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Abstract

Controllable image captioning models generate human-
like image descriptions, enabling some kind of control over
the generated captions. This paper focuses on control-
ling the caption length, i.e. a short and concise descrip-
tion or a long and detailed one. Since existing image cap-
tioning datasets contain mostly short captions, generating
long captions is challenging. To address the shortage of
long training examples, we propose to enrich the dataset
with varying-length self-generated captions. These, how-
ever, might be of varying quality and are thus unsuitable for
conventional training. We introduce a novel training strat-
egy that selects the data points to be used at different times
during the training. Our method dramatically improves the
length-control abilities, while exhibiting SoTA performance
in terms of caption quality. Our approach is general and is
shown to be applicable also to paragraph generation. Our
code is publicly available 1.

1. Introduction

Image Captioning refers to the task of generating human-
like image descriptions [58]. It relies on supervision, uti-
lizing large datasets of image and text pairs [10, 25, 68].
Controllable Image Captioning (CIC) aims at generating a
caption while satisfying a constraint or a user request. The
constraint may relate to the content [12, 74], the style [42],
the structure [7], or the length [14] of the caption.

Our work focuses on controlling the description length
and consequently, the amount of detail in it. This may suit
different people/applications at different scenarios. For in-
stance, visually-impaired observers may prefer a short and
concise description when in a hurry and a long and detailed
one at other times. Other applications, such as text-based
image retrieval, may also benefit from this flexibility.

Captioning training datasets have length limitations, as
human-annotated captions tend to be short, concise and
omit some visual information [18]. For example, in MS-

1https://github.com/eladhi/CLID

COCO [10] 95% of the training captions contain less than
15 words. This limits the length of the generated captions,
making the generation of long captions a challenge. The
straightforward solution of collecting image descriptions of
varying lengths is infeasible. This paper shows how to ad-
dress this shortage of data.

We propose a novel approach for generating varying-
length image descriptions with inadequate training data.
Our approach is based on solving two sub-problems. At
first, we automatically generate long ”synthetic” captions,
termed self-generated captions. While this procedure ad-
dresses the lack of long training captions, the generated cap-
tions might be of low quality (domain gap). This leads to
the second challenge of how to use this low-quality dataset
during training. We present a novel training method that
makes use of the trusted dataset of short captions jointly
with the large varying-quality caption dataset, in an in-
formed manner.

To address the first challenge, we propose a method that
parses scene graphs and generates varying-length sentences.
Scene graphs contain the essential descriptive components:
objects, objects’ attributes, relations, and activities [18, 29].
Image saliency [27] is utilized for generating reasonable
sentences. We end up with a large dataset of self-generated
varying-length & varying-quality descriptions.

The second challenge is how to use the extended dataset,
which is composed of the trusted short captions and the self-
generated captions, during training. Since this dataset might
contain inaccuracies (that exist in the scene graphs), repe-
titions, and different linguistic styles, we cannot consider
both caption types similarly. We introduce a training pro-
cedure in which the use of the self-generated data is guided
by the (small and short-caption) trusted dataset. In partic-
ular, our method progressively filters out low-quality cap-
tions during training. It assures that even though the very
long captions might be eliminated early on and the remain-
ing high-quality captions are mostly short, the model re-
members enough of the long captions, to be able to gener-
ate ones. For this strategy to work, we should be able to
measure caption quality, a topic that is addressed as well.

We demonstrate the benefits of our approach on the MS-
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LaBERT
[14]

Level 1 a young man plays with a videorest.

Level 3 a young man sitting in a living room with a wii remote and a white rug on his head.

Level 6
a boy sitting in a chair next to a table with a towel on it and a surfboard on the floor next
to a book shelf with a book case on the table and a surfboard on top of the table and a
plant on the wall.

CLID
(ours)

Level 1 a young boy is playing a video game.

Level 3 a boy is playing a video game in a living room with a plantted plant in the background.

Level 6
a boy in a black jacket with dark brown hair is holding a wii remote in a room area with
a stack of shelves and a chair with a blue table and a bookcase next to a bed and a cord
on to the side of the bed.

(a) Length (b) Generated Caption

Figure 1. Length-controlled image captioning. People describe a given image briefly or in length. Most previous works generate short
captions, which are prevalent in existing datasets. We propose a method that generates captions of sought-after lengths. Our method
generates long captions, which hardly exist in training datasets, and achieves comparable results to SoTA methods for short captions.

