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Abstract

The Lip Reading Sentences-3 (LRS3) benchmark has pri-
marily been the focus of intense research in visual speech
recognition (VSR) during the last few years. As a result,
there is an increased risk of overfitting to its excessively
used test set, which is only one hour duration. To alleviate
this issue, we build a new VSR test set named WildVSR, by
closely following the LRS3 dataset creation processes. We
then evaluate and analyse the extent to which the current
VSR models generalize to the new test data. We evaluate a
broad range of publicly available VSR models and find sig-
nificant drops in performance on our test set, compared to
their corresponding LRS3 results. Our results suggest that
the increase in word error rates is caused by the models’
inability to generalize to slightly “harder” and in the wild
lip sequences than those found in the LRS3 test set. Our
new test benchmark is made public in order to enable future
research towards more robust VSR models.

1. Introduction

The primary objective of machine learning revolves
around training models that are capable of better generaliza-
tion. Typically, the quantification of generalization occurs
through evaluating a model’s performance on a held-out test
set. The question then arises: what does satisfactory perfor-
mance on this test set indicate? At the very least, it is desir-
able that the model exhibits similar performance on a new
test set derived from the same data creation process. In this
work, we study these questions for the problem of Visual
Speech Recognition (VSR).

Indeed, most perception problems are interpolative in
their nature [5] and satisfy the manifold hypothesis [10].
These tasks are intuitive for humans, and are usually solved
in the early layers of the visual cortex in a matter of mil-
liseconds (i.e., classification, recognition, etc.) [17,39]. For
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such problems, deep learning is a perfect fit with its abil-
ity to perform non-linear interpolation in a complex high-
dimensional manifold, enabling arbitrary complex behav-
ior [5,38], allowing for better generalization. However, lip-
reading experts allude to a high-level step-wise and iterative
reasoning to solve the task. This likely suggests that VSR
has some higher level of extrapolation as compared to the
common perception tasks. Thus, extensive model’s gen-
eralization study is highly needed for the field. However,
the one hour LRS3 test set is the main focus for evaluation
state-of-the-art models.

In this paper, we follow the LRS3 [1] creation process
to build a new set from the wild. As expected, we observe
that all VSR SoTA models fail to reach their reported Word
Error Rate (WER) from LRS3 on the new test set. Nev-
ertheless, the WER drops by an average of 30 points, our
experiments reveal that the comparative ranking of models
remains remarkably consistent when evaluated on our fresh
test sets. Specifically, the models that exhibit the highest
accuracy on the original test sets also demonstrate the high-
est accuracy on the new test sets. This suggests that the
WER drops are not a result of extensive hyper-parameters
tuning that fit the particular lip sequences found in the initial
test set. We study why this phenomenon arises, specifically,
with the following contributions:

* We present a new VSR test set, WildVSR, incorporat-
ing higher visual diversity, and spoken vocabulary.

* We benchmark existing models on the new test set, and
find a clear performance drop.

* Nevertheless, we show a diminishing return in perfor-
mance vs. compute, where self-supervised approaches
consume significantly higher training compute budget
for a moderate performance.

* We propose a new metric that accounts for a model’s
confidence, which improves the WER based ranking.

2. Related Work

State-of-the-art approaches: The work of [22] proposed a
curriculum learning approach, where shorter sequences are
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initially used for training followed by progressively adding
longer ones. Differently, VTP [27] proposed sub-words
learning scheme using frame-word boundaries to crop out
training samples for a better convergence. These training
strategies are computationally demanding and hard to scale
to larger datasets. The recent works of [2,23] proposed to
exploit the audio latent representations as part of a auxiliary
task, where the latent features from the encoder are opti-
mized to predict pretrained ASR representations, in addition
to decoding the target text. This extra supervision through
the ASR representations makes the optimization more sta-
ble and improves the convergence. Intuitively, if the trans-
former encoder is able to match the audio features statistics
in earlier layers, it is easier to adjust the attention weights
in the later layers for improved text decoding.

Another line of research leverages cross-modal pretrain-
ing on large datasets in a self-supervised way (SSL), fol-
lowed by finetuning on labeled video-text pairs [13, 21,
35, 36, 41]. The work of AV-HuBERT [35] fuses the
masked audio-visual representations to predict the cluster
assignments created from the audio features, thus, distilling
knowledge from the audio stream features to model visual
inputs. VATLM [41] extends this by attempting to unify the
modalities using a one tower design, where a single network
is optimized to construct a common representation space for
video, audio and text. This is achieved by setting a uni-
fied tokenizer for all modalities, and then performing the
masked prediction task over the unified tokens. The works
of [24, 34] designed cross-modal self-supervised learning
frameworks by adopting contrastive learning [14] to learn
discriminative visual representations that appear to improve
VSR performance and generalization. RAVen [13] designed
an asymmetric SSL framework to induce a one-way knowl-
edge distillation, where the audio networks predict both au-
dio and video representations, whereas the visual network
is restricted to predict the audio features only. This forces
the audio network to serve as a strong teacher, as it would
adjust to both modalities at the same time.

