-
nique can greatly reduce the number of trainable parame-
ters, we show that in a continual pretraining framework it
can fail on those AQA datasets that are relatively small and
more domain-specific, such as JIGSAWS [16].

In this paper, we propose adding a Parameter-Efficient
Continual Pretraining (PECoP) adaptation stage to the tra-
ditional AQA transfer learning workflow that can efficiently
adapt the domain-general pretrained model for the down-
stream AQA task. Inspired by adapter-based methods which
have recently achieved strong results with transformer ar-
chitectures on NLP benchmarks [22, 24, 25, 39], we present
3D-Adapter, a lightweight convolutional bottleneck block
which is inserted into a pretrained 3D CNN (e.g. I3D
inception modules [3]) and learns domain-specific spa-
tiotemporal knowledge via a self-supervised learning (SSL)
approach. During domain-specific pretraining, only the
adapter parameters are updated while the original weights
of the pretrained model are frozen to allow a high degree
of parameter-sharing (see Fig. 1(b)). This greatly reduces
the computational and storage costs of conventional contin-
ual pretraining, and also prevents overfitting by alleviating
catastrophic forgetting [24].

To evaluate our method, we present experiments on three
public AQA benchmarks, MTL-AQA [37], JIGSAWS [16]
and FineDiving [47]. We also provide comparative results
on a new Parkinson’s Disease dataset, PD4T, comprising
four different PD motor-function tasks by real patients. Our
results clearly demonstrate that the proposed continual pre-
training approach PECoP can boost the robustness of re-
cent SOTA AQA methods, i.e. TSA [47], CoRe [30] and
USDL/MUSDL [42], by a considerable margin.

In summary, the contributions of this work are:

• We propose a parameter-efficient continual pretraining
workflow to enhance the efficiency of target tasks.

• We integrate a 3D-Adapter layer for the first time for
3D CNNs for video analysis.

• We introduce a new annotated AQA dataset, PD4T, for
the vision community to evaluate various actions per-
formed by actual Parkinson’s disease patients.

• We present extensive experiments and ablations to
demonstrate that recent state-of-the-art AQA methods
can significantly benefit from our proposed continual
pretraining approach.

2. Related Work
We address the most recent works that are significantly

relevant to our work, including those on action quality
assessment, self-supervised learning with respect to AQA
tasks, continual pretraining, and adapters.

AQA – Most AQA methods treat the task as a regression
problem on various video representations supervised by the
scores or labels given by expert judges [32,37,42,46,47,49].
To reduce the inherent ambiguity of such labels, Tang et al.
[42] proposed uncertainty-aware score distribution learning
(USDL) for AQA. Yu et al. [49] employed contrastive learn-
ing [23] and built a contrastive regression (CoRe) frame-
work to learn relative scores by pair-wise comparison. Al-
though these methods have achieved SOTA results on sev-
eral AQA datasets, they disregard the significant domain
gap between their base dataset (i.e. K400) and target AQA
dataset. In this paper, we address the pretraining stage to-
wards better targeted learning in AQA methods.

SSL for AQA – Although most of the SOTA works in
the AQA literature have focused on supervised learning
approaches, a few have recently explored self-supervised
learning [30, 32, 41, 50]. In these studies, in addition to the
traditional supervised regression loss, the framework is fur-
ther equipped with an SSL loss during the finetuning stage
to improve the performance without the need for additional
annotations. For instance, Liu et. al [32] employed a self-
supervised contrastive loss to assist their supervised model
capture temporal dynamics better in surgical videos. We
leverage the advantages of SSL during the pretraining pro-
cess to introduce to the pretrained model a level of domain-
specific focus to allow it to handle the downstream AQA
tasks more efficiently.