COCO Caption dataset [10], in which the mean caption
length is 10.47 words. For long captions, which barely ap-
pear in the dataset, our work highly improves the control
precision (by up to 27%), while maintaining the caption
quality, as demonstrated in Figure 1. It even enables gen-
erating captions of lengths that do not appear in the dataset
at all. The short captions contain only the essence of the
image, whereas the long captions reveal many more details.

Our method is general and may be applied also to the
task of descriptive paragraph generation from images [33],
which is a related, yet distinct task. While both tasks gener-
ate a coherent natural-language image description, the lin-
guistic structure and the amount of details differ. Caption-
ing refers to a single descriptive sentence, whereas para-
graphs consist of multiple sequential sentences. The ex-
isting paragraph dataset [33] is small and contains mostly
long descriptions. In Section 4 we show that despite the
very small dataset, our method manages to generate length-
control results for this task as well.

Hence, our contributions are as follows:
1. We introduce a novel approach for length-controllable

image captioning. It manages to generate long, even
out-of-distribution, descriptions.

2. Since our approach is general and unified, it can be
used for paragraph generation. This is the first work to
introduce length-control abilities for this task.

3. We present a method for generating varying-length
diverse-quality captions from scene graphs, without
the need of a ground-truth dataset.

4. We propose a training procedure that learns both from
high-quality data and from low-quality data, such that
the essence of the low-quality data is not forgotten.

2. Related work
Image captioning. Image captioning is a core task in scene
understanding. The common approach in recent years com-
bines a visual encoding model, which extracts visual fea-
tures, with a language model that learns to generate text

from both the visual features and the input text. The vi-
sual encoding model extracts global image features [17,58],
patch features [62, 65] or region features [3, 50]. Other
image representation structures contain the visual features
jointly with additional relevant information, such as scene
graphs [46, 67]. The language models also vary, where
RNNs [39, 58] and transformers [13, 24, 71] are common
choices.
Controllable image captioning (CIC). This task takes cap-
tioning to the next level by adding constraints, which are
usually user-defined. Such constraints may relate to cap-
tion linguistic style [1, 9], content [8, 12, 32, 74] or struc-
ture [7, 15]. Our work focuses on length control, also ad-
dressed in [14] and partially in [31]. In [14] an interesting
architecture, LaBERT, is proposed for the problem. This is
a transformer-based captioning model. Its input consists of
visual and word embeddings, where the word embedding
also represents the caption length. The length is measured
in tokens (sub-words), which appear in the BERT vocab-
ulary [16]. This model manages to control the length of
captions up to 30 tokens well, with a precision rate of above
90%. Such captions are 99.8% of the training dataset. For
longer lengths, which are the remaining 0.2%, the precision
drops by 10-43%. The work of [31] aims to control both the
image caption length and imageability (i.e., the clarity of the
mental image). In the context of length, they use [14]. Our
method addresses the limitation of long caption generation.
Descriptive image paragraphs. Paragraph generation
aims at describing an image by a sequence of sentences.
Common works use hierarchical RNNs to guide the sen-
tence topics (high level) and word sequence (low level) [6,
33, 41, 59, 69]. Other solutions further guide the training of
RNN models with reinforcement learning [40], scene graph
hierarchy information [66] and adversarial training [36].
Despite the resemblance to single-sentence captioning, the
tasks are considered distinct and thus the training datasets
differ. Length-controllable paragraph generation has not yet
been addressed.
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Scene graphs. A scene graph represents the content of an
image as a graph [29]. It is defined as a tuple G = (O,E),
where the set of vertices O represents the image objects
and the set of edges E represents relationships between
objects. Each object contains the object type and rele-
vant attributes; each edge contains the relationship type.
Scene graphs are used in numerous applications in com-
puter vision, such as image retrieval [29, 49, 60], image
captioning [19, 21, 67], VQA [20, 52] and image synthe-
sis [28, 43, 54]. A widespread dataset of scene graphs is
Visual Genome (VG) [34], which contains scene graphs of
108K images. Furthermore, there are various algorithms for
scene graph generation (SGG), such as [22, 53, 64, 70].
Small high-quality datasets and large low-quality
datasets. Having access to a small trusted dataset, as well
as to a large untrusted dataset, is a typical scenario in clas-
sification with label noise [23, 35, 57, 63]. Another domain
is neural machine translation (NMT), in which the trusted
dataset contains expert translations. The lack of data in this
domain is treated by data mining or other automatic meth-
ods that provide new data in varying quality. This data is
considered noisy, therefore used for training jointly with the
smaller trusted dataset [4, 44, 61, 72].