More recently, Auto-AVSR [20] proposed to obtain
text transcripts for unlabelled datasets using pre-trained
ASR models. These auto-labeled video-text pairs along
with manually labeled datasets were then utilized to train
conformer-based AVSR models in a fully-supervised man-
ner. Furthermore, SynthVSR [19] first learned a speech-
driven lip animation model on unlabeled audio-visual
datasets and generated a synthetic dataset, which was uti-
lized along with labeled and auto-labeled datasets, similar
to [20], for training the VSR model.

Datasets: Typically, most VSR approaches exploit the pop-
ular LRS3 [1] dataset for training the models. While the
use of LRW [7] and LRS2 [37] is lesser due to their restric-
tive licences, different strategies are commonly employed to
increase the training data. E.g., using unlabeled/machine-

labeled (AVSpeech [9], VoxCeleb2 [6]), generating syn-
thetic videos (3.6k hours in [19]), collecting large-scale
non-public datasets (YT31k [25], YT9Ok [31]), etc. How-
ever, for evaluating the VSR models, the aforementioned
works extensively utilize the publicly-available LRS3 test
set of one hour duration, thereby increasing the risk of mod-
els overfitting to LRS3 test set distribution. While the works
of [4,25,31] additionally evaluate on YTDEV18 [25] or
MEET360 [4], these test benchmarks are private. In this
work, we set out to gather a challenging evaluation bench-
mark for VSR and analyse the performance of available
models in-depth. Our proposed benchmark will be made
public for aiding future research in VSR to build more ro-
bust models that generalize better to videos in the wild.

3. Building the WildVSR Test Set

Utilizing YouTube as a data source has become a pop-
ular approach for constructing audio and/or visual speech
recognition datasets since this platform offers access to a
vast amount of audio-visual content. However, develop-
ing a quality VSR test set requires careful processing of
raw videos to create pairs of visual utterances, namely vi-
sual lip movement, and transcriptions. Given the compu-
tational cost associated with this procedure, it is crucial to
meticulously filter and extract relevant content from the vast
YouTube repository before processing it. Thus, the overall
approach should consist of two stages: 1) select relevant
YouTube videos, and 2) process the selected videos to con-
struct the aforementioned pairs. Regarding the first stage,
previous works have employed two different approaches.

First, in the work by Makino et al. [25], there is no men-
tion of their video selection method. They extract snippets
from YouTube videos where audio and transcripts match
and then process these snippets to extract face tracks that
align with the transcript. However, this approach does not
guarantee that the initially extracted snippets from YouTube
videos will display lip movements at all, as no strategy to
select those videos is used. As a result, all extracted snip-
pets have to be processed in search of face tracks while they
may not be present at all, e.g., a screen recorded tutorial
might not have a face track although the audio matches with
the corresponding transcript. This can impose a significant
computational burden. Still, they managed to build a 25
hours test set of 20k utterances called YTDEV18 but it is
worth highlighting that this test set is not publicly available.

A second approach [1], employed to create the publicly
available and thus widely used LRS3 dataset, involves re-
stricting the content sources to high-quality videos, focus-
ing on TED and TEDx talks. These talks have reliable
transcripts and visuals very likely correspond to what is
targeted, maximizing the input-output rate of a process-
ing pipeline intended to build a VSR dataset. However,
this approach drastically reduces the available content from
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YouTube and may limit the dataset’s ability to represent
“in the wild” performances, as TED talks are often filmed
in similar visual context, with underrepresented individuals
and a formal language register.

Our approach tends to blend both strategies by profiting
from the diversity of available data on YouTube as in [25]
while targeting quality content likely to match our require-
ments as in [1]. It also has the advantage of being scalable
and language-oriented, meaning that the aim is to be com-
putationally efficient and usable to target languages other
than English. Moreover, as done in [1], it frees from le-
gal issues encountered with former public datasets LRW [7]
and LRS2 [37], by targeting only free-to-use content.

3.1. Data Gathering

We leverage the power of YouTube search API that of-
fers multiple filters solutions: (i) Search using keywords,
(i) target most relevant videos in regard of a specified lan-
guage (here English) and (iii) target only videos published
under creative commons license.

We start from a list of 21 keywords, including interview
or discussion for example, in order to get the most relevant
content, expanding the content-oriented filtering explored
in [1]. Furthermore, we ensure that these videos do not
overlap with LRS3 by cross-verifying the YouTube ids. The
resulting videos are then processed as described next.