Continual pretraining – In contrast to the traditional
approach in transfer learning that follows domain-general
pretraining (usually over ImageNet or K400), continual pre-
training can enhance learning via in-domain self-supervised
pretraining to handle domain shift problems [1,19,39,40,45,
48]. Gururangan et .al [19] showed the importance of an ad-
ditional pretraining phase with in-domain data to improve
their target task performance on text classification. In the
image domain, Reed et. al [40] verified that models contin-
ually pretrained on datasets that are progressively more sim-
ilar to the target data can speed up convergence and increase
robustness, while being particularly helpful when the target
training data is limited. Azizi et. al [1] used a combination
of both supervised pretraining on ImageNet, as well as in-
termediate contrastive SSL [7] on domain-specific medical
data, to learn generalisable representations for medical im-
ages. In this work, we investigate continual pretraining for
the first time in the video domain, in particular on the AQA
task. However, instead of continual pretraining of the entire
model parameter set, we take advantage of adapter-based
tuning to reduce the cost of storage and model pretraining
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Figure 2. An overview of PECoP – First, a 3D encoder is pretrained on a domain-general dataset (i.e. K400). Then, we equip the pretrained
model with 3D-Adapters and update their parameters using VSPP [8], a SSL pretext task, on unlabeled domain-specific data. Finally, we
fine-tune the pretrained model on the AQA target task.

on in-domain data while preserving the knowledge obtained
through the initial pretraining on domain-general data.

Adapters – Adapters are lightweight bottleneck mod-
ules which were designed for Transformer architectures for
NLP tasks to conduct parameter-efficient transfer learning
[10, 22, 25, 26] for downstream tasks. In computer vision,
Chen et al. [6] proposed AdaptFormer to efficiently adapt
a pretrained vision transformer model [11] to scalable im-
age and video recognition tasks. In [4], Chen et al. intro-
duced Conv-Adapter with a similar bottleneck architecture
proposed for transformers, as in [6, 25], but with convolu-
tion layers to enable adapters in 2D CNNs. To the best of
our knowledge, there is no work yet to study the effect of
Adapters in 3D CNNs, and our proposed approach fills this
gap.

3. Proposed Approach

Next, we outline our proposed continual pretraining ap-
proach implemented via self-supervised training of 3D-
Adapter modules. The pipeline of our framework is shown
in Fig. 2.

Let Dg be a large-scale, annotated, domain-general
video dataset used for a learning task Tg , and Dt be a target
video dataset in the AQA domain for a learning task Tt, with
a significant domain discrepancy between Tg and Tt. Then,
given an unlabelled video dataset Dq , where Dq ⊆ Dt, our

aim is to leverage the representations in Dg and Dq to learn
a transferable spatiotemporal feature extractor that is able to
perform as well as possible on Dt for task Tt.

Domain-general pretraining – A pretrained backbone
model, such as one that has been trained on a large video
dataset, e.g. an I3D model supervised on K400, serves as
our model architecture (see 1st column of Fig. 2).

In-domain SSL continual pretraining – We then equip
our K400 pretrained model with randomly initialised 3D-
Adapter modules. Our proposed 3D-Adapter has a similar
bottleneck architecture as used in Transformers [25,26] and
recently in 2D CNNs [4], however, it requires 3D layers to
be applied to 3D CNNs and trained on videos. The archi-
tecture of our 3D-Adapter and its integrated design with the
inception module of the I3D model is shown in Figure 3. A
performance boost can be obtained if a single 3D-Adapter
is inserted after the concatenation layer of each inception
module.

A 3D-Adapter consists of a downsampling, depth-
wise, 3D convolution with learnable weights θdown ∈
R

Cin
λ ×λ×K×K×K , a non-linear function f(.), e.g. ReLU,

followed by an upsampling, point-wise, 3D convolution
with learnable weights θup ∈ RCout×

Cin
λ ×1×1×1. Here,

Cin and Cout are the channel dimensions of the input and
output feature maps, respectively, K = 3, and the compres-
sion factor λ denotes the bottleneck’s dimension. Hence,
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given an input feature vector hin ∈ RCin×D×H×W , then
the output feature vector hout ∈ RCout×D×H×W of our 3D-
Adapter is

hout = α⊙ (θup ⊗ f(θdown⊗̄hin)) + hin , (1)

where ⊗ and ⊗̄ are point-wise and depth-wise 3D convo-
lution respectively, and α is a tunable scalar hyperparam-
eter in RCout which is initialised as ones, and ⊙ denotes
element-wise multiplication, following [4, 26].
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Figure 3. Inception module with adapter used in I3D model.