3. Method
Given an image and a desired length level, our goal is

to generate a description that satisfies the length constraint.
Existing captioning models are trained on the same datasets,
thus they share the same length statistics. We aim to gen-
erate descriptions of varying lengths, even when there are
very few examples of a certain length. Towards this end,
in Section 3 we propose a novel approach that handles the
scarcity of long-captions. We assume that there exists some
base model that is capable of generating short captions, for
which there is ample data. We show that our approach man-
ages to preserve this model’s performance for short cap-
tions, while dramatically improving that performance for
long ones. In Section 4 we also show that our approach is
as beneficial for paragraph generation.

Our approach consists of two key ideas, which lead to
a two-phase method (Fig. 2). First, to solve the shortage
of long captions, we enrich the dataset with varying-length
captions, by utilizing a different image representation, a
scene graph. Second, given a self-generated dataset, which
contains captions of various lengths and varying quality, our
novel training procedure benefits from the varying lengths
and is barely affected by the varying qualities.

To realize the first phase, any length-aware base model
can be utilized. We use LaBERT [14], since it is cur-
rently the only model that controls the caption length. This
transformer-based model’s inputs are visual and word em-
beddings, where the word embeddings also represent the
caption length. This phase is described in Section 3.1.

Figure 2. Outline. (I) To overcome the shortage in long captions in
trusted datasets (green), a new dataset is self-generated (red) using
scene graphs, creating an extended dataset. (II) During training,
the low-quality data is gradually filtered out, while remembering
the information learned from it. This improves length control and
preserves captioning quality.

For the second phase, we propose a training procedure
that makes use of the extended dataset, which consists of the
mixed-quality self-generated dataset and the trusted dataset.
Our strategy gradually tunes the model, to account for the
diverse quality of the data, in a manner in which late itera-
tions are exposed mostly to high-quality data, while not for-
getting valuable information learned from the low-quality
data. This phase is described in Section 3.2.

3.1. Self-generating varying-length captions

Our goal is to generate a large dataset of image captions
of various lengths, where we are willing to compromise on
the quality of the captions. We hereby describe an algorithm
that given an image, will generate such image captions. It
is designed to satisfy three requirements: (1) The length of
the captions should vary. (2) Each caption should include
the important objects & relations. (3) The linguistic style
should be as natural as possible.

At the base of the algorithm is the use of an image rep-
resentation comprising the image’s objects, their attributes,
their importance, and the relationships between them. This
representation is parsed and captions of different lengths are
generated, so as to take object importance into account.
Extraction of image information. Scene graphs allow us
to extract the above information, with the exception of ob-
ject importance. Briefly, in this directed graph, the vertices
are objects and the edges are relationships. The objects may
contain additional descriptive attributes, such as adjectives.
Scene graphs are available for some datasets [34] or may be
automatically generated [22, 53, 64, 70].

The only essential information that scene graphs do not
hold is objects’ importance. This information is necessary,
as captions of all lengths describe the salient objects. To
gain this information, we compute an image saliency map,
utilizing the method of [27], which is accurate and easy
to run. It assigns each pixel a saliency score, which corre-

5533



Figure 3. Length of captioning datasets. The average caption
length in the trusted (MS-COCO) dataset is 11.95 tokens with
standard deviation of 2.58, whereas in our extended dataset these
are 21.3 and 13.56, respectively. (Overlaps cause the third color.)

sponds to human fixation. The object saliency is computed
as the normalized sum of the pixel saliency scores of the
object’s bounding box. In our case, the bounding box is
provided by the scene graph. We create a vector whose en-
tries are saliency-based weights of the image objects.
Varying-length caption generation. This is the core of our
method. The idea is to explore the scene graph in a Depth
First Search (DFS)-like manner, with a few modifications,
which account for caption diversity and length diversity.