3.2. Data Processing

Each video is divided into multiple shots using a scene
change detection [12] method based on changes in three-
dimensional histograms and faces in each frame of the video
are detected using the YOLOv5n0.5-Face [28] for its un-
matched precision-computation cost ratio. The detected
faces are then matched and tracked across the frames to
obtain multiple face tracks. Afterwards, we utilize Sync-
Net [8] for filtering these tracks through active speaker de-
tection and obtain face track segments with active speakers
corresponding to the audio of the track. We employ the
ASR model Whisper [29] to detect language for discarding
non-English tracks and to obtain pseudo-transcripts. Us-
ing the word timestamps provided in Whisper results, tracks
are then segmented into clips with durations ranging from
0.5 to 16 seconds. These clips, along with their transcripts,
are further verified manually to ensure high-quality clip-text
pairs spanning a total of 4.8 hours in duration, and a total of
2854 utterances coming from 478 YouTube videos.

3.3. Test Set Quality Evaluation

Vocabulary size and visual content variability are two
aspects to consider when evaluating a VSR test set qual-
ity. As shown in Table I, our WildVSR test set achieves a
clear increase in vocabulary size, encompassing 71% of the
vocabulary from LRS3, along with an increase in number

Table 1. Comparison of statistics between LRS3 and our pro-
posed test sets. Our proposed test set has higher number of utter-
ances along with 1.5x unique speakers, 4.6 x word instances, 3 X
vocabulary coverage and 5.3 x the duration.

Testset | #Spk. | #Utt. | Wordinst. | Vocab | Hours
LRS3 412 1,321 9,890 1,997 0.9
WildVSR 618 2,854 45,182 6,040 4.8
100 Gender 100 Race 100 Native/Non-native
= |RS3 W LRS3 WildVSR
WildVSR WildVSR
80 80 80
60 60 60
i 40 40 40
20 20 20
0 0 "
Woman Man <@ & & Native Non-native
&« & &

Figure 1. Comparison between LRS3 and proposed test sets in
terms of gender and race attributes. Compared to the LRS3 test
set, we observe a marginal improvement for race attribute (in the
center) and relatively better diversity in terms of gender (on the
left) for our test set.

of unique speakers, utterances, word instances, and total
duration. We use VGG-Face [32] to identify the different
speakers present across the test set. Afterward, we man-
ually review and verify all speakers, resulting in 618 dis-
tinct identities distributed across 478 YouTube videos. Fur-
thermore, we employ Deepface framework [33] to obtain
coarse-level demographic attribute metrics, namely gen-
der and race. These attributes are then verified manually.
Additionally, we rely on subjective analysis to determine
whether a speaker’s accent is native or not based solely on
fluency. Compared to LRS3 test set Deepface predictions
(not verified manually) as shown in Figure 1, our proposed
test set demonstrates a slightly more balanced distribution
across all attributes, indicating improved diversity. How-
ever, it is important to note that biases inherent to the online
platform may be present in the dataset.

4. Experiments

Here, we evaluate a broad range of VSR models span-
ning five years of progress in a highly active area of re-
search. The models include the fully-supervised models:
Ma et al. [23], VTP [27], Auto-AVSR [20] and a set of
self-supervised models fine-tuned on LRS3 with the dif-
ferent pretraining regimes such as RAVen [13] and AV-
HuBERT [35]. The VSR models generally comprise a
ResNet-3D frontend followed by a transformer encoder-
decoder. The frontend encodes the video lip sequence into
a temporal sequence of features, which is fed into the en-
coder. The decoder then autoregressively decodes the text
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Table 2. Performance comparison on our proposed test set in low-resource and high-resource settings. The performance is reported
in terms of WER and proposed Rank.,.- metrics. ‘Base’ and ‘Large’ denote the size of the self-supervised video encoder employed.
Performance of supervised approaches are also reported. The LRS3 test set performance is also shown for reference. We also report the
performance of ASR (audio only) and AVSR (audio-visual) models on both LRS3 and our WildVSR test sets, in addition to the compute
budget required (in ExaFLOPs) for training the respective AVSR and VSR models.