During the proposed continual pretraining stage, we only
allow the 3D-Adapter parameters to be optimised on Dq ,
while the original model layers’ weights stay frozen (mid-
dle column in Fig. 2). The training is accomplished through
self-supervised learning, with labels automatically gener-
ated from unlabeled videos in Dq . Since understanding
the quality of action is heavily dependent on movement pat-
terns, we focus on Video Segment Pace Prediction (VSPP)
[8] as an SSL pretext task for this stage. VSSP requires our
model to temporally explore a video clip and predict the in-
dex and speed of a segment within a clip that is sampled at a
different speed rate. It was shown in [8] that VSPP is more
suited to video motion events than previous video playback
prediction tasks [2, 5, 13, 43] by way of much faster con-
vergence. We shall explore the performance of other recent
SSL methods (e.g. VideoPace [43] and RSPNet [5]) during
our ablations.

Supervised fine-tuning – We select SOTA action qual-
ity assessment models CoRe [49], USDL/MUSDL [42], and
TSA [47], as example models that can be enhanced with
PECoP and then fine-tuned on AQA datasets for direct eval-
uation. In essence, in this stage, each model’s layers, in-
cluding the original and the introduced adapter layers, are
fine-tuned on the target dataset Dt (see rightmost column in
Fig. 2).

For USDL [42], the features obtained from segments of
a video clip pass through our continually pretrained I3D
backbone and fused through temporal pooling, and then

sent through softmax to generate the predicted quality as-
sessment distribution. The KL loss between the predicted
distribution and a Gaussian distribution generated from the
ground-truth score is applied for optimisation. MUSDL is
a multi-path version of USDL which predicts the final score
if multiple-judge scores are available, as is the case in the
MTL-AQA and JIGSAWS datasets.

For CoRe [49], given pairwise query and exemplar
videos, their spatiotemporal features are extracted with our
continual pretraining I3D and then the two feature sets are
combined with the reference score of the exemplar video
and passed to the group-aware regression tree to obtain the
score difference between the two videos. During inference,
the final score is computed by averaging the results from
multiple different exemplars.

For TSA [47], spatiotemporal features are extracted sim-
ilarly to CoRe. Then, a temporal segmentation attention
module assesses action quality.

4. Experiments
We evaluate our self-supervised continual pretraining

adaptation module on the following datasets that span vari-
ous AQA tasks:

(i) MTL-AQA [37] contains 1412 video clips collected
from 16 different world events and includes a variety of
diving actions, covering both individual and synchronous
divers, with videos from different angles. The annotations
comprise scores from 7 judges, final scores, difficulty de-
gree and type of diver’s action.

(ii) JIGSAWS [16] is a collection of 103 surgical ac-
tivities that cover three distinct tasks: 39 Suturing (S), 28
Needle-Passing (NP), and 36 Knot-Typing (KT). Each task
is annotated by multiple sub-scores (that represent e.g., flow
of operation, quality of final outcome, and so on), with the
final score defined as the sum of these sub-scores.

(iii) FineDiving [47] is a fine-grained sports video
dataset for AQA which provides 3,000 video of diving with
detailed annotations on 52 actions, 29 sub-actions, and 23
difficulty degree types.

(iv) PD4T is our new fully annotated dataset offering
2931 videos from 30 PD patients tested longitudinally at 8
week intervals. The videos were captured at 25fps at a res-
olution of 1920×1080 (reduced to 854x480), using a SONY
HXR-NX3 camera. There are a total of 30 subjects, with
22 of these used for training and 8 for testing. The patients,
who ranged from 41 to 72 years old, performed PD tasks
of gait, finger tapping, hand movement, and leg agility in
clinical settings and their Unified Parkinson’s Disease Rat-
ing Scale (UPDRS) [17] quality scores were assigned by
trained clinicians ranging from 0 (normal) to 4 (severe)1.
Sample frames are shown in Figure 4.