The algorithm proceeds as follows. The first object is
chosen among the nodes of the scene graph, according to
the distribution of the saliency vector. The more salient an
object is, the more likely it is to be chosen. Once the ini-
tial node (object) is selected, DFS is applied with three dif-
ferences. First, we do not necessarily visit all the children
of each node. Instead, we sample up to k children, based
on their saliency distribution (after re-normalization). Fur-
thermore, we allow re-visiting nodes, since captioning ”re-
visits” objects, by mentioning them multiple times. For ex-
ample, the object ”boy” in the description ”A boy is feeding
a dog and a girl is smiling at the boy”, is revisited, where the
second time is preceded by ”the”. While revisiting nodes is
allowed, loops are prohibited, in order to prevent (infinite)
repetitions. This is done by avoiding propagation through
already-visited vertices. Finally, if the exploration reaches
an end, but less than Tsal% of the sum of the image saliency
map was explored, we ”jump” to a new unexplored node,
selected again according to the saliency vector. This means
that we do not necessarily visit the whole graph.

During this traversal, a caption is generated, creating a
noun for every node (object), a verb for every edge (rela-
tionship) and adjectives for the objects (node attributes). As
a common connection of phrases in captioning, we add an
”and” when there is a jump in the DFS (or a dot in the case
of paragraphs). To increase the diversity of the captions and
their lengths we add two random procedures: First, we cut
out a random number of the last visited objects. Second,
for every object in the generated caption we add a random
number of attributes (up to a limit na). The algorithm is
summarized as pseudo-code in the supplemental materials.
Linguistic style. The generation algorithm described above

successfully depicts the objects, their order, and the rela-
tionship between them. However, it might generate unnat-
ural linguistic style. A notable example is grouping: mul-
tiple objects (e.g. ”two kids” or ”animals”) appear in scene
graphs as distinct nodes and are thus described as separate
objects. To improve the grammar and the style, we use
an off-the-shelf language paraphraser [26], which preserves
the original meaning and produces a fluent and correct lan-
guage. The paraphraser itself has no access to the image.
Note that the paraphraser is applied only here and not on
the output of the model described in Section 3.2.
Results. Fig. 3 compares the datasets. The captions in the
original trusted dataset are relatively short, where 98% of
the captions have less than 20 tokens. Differently, in our
extended dataset only 53% are shorter than 20 tokens and
the number of long captions is no longer negligible. We set
Tsal = 80%, k = 2 and na = 4, which suffice to explore
both the essence of the image and many details.

3.2. Training with data selection

We are given a small high-quality (trusted) dataset and
a large self-generated dataset. Our key assumption is that
although the self-generated dataset is of low-quality, it does
contain beneficial information for training. However, it
should be utilized thoughtfully, in order not to be harmful.

A similar challenge is addressed in other domains, such
as training classifiers with noisy labels [38, 63, 73] or using
synthetic data [11, 45, 51]. The most related domain to ours
is machine translation (NMT), where expert translations are
rare, while noisy translations can be automatically gener-
ated. Our work, which is the first to explore mixed-quality
datasets for image description, is inspired by [61].

We propose a training strategy that gradually tunes the
model, to account for the diverse quality of the data. The
core idea is to expose the model to the diverse data early on,
and to expose it mostly to high-quality data in late stages of
the training. This is so since the low-quality data provides a
mass of fundamental information (objects, attributes, length
control signals) that is essential for learning. The high-
quality data is important later, since it fine-tunes the model
on more relevant domain data. The benefit of the entire data
is supported by our experiments in Section 4.

To gradually filter out data, we shall find a measure that
rates the data according to its quality. Intuitively, the qual-
ity of a data point can be determined by its domain rele-
vance, measured by the distance to in-domain data. Simi-
larly to [61], this is done by the ratio between the probability
to appear in the trusted training dataset to the probability to
appear in the extended (trusted & self-generated) dataset.
The higher the ratio, the more likely the data point to con-
tain high-quality information to learn from.