Method Unlabeled Labeled Decoding Compute WER ‘ Rankyer
AV data data (ExaFLOPs) LRS3  WildVSR | LRS3  WildVSR
Wav2vec2.0 [3] - - CTC - 6.1 17.7 6.9 18.0
ASRModels w1 i cher [29] - - CE - 1.1 42 1.3 48
Base AV-HuBERT [35] 1759h 30h CE 39.7 4.1 24.4 43 26.1
Base AV-HuBERT [35] 175%h 433h CE 39.9 1.8 137 2.1 14.2
AVSR Models . AV-HUBERT [35] 1759h 30h CE 106.7 34 228 36 243
Large AV-HuBERT [35] 175%h 433h CE 107.3 15 12.9 17 13.2
Low-resource setting
AV-HuBERT [35] 433h 30h CE 39.7 51.8 79.4 67.0 83.3
Self-Supervised  RAYen [13] 433h 30h CTC+CE 37 48.1 754 64.2 80.4
¢ ];‘pe Vised  AV-HuBERT [35] 175%h 30h CE 39.7 46.1 732 62.2 715
ase RAVen [13] 175%h 30h CTC+CE 14.9 402 66.9 54.1 72.1
AV-HuBERT [35] 433h 30h CE 106.7 44.8 757 59.5 81.8
Self-Supervised  AV-HUBERT [35] 175%h 30h CE 106.7 325 61.9 41.1 68.0
L ’; AV-HuBERT [35] w/ self-training 175%h 30h CE 106.7 28.6 524 37.7 58.6
arge RAVen [13] 175%h 30h CTC+CE 96.8 325 577 416 63.4
RAVen [13] w/ self-training 1759h 30h CTC+CE 1317 238 48.4 315 52.0
High-resource setting

Ma et al. [23] - 1459h  CTC+CE 2.1 323 58.4 424 63.6
Prajwal et al. [27] - 698h CE t 40.6 75.6 573 86.9
Supervised Prajwal et al. [27] - 2676h CE t 30.7 68.7 437 82.1
P Auto-AVSR [20] - 661h CTC+CE 6.7 32.7 623 425 67.1
Auto-AVSR [20] - 1759h  CTC+CE 17.8 25.1 493 31.7 532
Auto-AVSR [20] - 3448h  CTC+CE 34.9 19.1 38.6 248 418
AV-HuBERT [35] 433h 433h CE 39.9 44.0 716 58.1 76.2
Self-Supervised  RAVen [13] 433h 433h CTC+CE 5.0 39.1 69.9 528 776
B;’se AV-HuBERT [35] 175%h 433h CE 39.9 34.8 58.1 50.5 63.9
RAVen [13] 1759h 433h CTC+CE 16.3 33.1 60.0 426 65.7
AV-HuBERT [35] 433h 433h CE 107.3 41.6 69.4 56.1 73.5
Self-Supervised  AV-HUBERT [35] 175%h 433h CE 107.3 28.6 517 37.4 55.9
La‘; X AV-HuBERT [35] w/ self-training 175%h 433h CE 107.3 269 487 34.9 53.0
g RAVen [13] 175%h 433h CTC+CE 105.3 27.8 522 36.6 553
RAVen [13] w/ self-training 1759h 433h CTC+CE 131.7 23.1 46.7 30.8 498

tokens by cross-attending to the encoder output features.
Among the above models, Ma et al. and Auto-AVSR re-
place the standard transformer layers with conformer layers,
where convolutions are additionally interleaved with self-
attention layers. We rely on the publicly available source
code and their pre-trained weights for evaluation. Overall,
the average WER ranges between 19 and 40 on the LRS3
test set. Here, Table 2 shows the main results on both LRS3
and our proposed test sets. Next, we describe the main
trends that arise from the experiments.

Significant drops in WER: All models see a clear drop
in WER from the LRS3 to the WildVSR test sets. For
the best model on LRS3 (i.e., Auto-AVSR: 19.1 WER), it
loses nearly 20 points to achieve 38.6 WER on WildVSR.
Also, the self-supervised models pre-trained on 175%h of
VoxCeleb2-en + LRS3 are slightly more robust to pre-
training on the 433h of LRS3 only (average 21 vs. 32
WER drops). In fact, the WER on the WildVSR test
set can be linearly approximated given the WER on the

LRS3 test set. Let’s denote a pair of scores for all
models (wert®S3 werWdVSR) " then calculate the respec-
tive means as: URrs3 % ZweriLR“ and pwilgvsrR =
a7 > werM4VSR “where M denotes the number of all the

models considered. Each score is normalized as:

b = pwiavsr — (M - fLrs3), (D

where m = /. Here, o and  are computed as

M
o= Z(Awer%RS3 - Awer)V4VSRy (2)
i=1
M
v = Z(AweTZ-LRS3)2, 3)
i=1

where Awerf = |werf — p*| and k € {LRS3, WildVSR}.
Using the WER pairs from Table 2, the new WER of a
model is approximately given by the following formula:

werVIaVSR 131 . wert®S3 4 14.05. )
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Since m>1, it indicates that models with lower WER on
LRS3 experience a comparatively smaller decline when
tested on WildVSR. This suggests that better performance
on LRS3 yields improved models robustness. We hypothe-
size that not much overfitting is happening in LRS3, as we
do not observe any WER diminishing returns. Hence, there
is minimal change in models’ ordering across both test sets.
Training compute vs. performance: To estimate the train-
ing compute in FLOPs for each model, we utilize the
methodologies proposed by [15]. This estimation considers
various factors including: model size, batch size, training
data, and the specifics of the training procedure. As illus-
trated in Figure 2, supervised models, notably Auto-AVSR,
demonstrate an impressive balance between performance
and computational efficiency. On the other hand, self-
supervised methods (AV-HuBERT and RAVen) demand a
significantly higher compute budget (= 3.6x the compute
of Auto-AVSR), while achieving only a moderate perfor-
mance in terms of WER. Further details on the compute
calculations are provided in Section C of supplementary.
Mode collapse: Whilst Wav2vec2.0 fails in matching the
exact target speech, the predictions are closer and repre-
sent reasonable errors, like homophones (e.g., PARATON
vs. PERITON, LIKE POOR vs. LUDPORE). This sug-
gests that Wav2vec2.0 robustly detect the input patterns,
but might miss on prediction due to entangled representa-
tions. Clearly however, the failure of the state-of-the-art
VSR model, Auto-AVSR, reveals a different nature of er-
ror compared to Wav2vec2.0. In the case of Auto-AVSR
failure, the predictions deviate significantly from the tar-
get speech and often appear to be random. For instance, it
produces degenerated predictions, e.g., SPORTING BUSI-
NESS vs. THERE IS BOARDING BUSES.

4.1. Model Consistency

The word error rate (WER) [16] is a standard metric used
for comparing different VSR models. However, given that
the test set videos have varying target lengths, weighted av-
erage WER (1) across the test set might not be sufficient
for comparing different approaches, e.g., a model might fit
precisely to some samples while having poor predictions
for others. Furthermore, we observe that the WER distri-
bution on the LRS3 test set is non-symmetric with more
mass around 0-20, while the weighted standard deviation
(0wer) 1s in the order of the mean. Thus, we combine both
mean and standard deviation in a unified rank metric, as
twer(1 + Ower), to compare the models. Such a metric
correctly penalizes models that achieve lower fi., at the
cost of higher o,,... Let us denote y and 4 as the set of
ground-truth labels and predictions respectively, where N
is the number of samples in the test set. The WER is cal-
culated between each pair wer; = (y;,¥;), then the set of
all scores is denoted as wery. To account for the variable

801 A
[ ] A
704 [ ] t A
L]
* A
60 4 .
A [ ]
x A L\
i s0 *
s ° . A o ®
A A
A
40 .
° * A AV-HUBERT (LRS3)
« A A AV-HUBERT (WildVSR) R
304 ® RAVen (LRS3)
. ® RAVen (WildVSR) LS
*  Auto-VSR (LRS3) o ®
204 * *  Auto-VSR (WildVSR)

0 20 40 60 80 100 120
Compute in ExaFLOPS
Figure 2. Training compute (in exaFLOPs) vs. performance (in
WER). The best performing models of AV-HuBERT and RAVen
that employ pretraining + finetuning achieve only a moderate per-
formance while requiring ~3.6x training compute, compared to
Auto-AVSR that is trained in a fully-supervised manner.

length targets, the average WER is given by:

ZN . N

=1 Vil

pwer = S = Y paw, (5)
Dic1 Qi i=1

with «; denoting the number of words

(623

where p; = =%

i=1 "1t
in y;. We define the variance as follows:

N

Ower = Z(wz - Nwer)2pi~ (6)

=1

We observe that the WER distribution on the LRS3 test set
is non-symmetric, with more mass around 0, and the stan-
dard deviation is in the order of the mean, thus, we propose
the following metric to rank the models, based on their stan-
dard deviation and mean WER:

Rankyer = /J/wer(l + Uwer)~ @)

The goal is to have an increasing function in both pi,,., and
Ower, to penalize models that might have lower mean WER
but higher standard deviation.

Ranking models: As shown in Table 2, models have
lower weighted standard deviation on our WildVSR test set
(ower = 0.10), hence, closer Rank,e, compared to wer.
Surprisingly however, on LRS3, the o, is in the order of
the mean WER for the models (o ~ 0.30). This sug-
gests that there is a significant amount of variations and in-
consistencies in the performance of the models, where the
predictions match exactly certain samples from the LRS3
test set, which is not the case for the WildVSR test set.
This highlights that VSR models can be sensitive to various
factors, such as diverse lip sequences with varying acous-
tic conditions, accents, vocabulary, or speaking styles. The
high 0., suggests that approaches in Table 2 are not robust
enough to handle such variability, and their performance
fluctuate significantly across samples.
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Raven Auto-AVSR

Figure 3. Visualization of the dominant spatial modes of the
Tucker decomposition over time of the encoder representations
on four sample videos each from LRS3 (in blue) and WildVSR (in
red) test sets. The representations are obtained from the best vari-
ants of RAVen (on the left) and Auto-AVSR (on the right) models.
The detected patterns on LRS3 are salient, whereas fewer modes
are detected on WildVSR.