1For additional information about the PD4T dataset, see the supple-
mentary materials.
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Figure 4. Sample frames from the PD4T dataset: (a) gait, (b) finger tapping, (c) leg agility, and (d) hand movement. All videos are from
actual PD patients and were captured in a clinical environment as part of a clinical experiment across several months. For hand movement,
finger tapping, and leg agility, data were collected from both the left and right sides for each subject.

Experiment Setup – The experiments were performed on
an Nvidia RTX 3090TI GPU under Cuda 11.6 with cuDNN
8.2. We first initialise our I3D model with K400 pretrained
weights which then remain frozen throughout the pretrain-
ing stage. After adding 3D-Adapters, the classification head
is replaced with two randomly initialised FC layers fλ and
fζ corresponding to the segment speed and index outcomes
of the VSPP [8] pretext task. Different values for fλ and
fζ are used for different AQA tasks. We perform SSL pre-
training on domain-specific datasets by only updating the
3D-Adapter layers over 8 epochs, with batch size of 16
and SGD with a 1 × 10−3 learning rate. In this stage, we
generate 32-frame long video clips, and empirically set the
two parameters needed for VSSP to [λ = 4, ζ = 4] or
[λ = 4, ζ = 3] which is either at, or close to, those rec-
ommended in [8]. Note that the training set videos of the
target data is our domain-specific dataset for SSL pretrain-
ing. For data augmentation, we randomly crop the video
clips to 224 × 224 followed by horizontal flip and colour
jittering of each frame. Following [8], we apply 10x more
iterations per epoch for temporal jittering. In all experi-
ments, the input clip length is 32 during pretraining.

Fine-tuning – The pretrained I3D model is then the back-
bone network of our baselines USDL, MUSDL, CoRe, and
TSA, and we evaluate their performance with the Spear-
man Rank Correlation metric (S), expressed as percent-
ages. For the JIGSAWS dataset, in keeping with other
methods [42, 49], we provide values after four-fold cross-
validation. In this stage, we adopt similar hyperparameter
settings and training/evaluation strategy for each baseline as
reported in [42], [49], and [47] respectively.

Comparative Evaluation – We present results on the
MTL-AQA [37] and JIGSAWS [16] datasets against SOTA
AQA methods MUSDL [42] and CoRe [49] when we en-
hance them with PECoP, as well as when we enhance them
with another recent continual pretraining workflow, HPT
[40] (see Table 1). In HPT, which has only been applied

to image domain tasks till now, simply additional pretrain-
ing steps are introduced on domain-specific datasets with all
model parameters updated at every stage. We use the same
hyperparameters for training both PECoP and HPT.

While with PECoP improved results are obtained across
the board, the improvements on JIGSAWS are very signif-
icant, e.g. after adding PECoP, MUSDL’s average perfor-
mance on the three tasks in the JIGSAWS dataset improves
to 76% (↑ 6%). Similarly, CoRe’s average performance on
the same tasks increases to 89% (↑ 4%). This clearly shows
PECoP’s effectiveness in narrowing the substantial domain
gap between the JIGSAWS dataset and K400.

Further, we note that adding HPT to the baselines results
in a performance drop on JIGSAWS. Specifically, CoRe’s
performance decreases to 80% (↓ 5%). This decline can be
attributed to overfitting, as HPT requires all model parame-
ters to be pretrained on a relatively small dataset (i.e. ∼13M
parameters vs. PECoP’s 3D-Adapters’ ∼1M).

In Table 2, we show that not only PECoP dramatically
reduces the trainable parameters, it also requires drastically
fewer epochs to converge compared with HPT.

Table 3 presents the results on the FineDiving dataset in-
troduced in [47], comparing CoRe [49] and TSA [47], with
and without PECoP. Since TSA requires step transition la-
bels for training, we cannot evaluate it on other datasets.
As shown, TSA+PECoP improves on TSA by 1.10%. Al-
though TSA outperforms CoRe alone, CoRe+PECoP sur-
passes TSA and TSA+PECoP to achieve the SOTA perfor-
mance on FineDiving dataset.