Formally, assume for now that a captioning model, pa-
rameterized by θ, can output the probability p(yj |xj ; θ) of
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Figure 4. Data separation. Quality scores, computed by Eq. 1,
manage to separate the trusted data from the self-generated data.
The trusted data points have mostly (90%) positive scores (dashed
blue line), while the self-generated data points have mostly (99%)
negative scores (dashed orange line).

a caption yj to match an image xj (this assumption will be
later removed). Given two models: Mθ, which is trained on
the trusted dataset D, and Mθ̃, which is trained on the ex-
tended dataset D̃, we approximate the quality of each data
point j in the self-generated dataset by:

uj = quality(xj , yj ; θ, θ̃) = log

(
p(yj |xj ; θ)

p(yj |xj ; θ̃)

)
=

= log p(yj |xj ; θ)− log p(yj |xj ; θ̃).

(1)

By Eq. 1, a positive value means that a data point is more
likely according to the model trained on the trusted data
than that trained on the extended data, while a negative
value means the opposite. Therefore, this score rates the
data points according to their likelihood of being in-domain.

Fig. 4 shows that our approach successfully separates
most of the trusted data from the self-generated data on MS-
COCO. While 90% of the trusted data has a positive score
(high quality), it holds for only 1% of the self-generated
data.

Luckily, p(yj |xj ; θ) can be estimated by language mod-
els that learn to predict tokens. We extend [55] to con-
sider the additional input image, as follows. Given a cap-
tion yj , which is a sequence of m tokens [w1, ..., wm], and
an image xj , the likelihood of the caption depends on the
likelihood of each token to appear, based on the previous
tokens and the image. For a token wt the probability is
Pθ(wt|w1:t−1, xj) and the log-likelihood of the caption is

log p(yj |xj ; θ) =
1

m

m∑
t=1

log (Pθ(wt|w1:t−1, xj)) . (2)

Our data selection algorithm uses this estimation to grad-
ually filter out data points below a quality threshold. As
the training proceeds, the threshold increases, eliminating
more and more self-generated data points. Fig. 4 shows that
low-quality data is filtered at early iterations, while higher-
quality data remains until later iterations.

A unique challenge that differentiates our length-control
task from other tasks that use diverse-quality datasets is that

almost all long captions tend to have low-quality scores.
Therefore, long captions are prone to catastrophic forget-
ting, as they are eliminated early on. This could reduce
the control abilities for long captions. To avoid this situ-
ation, we make sure that low-quality captions (e.g., the long
ones) will appear in late training iterations. This, however,
might contradict the core idea of our training, which re-
quires only high-quality captions to appear at late training
stages. We propose to allow a small number of low-quality
self-generated captions to appear as the training progresses,
by adding some randomness, as follows.

Without adding the above randomness, we may view our
filtering procedure at the ith iteration as sampling accord-
ing to a probability function, where data points with a qual-
ity score < Ti get probability 0 and all other points get the
same positive probability. This function is essentially a step
function, centered at Ti, which maps quality scores to prob-
abilities. We add randomness by smoothing the step func-
tion and allowing a small number of low-quality data points
to be selected accordingly.

In particular, given a threshold, Ti, we create a smooth
step function in accordance with Ti and perform data selec-
tion, as follows. The caption quality uj of a data point j
(Eq. 1) and Ti are used to compute the probability function
needed for data selection. We use the following smooth step
function, centered at the threshold Ti:

f(uj ;Ti, s) =
1

2
·
[
1 + tanh

(
uj − Ti

s

)]
. (3)

Here, s is a tunable parameter, which controls the
smoothness of the function. For s → 0, we get an ideal
step function, which means that values smaller than Ti have
0 probability to be sampled. The larger s is, the greater the
probability of low-quality data points to be selected. Since
self-generated long captions are usually assigned low qual-
ity scores (Fig. 4), a small s might cause long captions to be
eliminated early on in the training process. Reversely, if s
is too high, too much of out-of-distribution data will appear
at late training iterations. We note that an additional benefit
of our scheme is that it controls all low-quality captions and
not only long ones.
Training—putting it all together. Hereafter we recap
our training procedure with data selection. We are given
a trusted dataset D, an extended dataset D̃, and a step
smoothness value s. Two captioning models are trained, one
for the trusted dataset and the other for the extended dataset,
Mθ and Mθ̃, respectively. The quality score uj of each data
point in the self-generated dataset is estimated using the two
models (Eq. 1). Then, the captioning model is trained with
iterative data selection until all the self-generated data is fil-
tered out, as follows. At iteration i,