4.2. Analysis of Representation Variability

With a VSR model denoted as fy, we sample a batch
of video sequences Xprsz and Xwigysr from LRS3 and
our test sets, respectively. We employ fs to map each
batch to the representations space z rs3 and zwigysr both
€ RBXTXD_ where B is batch size, T is temporal di-
mension and D denotes spatial features dimension. To in-
vestigate the variability of representations across the two
test sets, we employ a combination of power iteration and
Tucker decomposition. First, we calculate the power itera-
tion for each representation tensor. The power iteration [26]
process allows us to identify the dominant eigenvector in
each tensor, which represents the principal direction of vari-
ability. The power iteration is performed iteratively until
convergence, and then we normalize each representation
tensor to be in the same scale. Next, we employ the Tucker
decomposition [40] to extract the underlying factors of each
normalized representation tensor. The Tucker decomposi-
tion is a tensor factorization technique that decomposes a
tensor into a set of core tensors and factor matrices. For
zirs3 and zwiavsr, the Tucker decomposition is performed
with a rank of (r,r,7), resulting in

2 = Cp x1 FY g F® xy B, (8)

where k£ € {LRS3, WildVSR}. The factor matrices ob-
tained from Tucker decomposition represent the latent fac-

tors of variability in the representation tensors. Let FIEQS3

and F\ifi)ldVSR denote the factor matrices corresponding to
zLrs3 and zwigvsr, respectively. To project each represen-
tation tensor onto the factor matrices, we perform a multi-
mode dot product. This operation aligns the representa-
tion tensor with the corresponding factor matrices, cap-
turing the influence of each factor on the tensor. With
k € {LRS3, WildVSR}, the projection is done as follows:

proj, = zi X1 F,EDT X9 F,EQ)T X3 F,SB)T. 9

Raven AV-HUBERT
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Figure 4. Visualization of Tucker decomposition’s spatial mode
over time for RAVen (on the left) and AV-HuBERT (on the right)
encoder representations on sample videos from LRS3, before (in
red) and after (in blue) finetuning. We see that RAVen encoder be-
fore finetuning fails to capture salient modes indicating that VSR
representations are better learned only during its finetuning stage.

Finally, we visualize the projected tensors projy;avsg and
proj,.; to examine the variability of representations across
the two test sets. This visualization provides insights into
the differences in the learned representations and helps as-
sess the effectiveness of our model. The entire procedure
enables a comprehensive analysis of the variability in rep-
resentations across different test sets, facilitating the evalu-
ation and interpretation of model performance.

Evaluation: We select a batch of 128 examples from both
LRS3 and our WildVSR test sets, and use the best variants
of RAVen and Auto-AVSR for the analysis. Figure 3 shows
the projected tensors over time on both test sets. Observing
the visualizations, it becomes evident that both models ex-
hibit a considerably stronger response to the sequences pre-
sented in the LRS3 test set. These models successfully cap-
ture the underlying modes and patterns inherent in the input
signals, enabling accurate detection and subsequent gener-
ation of precise transcriptions. The rich and diverse set of
features recognized by the models within the LRS3 test set
contributes to their superior predictive capabilities. Con-
versely, when examining the representations derived from
our own test set, a notable difference emerges. The features
extracted from our test set display a distinct lack of vari-
ability, indicating a reduced number of patterns being rec-
ognized by the models. Consequently, the predictive perfor-
mance of the models on our test set is compromised, leading
to sub-optimal transcription outcomes.

Which SSL is better? We notice fundamental differences
between RAVen and AV-HuBERT self-supervised proce-
dures, where the former learns two separate encoders for
video and audio modalities and optimizes to match the la-
tents. Differently, the latter fuses them in a single en-
coder and learns to predict pre-assigned cluster member-
ships. Hence, we use the same Tucker decomposition to
compare their representations before and after finetuning.
As shown in Figure 4, SSL. RAVen encodes much less in-
formation explaining the need for requiring 75 epochs at for
finetuning stage. In contrast, AV-HuBERT detects modes
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Table 3. Performance comparison on multiple folds of our test
set. The folds are the intersection of where all models are below 30
WER for fop-k, and more than 50 WER for bottom-k. We observe
that the models match their LRS3 performance on rop-k examples.