Table 4 presents the results for the PD4T dataset. Given
only a single action performance score based on the UPDRS
scale [17] is available per clip, we compare PECoP and
HPT for USDL instead of MUSDL. We observe the Spear-
man’s rank correlation improves when averaged across the
four PD4T tasks for both HPT and PECoP when added
to both USDL and CoRe (↑ 2.03% and ↑ 3.56% respec-
tively for PECoP ), although HPT performs marginally bet-
ter (↑ 2.22%) when added to USDL. We assume this slight
advantage for HPT is likely due to its greater model capacity
for handling the complex patterns in the PD4T dataset; how-
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Table 1. Spearman Rank Correlation results on MTL-AQA and JIGSAWS, with and without continual pretraining. ⋆ ViSA [31] and
MultiPath-VTPE [32] are customised towards surgical skill assessment and not general AQA tasks.

Method Year MTL-AQA JIGSAWS
Diving S NP KT Avg S

USDL [42] 2020 90.66 64 63 61 63
MultiPath-VTPE [32]⋆ 2021 - 82 76 83 80
TSA-Net [44] 2021 94.22 - - - -
I3D + MLP [49] 2021 89.21 61 68 66 65
I3D-TA [51] 2022 92.79 - - - -
ViSA [31]⋆ 2022 - 84 86 79 83
ResNet34-(2+1)D-WD [14] 2022 93.15 - - - -
MUSDL [42] 2020 92.73 71 69 71 70
MUSDL + HPT [40] 2023 93.49 69 75 72 72
MUSDL + PECoP 2023 93.72 77 76 76 76
CoRe [49] 2021 95.12 84 86 86 85
CoRe + HPT [40] 2023 94.26 80 81 80 80
CoRe + PECoP 2023 95.20 88 90 88 89

Table 2. Comparison of PECoP and HPT [40] in terms of storage
size and pretraining cost.

Continual
Pretraining

#trainble
parameters #epochs Size

HPT [40] ∼13M 16 ∼54MB
PECoP ∼1M 8 ∼4MB

Table 3. Results on FineDiving Dataset.

Method S
CoRe [49] 90.61
CoRe + PECoP 93.15
TSA [47] 92.03
TSA + PECoP 93.13

ever, PECoP achieves nearly equivalent performance gains
while significantly reducing continual pretraining and stor-
age costs.

5. Ablation Study and Analysis
In this section, we perform ablations on our PECoP

framework for AQA tasks, focusing on the influence of dif-
ferent SSL methods employed for domain-specific pretrain-
ing, the role of BatchNorm tuning in domain adaptation,
and the impact of integrating 3D-Adapters into another 3D
CNN, e.g. R3D-18 [21].
Different SSL Methods – We investigate the performance
of PECoP when using different SSL methods for domain-
specific pretraining, i.e. RSPNet [5], a contrastive learning-
based SSL approach (based on MoCo [23]), and VideoPace
[43], a transformation-based SSL pretex task (similar to
VSPP). In this ablation, CoRe has been used as the AQA

baseline and JIGSAWS as the target AQA task. As shown in
Table 5, VSSP achieves the best result for domain-specific
pretraining.

BatchNorm (BN) Tuning – As mentioned earlier, BN
tuning can be used to equip a pretrained model with
domain-specific knowledge by only updating the affine pa-
rameters of BatchNorm layers. Figure 5 illustrates the com-
parative performance of BatchNorm tuning (HPT+BN) and
other pretraining strategies, such as domain-general pre-
training (Dom-G), domain-specific SSL pretraining (Dom-
S) from scratch, and PECoP. Again, CoRe is used as the
AQA baseline.