1. A new threshold Ti is computed. Specifically, it is de-
termined by the amount of the generated data to be re-
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Level 1 2 3 4 5 6 7 Average
Length (tokens) 1-9 10-19 20-29 30-39 40-49 50-59 60-69

% in trusted dataset 11.8% 86.6% 1.4% 0.08% 0.02% 0.004% 0%
% in extended dataset 9.1% 51.8% 13.1% 13.5% 7.7% 3.8% 0.1%

LaBERT [14] 100% 98.03% 93.75% 83.78% 49.92% 51.19% 0% 68.10%
CLID (ours) 100% 98.64% 92.6% 84.17% 76.99% 69.18% 22.13% 77.67%

Table 1. Captioning control precision. For each level, the second row shows the range of tokens for this level. The next two rows show
the percentage of captions of each level in the training datasets. The two bottom rows compare the precision results of [14] to ours. We
outperform [14] both on average and for most of the levels, with the exception of Level 3 (which is a prevalent level in the trusted dataset).
As expected, our benefit is mostly evident for the high levels. The results are the mean of 3 independent runs.

moved, according to the c · i percentile. For instance,
at the 5th iteration and for c = 2%, T5 is set such that
10% of the data will be below the threshold.

2. A weight for each data point, f(uj ;Ti, s), is computed,
depending on its quality score, the threshold and the
smoothness value (Eq. 3).

3. The self-generated dataset is randomly sampled, based
on these weights.

4. The model is trained on the trusted & the sampled self-
generated datasets (for duration η).

See the supplementals for the model and pseudo-code.

4. Experimental results

Datasets. We use MS-COCO Caption [10], which is the
most common captioning dataset in general, and the only
dataset used in a previous length-control work [14]. It con-
tains 5 captions per image, with 113, 287 training images,
5000 validation images and 5000 testing images, according
to the widely-used Karpathy’s split [30]. As seen in Table 1,
Level 2 contains the majority of the captions (87%). There
are hardly any longer captions and no captions in level 7.

The Visual Genome (VG) [34] dataset contains scene
graphs for images. Its intersection with MS-COCO is
around 50%. For the other MS-COCO images, we use a
scene graph generator [22].

Flickr-30k [48] is evaluated in the supplementary mate-
rial. For this dataset, we utilize only automatically gener-
ated scene graphs.
Evaluation metrics. In addition to checking whether a de-
scription meets the length constraint, we measure its qual-
ity. We use the control precision metric [14] to measure
the percentage of descriptions of the desired length. There
are several possible NLP metrics for measuring quality that
calculate the similarity between a generated description and
the ground truth, including BLEU [47], ROUGE [37], ME-
TEOR [5], CIDEr [56], and SPICE [2]. As in [14], we focus
on SPICE, which is more robust to caption length and has a
high correlation with human judgement.
Length-control results. Table 1 demonstrates the effec-
tiveness of our approach in terms of control. The control

precision is excellent for captions of Levels 1-3 and then
starts dropping. Our approach significantly outperforms the
average results of [14]. Specifically, it improves the results
in all levels, except for Level 3, and vastly improves the
results of the high levels.
Quantitative results. Fig. 5 shows that our method gener-
ates good-quality results, yet with higher control. The qual-
ity of our captions (orange) is comparable to those of [14],
trained on the trusted data (green). It is also compared to
the quality of the results of two other possible solutions. In
the first the model is trained on a length-balanced version
of the trusted dataset (purple), and in the second on the ex-
tended dataset (gray). These approaches have high control
precision, but on the expense of quality. The supplemental
material extends Fig. 5 to all the levels and exhibits similar
results. It also shows results of the other metrics, demon-
strating similar improvements. Furthermore, it includes ad-
ditional results on Flickr-30k that exhibit a similar behavior.

In order to demonstrate the impact of high-quality infor-
mation from short captions on long caption generation, we
observe Level 7, which is absent from the trusted captioning
dataset. When training a captioning model on the extended
dataset without any modifications, the average SPICE score
for captions at this level is 11.49. However, by employing
our training procedure, which does not involve the addition
of any ground-truth caption at this length level, the same
model achieves a significantly improved score of 19.54.
Qualitative results. Fig. 1 illustrates representative out-
puts generated by our model. Notably, our descriptions for
higher levels demonstrate greater elaboration and encom-
pass more scene-specific details compared to the descrip-
tions produced by [14]. However, short descriptions are
comparable for both models. See supplementary materials
for more qualitative results.