Model Video folds

Top-k Bottom-k All
Auto-AVSR [20] 18.6 71.4 38.6
AV-HuBERT [35] w/ self-training 24.8 713 48.7
RAVen [13] w/ self-training 23.5 75.0 46.7

—e— AutoVSR-LRS3
—e— RAVEN-LRS3
—e— AVHubert-LRS3
~&- AutoVSR-Ours
-4~ RAVEN-Ours
-4~ AVHubert-Ours

>y
Iy

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Figure 5. Performance (WER) comparison across five different
data folds. Fold 1 is an overlap subset where all models obtain a
WER score higher than 50. We keep progressively adding data
from the remaining test set to create Folds 2 to 5, where Fold 5
contains all the test set videos.

even without seeing any labelled data, suggesting the rea-
son behind the small finetuning budget. We hypothesize
that coarse-grained clustering as done in AV-HuBERT bet-
ter suits the VSR task, as it pushes the encoder to learn
phonemes that can be lightly mapped to word labels.

5. Potential Causes for WER drop

Following [30], the error difference between the respec-
tive test sets can be decomposed into three parts:

Lwiavsr — Lirss = (Lwitavsr — Lirss) + (Lwitavsr — Lirsz) + (Lwitavsr — Lirs3)
Generalization gap

(10)
The Adaptivity gap quantifies the extent to which adjusting
(adapting) a model to fit the specific test set L;,s3 leads to an
underestimation of the test error. The Distribution gap mea-
sures how our new data distribution and generation process
affects the model performance. The Generalization gap is
influenced by the inherent random sampling error. These
components are hard to track, and distinguish in practice.
Linear proportional gains: Eq. 4 suggests that no dimin-
ishing returns is apparent. This strongly indicates that the
reduction in Word Error Rate (WER) could primarily be at-
tributed to the Distribution Gap. Despite our best efforts to
emulate the original LRS3 dataset creation procedure, the
distribution gap remains the main explanation for the ob-
served decreases in WER. Upon examination of our data

Adaptivity gap Distribution Gap

Table 4. Performance comparison on our proposed test set with
varying the attributes. We report the best variant per model.

Method Accent Gender
Native Non-Native Male Female
Auto-AVSR [20] 35.1 46.9 38.3 374
AV-HuBERT [35] 47.5 553 49.2 47.7
RAVen [13] 45.2 55.0 47.5 453

60

40

207 —e— AutoAVSR-LRS3
—e— RAVen-LRS3
—e— AVHUBERT-LRS3
—e— Wav2Vec2.0-LRS3
10 | ~&- AUtOAVSR-WildVSR
—&- RAVeNn-WildVSR

&~ AVHUBERT-WildVSR \1\.——’_.

~&- Wav2Vec2.0-WildVsR

[0,2) 2,4 [4,6) >=6
Test video duration (s)

Figure 6. Variation of WER as duration of video clips is varied.
VSR models decode better with longer context (video duration).

Table 3, we observe that a subset of our test set exhibits
similar complexity levels to those found in LRS3, thus mod-
els achieve their reported LRS3 WER scores. We postulate
that our test set includes a larger number of examples from
difficult LRS3 modes, in addition to new modes not found
in LRS3. While current VSR models showcase impressive
WER scores on the original LRS3 test set, they still en-
counter difficulties in effectively generalizing from ‘easy’
lip sequences to more challenging ones.

Hard samples: As shown in Figure 5, we selected a data
subset where all models obtain a WER score higher than 50.
The subsets contain 110/639 samples for LRS3/WildVSR
respectively. On both LRS3 and WildVSR, models obtain
a WER > 75 for these challenging examples. We checked
these samples manually, and noticed a high variability in
head poses along with shorter videos. There might be other
confounding variables from the accents/vocabulary that are
harder to assess. Figure 6 shows the performance compari-
son on different folds obtained by partitioning the test sets
based on the lip sequence length. We observe that shorter
videos (less than 2 seconds, i.e., 50 frames) present a bot-
tleneck, which results in performance degradation of the
approaches from their corresponding average WER on the
whole test sets. This is likely due to the lack of rich con-
textual features in shorter video sequences, which leads to
sub-optimal temporal modeling in the video encoder. Fur-
thermore, we kept progressively adding samples from the
remaining test set, and observed a faster decay on LRS3.
We hypothesise that the higher amount of ‘hard samples’
(23%) in WildVSR (vs. 08% for LRS3) is responsible for
this behavior as the final WER is averaged across samples.
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Speaker characteristics: As demonstrated in Table 4, the
models show an average decrease of 8 points when evalu-
ated on non-native speakers compared to native speakers.
Additionally, there is a relatively similar performance be-
tween male and female speakers across the models. Also
see Table. A.3 for the scores on more attributes.