Each plot corresponds to an AQA target task taken from
our various datasets. On all these tasks, PECoP outperforms
HPT+BN, particularly by a large margin on the tasks within
PD4T and JIGSAWS datasets. Further, we observe that,
HPT+BN performs significantly worse than Dom-G alone
on the all three tasks within JIGSAWS dataset. This sug-
gests that the BN affine parameters, β and γ, generally have
a negative impact on downstream AQA tasks when facing
a significant domain shift. This happens because β and γ
are tuned to the feature distribution of the source domain.
When these parameters are applied to a significantly dif-
ferent target domain, they fail to correctly adjust feature
statistics, resulting in a misalignment between the source
and target domains. This issue becomes worse in smaller
target datasets, as the limited number of examples makes it
harder for the model to learn the true feature distribution,
increasing the risk of overfitting.

In addition, the figure also shows that Dom-S performs
variably. It fared worse than Dom-G on MTL-AQA, but ex-
ceeds Dom-G in nearly all PD4T tasks. This discrepancy
suggests that direct transfer from the K400 dataset may not
be ideal for PD4T tasks due to a significant domain gap.
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Table 4. Spearman Rank Correlation results on the PD4T dataset.

Method Gait Finger tapping Hand movem. Leg agility Avg. S
USDL [42] 79.14 42.58 53.93 56.47 58.03
USDL + HPT [40] 81.93 46.38 54.15 58.54 60.25
USDL + PECoP 80.68 47.44 56.19 58.09 60.06
CoRe [49] 78.87 45.93 54.10 62.34 60.31
CoRe + HPT [40] 81.42 49.73 57.06 63.98 63.05
CoRe + PECoP 82.33 49.40 59.46 64.27 63.87

Table 5. Determining which SSL pretext task would be better to
use - comparing contrastive learning approach to transformation-
based ones. The experiment was performed on the JIGSAWS
dataset as an example.

Method S NP KT Avg. S
RSPNet [5] 83 86 84 84
VideoPace [43] 86 87 87 87
VSPP [8] 88 90 88 89

On the other hand, Dom-S also performs poorly on all JIG-
SAWS tasks, implying that self-supervised pretraining from
scratch on smaller datasets is sub-optimal. These observa-
tions highlight the need for adaptable pretraining strategies,
an aim achieved by our PECoP approach, which consis-
tently delivers superior performance in each of the evalu-

ated tasks.
3D-Adapters for ResNet – We evaluate the effective-

ness of our 3D-Adapter with another 3D-CNN, i.e. R3D-
18 [21] which is a common backbone network for action
recognition tasks. We first insert a 3D-Adapter into each
3D residual blocks of R3D-18 backbone (see Fig. 6) and
train this model through our continual pretraining frame-
work, PECoP. This model is then used as the backbone net-
work for CoRe to finetune on the target AQA task. We con-
duct this experiment on PD4T dataset and the results are
reported in Table 6. As shown, across all four tasks within
PD4T dataset, CoRe+PECoP outperforms CoRe alone (i.e.
CoRe with R3D-18 backbone in both cases).

6. Discussion
Learning efficiency of PECoP – PECoP allows the

Dom-G  Dom-S  HPT+BN PECoP

MTL-AQA 95.12 93.15 94.66 95.2

Gait 78.87 81.17 78.98 82.33

Needle Passing (NP) 86 80 82 90

Hand Movement (PD4T) 54.1 58.56 53.46 59.46

Leg Agility (PD4T) 62.34 61 63.3 64.27

Finger Tapping (PD4T) 45.93 48.29 43.19 49.4

Suturing (JIGSAWS) 84 79 79 88

Knot-Tying (JIGSAWS) 86 79 80 88
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Figure 5. Comparison of PECoP with Domain-Specific SSL Pretraining (Dom-S), Domain-General Pretraining (Dom-G), and BatchNorm
Tuning (HPT+BN) across eight different AQA tasks from MTL-AQA, PD4T, and JIGSAWS datasets. Each plot represents a unique AQA
task and shows the performance of the four approaches. Dom-G employs pretraining on a domain-general dataset like K400, while Dom-S
focuses on domain-specific self-supervised pretraining on target data. HPT+BN fine-tunes only the BatchNorm layers of a pretrained
model. PECoP consistently outperforms the other approaches across all tasks, indicating its robustness and adaptability for AQA tasks
with different domains and complexities.
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Table 6. Spearman Rank Correlation results on the PD4T dataset with R3D-18 backbone used in CoRe.