To assess the quality of our captions, as rated by humans,
we conducted an experiment on Amazon Mechanical Turk.
The experiment involved presenting a triplet consisting of
an image and two captions: one generated by [14] and one
generated by our model. Workers were asked to determine
which caption better described the image, or if both cap-
tions were equally good. We randomly selected 300 image-
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(a) Level 2 (b) Level 4 (c) Level 6
Figure 5. Captioning performance. In terms of the SPICE quality measure (vertical axis), our results (orange star) are similar to [14]’s
(green circle), which is trained on the trusted dataset. The quality of other solutions (gray/purple) is dramatically degraded. While
comparable to [14] quality-wise, our model improves the control precision (horizontal axis). In both measures, higher is better. The figure
shows 3 length levels; the other levels appear in the supplements.

LaBERT
[14]

Level 2 Two men in a white t-shirt are playing frisbee.

Level 5 A man is playing a park. He is reaching for a frisbee. The man is wearing a white shirt
with white stripes down the side. The frisbee is white and has a lot of grass on it.

Level 8

Two men are playing frisbee on a grassy field. Both of the men are wearing black t-
shirts with white stripes down the side of the shirts. One man is holding a frisbee in his
hand. The field is covered in green grass. Part of green trees can be seen behind the
men. It appears to be daylight outside.

CLID
(ours)

Level 2 A man in a white shirt and black shorts holds a frisbee.

Level 5
A man is standing outside on a grassy field. He is holding a white frisbee in his hand.
The man is wearing a white t-shirt and black shorts. There are trees behind the man in
the background.

Level 8

A man is playing frisbee on a field. He is holding a frisbee in his hand. The man is
wearing black and white shirt and shorts. The man has black and white stripes on the
shorts. He has dark hair. The field is green with green grass behind the trees in the field.
The man is standing in the field.

(a) Length (b) Generated Caption

Figure 6. Qualitative comparison (paragraphs). Comparing our outputs to those of [14] demonstrates similar quality for the short
descriptions. However, our long descriptions are more coherent and detailed than [14]’s.

Method Level
1 2 3 4 5 6

LaBERT [14] 40% 44% 39% 47% 41% 43%
CLID (ours) 60% 56% 61% 53% 59% 57%

Table 2. User study results. Percentage of votes for captions
generated by each method, per length level. Human evaluators
tend to prefer our captions over those of [14].

caption triplets and assigned each to three different workers.
Table 2 presents the percentage of worker votes for each

model, per caption length (ranging from 1 to 6, the levels
which both models can generate caption in). The table re-
veals that our captions were preferred by human evaluators
across all length levels. For instance, in level 1, 60% of
workers preferred our captions, while in level 6, 57% of
workers favored our captions. An interesting observation is
that even though our focus was not primarily on the lower
length levels (levels 1-3) due to the abundance of available
data, the human evaluation demonstrated a quality advan-
tage in these levels as well.
Paragraph generation. As our proposed method is gen-

eral, we address the task of paragraph generation similarly
to captioning. A paragraph consists of consecutive sen-
tences separated by dots. We consider them as a sequence
of text tokens, as in captioning. To create the self-generated
dataset, we used the algorithm described in Section 3.1. The
only difference is that a dot was added instead of an ”and”
when jumping during the DFS traversal.

We use the Stanford Descriptive Paragraphs [33]
dataset, which is the only available dataset for the task.
The images in this dataset are taken from VG. It contains
14, 575 training images, 2, 487 validation images and 2, 489
test images. Each image is associated with a single para-
graph. Hence, this dataset is much smaller than the caption-
ing dataset (by a factor of 30). 2% of the paragraphs have
less than 29 tokens; 32% have 30-59 tokens; 52% have 60-
89 tokens; and 14% have 90-129 tokens. We set 13 uniform
length levels, which range from 1-129 tokens.