Head poses: Here, we create two subsets S7 and So with
1010 and 639 videos, respectively. S; contains the best-
performing videos across different models, while Sz con-
tains videos that are hard to decode for all the models. Next,
we detect sequences with frontal and extreme poses by first
recovering the 3D head pose using [11] and then regressing
the 3D-model parameters that best fit to each image frame
using a parametric 3D model [18] learned from 3D scans
of human faces. Frontal and extreme poses are considered
based on predefined face angles. We perform this analysis
and find that extreme poses represent 31% and 52% on S;
and S,, respectively. This suggests that extreme head poses
adversely affect the model performance for VSR task.

Vocabulary: As demonstrated in Table 3, state-of-the-art
(SoTA) models reproduce their reported scores on a subset
of our test set (specifically, fop-k, comprising 1010 videos).
We conducted an in-depth analysis of the vocabulary uti-
lized in this fold and found that it comprises a total of 2315
words. Interestingly, this word set exhibits a 75% similarity
to the LRS3 vocabulary, which consists of 1969 words. This
observation may suggest that VSR models tend to perform
optimally when operating within a constrained vocabulary
set, analogous to the one present in the LRS3 dataset. This
underlines the significant influence that vocabulary consis-
tency and word choice have on the performance of VSR
models. The restricted vocabulary environment may sim-
plify the model’s task, leading to a higher performance.
Understanding these limitations can provide crucial insights
for future development of VSR models.

Unified model architectures: Despite the many ap-
proaches in VSR literature, they mostly share the same
architecture while differing in the training procedures and
objectives. The inductive bias-free nature of transformers
helps preventing the explicit definition of overfitting. It
should be noted that while these methods do eliminate the
most salient aspects of overfitting, they do not eliminate all
possibilities. There exists a scenario where any degree of
test set adaptivity results in a consistent decrease in accu-
racy across all models. In such a case, the diminishing re-
turns phenomenon would not be observed since subsequent
models could still exhibit improved performance. Detecting
and studying this specific manifestation of adaptive over-
fitting would likely necessitate the use of a novel test set
that truly adheres to independent and identically distributed
properties, rather than being derived from a distinct data
collection effort. Identifying an appropriate dataset for con-
ducting such an experiment remains extremely challenging.

6. Discussion

Recommendations: As observed earlier in compute-
performance trade-off section, although self-supervised
learning followed by fine-tuning paradigm might seem ex-
citing, it emerges as a less optimal approach for VSR. The
inherent complexity of video data intensifies the computa-
tional demands, making it an expensive avenue to explore.
Moreover, as these learned encoders are utilized for a sin-
gular downstream task of VSR, the potential benefits of
SSL are somewhat neutralized. Additionally, the fintetun-
ing phase can consume a budget comparable to that of di-
rect supervised training, as in RAVen [13]. Figure 2 shows
the effectiveness of fully-supervised learning when supple-
mented with state-of-the-art ASR models, such as Whis-
per [29], serving as automatic labelers. This methodology,
as proved by Auto-AVSR [20], provides a good balance be-
tween performance and computational efficiency, while still
achieving superior performance.

Ethical considerations: Due to the data collection pro-
cess focusing on YouTube, biases inherent to the platform
may be present in the test set. Also, while measures are
taken to ensure diversity in content, the dataset might still
be skewed towards certain types of content due to the fil-
tering process. Furthermore, we have taken specific steps
to ensure that WildVSR respects individual privacy. Firstly,
since most VSR approaches utilize only the 96 x 96 cropped
region around the mouth as input, we make available the
cropped sequence to reduce the potential for individual
identification, emphasizing only the pertinent region for
VSR model’s input. Also, we provide a mechanism for indi-
viduals who recognize themselves in the test set to opt-out.
Should someone wish to have their data removed, they can
contact us and we will promptly exclude their content.
Conclusion: In this work, we have highlighted the lack of
generalization within the field of Visual Speech Recogni-
tion (VSR) due to an excessive focus on the Lip Reading
Sentences-3 (LRS3) test set. To mitigate this, we have pro-
posed a new VSR test set, named WildVSR, incorporating a
higher visual diversity and spoken vocabulary. Indeed, the
benchmarking of a wide range of publicly available VSR
models on this new test set revealed significant drops in per-
formance compared to the LRS3 test set. This outcome un-
derlines the models’ difficulties in generalizing to “harder”
lip sequences present in our test set. Interestingly, the com-
parative ranking of models remained consistent across the
original and new test sets, indicating that these performance
drops are not merely a result of over-tuning for specific lip
sequences on LRS3 test set. We also introduced a novel
metric that combines the mean and standard deviation of
Word Error Rates (WER), better capturing a model’s con-
sistency across various test samples. It is our hope that this
will stimulate the development of more robust VSR models,
furthering advancements in this challenging field.
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