Method Gait Finger tapping Hand movem. Leg agility Avg. S
CoRe 76.16 35.35 50.53 49.96 53.0
CoRe + PECoP 79.11 39.71 55.37 52.56 56.69

Conv.

Conv.

Conv.

3D-Adapter

+

Identity

Figure 6. 3D residual block equipped with 3D-Adapter used in
the R3D-18 model. We empirically find that such a configuration
leads to a better performance.

model to leverage knowledge gained from a previous stage
and requires only a small subset of parameters to be specifi-
cally learned for the new task. This approach leads to fewer
epochs and less training data required for convergence on a
new task, resulting in a reduction of both computational re-
sources and pretraining time (refer to Table 2). With fewer
trainable parameters, PECoP has a limited capacity to mem-
orise the training data, and as a result, it is forced to learn
more generalised patterns, making it less prone to overfit-
ting.

Another benefit to PECoP’s efficiency is its ability to
avoid the issue of forgetting [24]. Unlike traditional con-
tinual pretraining methods [1, 40] that require updating
all model parameters, thereby risking forgetting previously
learned patterns, PECoP leverages pre-existing domain-
general knowledge without modifying this foundational
knowledge. Instead, it simply augments it with domain-
specific knowledge, thus effectively alleviating the issue of
forgetting.

Importance of PECoP for AQA – PECoP is crucial for
AQA tasks, offering unique benefits that are valuable in di-
verse applications, ranging from healthcare settings like PD
severity assessment to sports evaluations such as diving. Its
scalable design eliminates the need for multiple pretrained
models for different assessments, a key advantage where
quick and precise evaluations across a range of tasks are
essential. Furthermore, PECoP’s data efficiency makes it
well-suited for healthcare settings where annotated data is
often scarce. Its computational efficiency also facilitates
faster decisions and saves resources, which is vital in en-
vironments with limited computational capabilities.

Limitations and Future Work – One of the key weak-

nesses in a parameter-efficient continual pretraining ap-
proach like PECoP is the potential trade-off between effi-
ciency and complexity in the model. Although using a lim-
ited set of adaptable parameters minimises the risk of over-
fitting, it may unintentionally lead to underfitting, making
the model less effective at capturing intricate spatial and
temporal features. This limitation becomes especially no-
ticeable in AQA tasks, where accurately capturing subtle
details may require a model with greater capacity. Addition-
ally, PECoP has primarily been evaluated using 3D CNN
backbones for AQA tasks. The effectiveness of PECoP with
other architectures, e.g. transformers, as well as its applica-
bility to other vision tasks (e.g., action recognition and few
shot learning), requires further validation. We plan to ad-
dress these in our future work.

7. Conclusions

We proposed PECoP, a parameter efficient continual pre-
training workflow to better transfer the knowledge learned
from existing large-scale video datasets (e.g. K400) to
AQA target tasks by only updating a small number of addi-
tional bottleneck layers (called 3D-Adapters) through self-
supervised learning. Alongside the evaluation on bench-
mark datasets, we also presented results on a new dataset
of functional mobility actions performed by actual Parkin-
son’s patients for performance quality assessment, with po-
tential for longitudinal evaluation. Experiments on four
AQA datasets (8 different tasks) with three AQA baselines
(CoRe, USDL/MUSDL, and TSA) demonstrated the signif-
icant advantages of PECoP over the conventional contin-
ual pretraining approach with respect to both generalisation
ability, storage needs, and training cost.
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Kyle Lo, Iz Beltagy, Doug Downey, and Noah A Smith.
Don’t stop pretraining: adapt language models to domains
and tasks. arXiv preprint arXiv:2004.10964, 2020. 1, 2

[20] Xiaochuang Han and Jacob Eisenstein. Unsupervised do-
main adaptation of contextualized embeddings for sequence
labeling. arXiv preprint arXiv:1904.02817, 2019. 1