Since there are no works on length-control paragraph
generation, we trained [14] to generate paragraphs, in or-
der to allow comparisons. Our method improves the control
abilities at all length levels, compared to training only on
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Tsal
Level

1 2 3 4 5 6 7
20% 100%98.67%92.55% 83.24% 74.44% 39.88% 0.1%
50% 100%97.95% 90.9% 84.2% 78.54%66.3% 5.3%
80% 100%98.64% 92.60%84.17% 76.99% 69.18%22.13%

Table 3. Graph coverage vs. control precision (captioning).
Higher values of Tsal allow more diverse descriptions in the self-
generated dataset, enhancing the control over long descriptions.

(a) Control precision (%) vs. η

(b) SPICE score vs. η

Figure 7. Ablation study of the η parameter. (a) Control preci-
sion and (b) SPICE score per length level (lighter color = longer
captions) as a function of the duration η at s = 1.

the trusted data. It achieves an average of 94% in control
precision, which is a 14% gain. In terms of the the common
NLP scores (e.g., BLEU), our model achieves comparable
results to [14]’s across all levels. Additionally, Fig. 6 shows
typical outputs of our model. While our short descriptions
are comparable to those of [14], our long descriptions are
more coherent and detailed. Please refer to the supplemen-
tal materials for further details and examples.

5. Ablation study
Graph coverage. The amount of information extracted
from a scene graph is determined by Tsal (%). A low
value of Tsal results in overall short generated description
datasets. Table 3 illustrates the impact of this parameter on
the model’s control ability. While the control ability is com-
parable for levels 1-4, which are prevalent in all of these
self-generated datasets, the advantage of using larger Tsal

values becomes pronounced in longer levels.
Data selection parameters. Our approach has three pa-
rameters: (1) c that determines Ti, i.e. the filtration rate
between consecutive iterations; (2) η that sets the duration
(number of steps) of training the model at every iteration;
and (3) s from Eq. 3, that determines the smoothness of the
step function that sets the sampling weight of a data point.

The smaller c is, the more gradual filtration is. We ob-
served a similar performance gain when dropping 1-5% of
the data. Thus, we set c = 2%.

If η is large, sampled data points at a certain iteration are

repeated many times, and therefore have more influence on
the model. If η is small, each iteration is shorter and the self-
generated data is sampled more often, potentially exposing
the model to more diverse data, since at every iteration new
data is selected. s determines the sampled data diversity at
every iteration. A small s restricts the randomness of data
sampling. Large values of s give more probability to data
points with low-quality to appear at later stages, leading to
more diverse data points between consecutive iterations.

We observed a connection between the values of η and s.
Increasing η usually requires decreasing s. This is logical,
since substantial changes in data (high s) during consecu-
tive long iterations (high η) can resemble training the model
repeatedly on different domains, potentially causing devia-
tion from the desired domain represented by trusted data.
The effect of high values of s is enhanced when replacing
the smooth step function with a constant function (assign-
ing the same probability to all data points at every iteration).
This results in up to a 40% decline in output quality for lev-
els 4-6, where data is limited.

To study the effect of η & s, we experiment with η =
{800, 1200, 1600, 2000} and s = {0.1, 0.5, 1, 1.4}. Lev-
els 1-3, which are 99.8% of the trusted captioning dataset,
are hardly affected by these parameters. Figure 7 shows
the influence of η on our results, for s = 1. As shown,
short captions are barely affected by changing η. For the
long captions that appear in the dataset (Levels 4-6), there
is a sweet-spot at η = 1200 in terms of control and qual-
ity. For level 7, which does not exist in the trusted dataset,
we observe a low control precision for small η. Increasing η
solves this problem. We set s = 1 and η = 1200 for the best
overall performance (η = 200 for paragraph generation).
Limitations. Levels that are completely out-of-distribution
(7 or up) do not always produce sought-after caption quality.

6. Conclusions
We propose a novel, general and unified method to ad-

dress the shortage of certain length descriptions in com-
mon image captioning & paragraph generation datasets.
Our approach consists of two complementary ideas. First,
we show how to enrich the existing dataset with self-
generated varying-length descriptions, using scene graphs
and saliency maps. Second, we introduce a training proce-
dure that gets both a trusted (original) dataset and a self-
generated one. It gradually trains the model so as to learn
from the (varying-length) low-quality data, while not harm-
ing the information learned from the clean trusted data.

We show that the length-control abilities vastly improve.
Our method achieves 10% (/14%) improvement on average
in caption (/paragraph) control precision. This is done while
preserving the quality of the output across all length levels.
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