[21] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Learn-
ing spatio-temporal features with 3d residual networks for
action recognition. In Proceedings of the IEEE international
conference on computer vision workshops, pages 3154–
3160, 2017. 6, 7

[22] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified view
of parameter-efficient transfer learning. arXiv preprint
arXiv:2110.04366, 2021. 2, 3

[23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-

50



resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9729–9738, 2020. 2, 6

[24] Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng Ding,
Liying Cheng, Jia-Wei Low, Lidong Bing, and Luo Si. On
the effectiveness of adapter-based tuning for pretrained lan-
guage model adaptation. In ACL/IJCNLP (1), 2021. 2, 8

[25] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In International Conference on Machine
Learning, pages 2790–2799. PMLR, 2019. 2, 3

[26] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
LoRA: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 3, 4

[27] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman,
and Andrew Zisserman. The kinetics human action video
dataset. arXiv preprint arXiv:1705.06950, 2017. 1

[28] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
BioBERT: a pre-trained biomedical language representa-
tion model for biomedical text mining. Bioinformatics,
36(4):1234–1240, 2020. 1

[29] Qing Lei, Ji-Xiang Du, Hong-Bo Zhang, Shuang Ye, and
Duan-Sheng Chen. A survey of vision-based human action
evaluation methods. Sensors, 19(19):4129, 2019. 1

[30] Mingzhe Li, Hong-Bo Zhang, Qing Lei, Zongwen Fan,
Jinghua Liu, and Ji-Xiang Du. Pairwise contrastive learning
network for action quality assessment. In Computer Vision–
ECCV 2022: 17th European Conference, 2022, Proceedings,
Part IV, pages 457–473. Springer, 2022. 2

[31] Zhenqiang Li, Lin Gu, Weimin Wang, Ryosuke Nakamura,
and Yoichi Sato. Surgical skill assessment via video seman-
tic aggregation. In Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2022: 25th Interna-
tional Conference, Singapore, September 18–22, 2022, Pro-
ceedings, Part VII, pages 410–420. Springer, 2022. 6

[32] Daochang Liu, Qiyue Li, Tingting Jiang, Yizhou Wang,
Rulin Miao, Fei Shan, and Ziyu Li. Towards unified surgi-
cal skill assessment. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9522–9531, 2021. 1, 2, 6

[33] Mandy Lu, Qingyu Zhao, Kathleen L Poston, Edith V
Sullivan, Adolf Pfefferbaum, Marian Shahid, Maya Katz,
Leila Montaser Kouhsari, Kevin Schulman, Arnold Milstein,
et al. Quantifying parkinson’s disease motor severity under
uncertainty using mds-updrs videos. Medical Image Analy-
sis, 73:102179, 2021. 1

[34] C Morgan, A Masullo, H Isotalus, E Tonkin, M Mirmehdi,
F Jovan, T Whone, G Oikonomou, R McConville, G Tourte,
et al. Real-world sit-to-stand evaluation. In MOVEMENT
DISORDERS, volume 37, pages S195–S196. WILEY 111
RIVER ST, HOBOKEN 07030-5774, NJ USA, 2022. 1

[35] Paritosh Parmar, Amol Gharat, and Helge Rhodin. Do-
main knowledge-informed self-supervised representations

for workout form assessment. In Computer Vision–ECCV
2022: 17th European Conference, 2022, Proceedings, Part
XXXVIII, pages 105–123. Springer, 2022. 1

[36] Paritosh Parmar and Brendan Morris. Action quality assess-
ment across multiple actions. In 2019 IEEE winter con-
ference on applications of computer vision (WACV), pages
1468–1476. IEEE, 2019. 1

[37] Paritosh Parmar and Brendan Tran Morris. What and how
well you performed? a multitask learning approach to action
quality assessment. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
304–313, 2019. 2, 4, 5

[38] Paritosh Parmar, Jaiden Reddy, and Brendan Morris. Piano
skills assessment. In 2021 IEEE 23rd International Work-
shop on Multimedia Signal Processing (MMSP), pages 1–5.
IEEE, 2021. 1

[39] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Ka-
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