
Efficient Explainable Face Verification based on Similarity Score Argument
Backpropagation

Marco Huber1,2, Anh Thi Luu1, Philipp Terhörst3, Naser Damer1,2
1 Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany

2 Department of Computer Science, TU Darmstadt, Darmstadt, Germany
3 Paderborn University, Paderborn, Germany

Email: marco.huber@igd.fraunhofer.de

Abstract
Explainable Face Recognition is gaining growing at-

tention as the use of the technology is gaining ground in
security-critical applications. Understanding why two face
images are matched or not matched by a given face recog-
nition system is important to operators, users, and devel-
opers to increase trust, accountability, develop better sys-
tems, and highlight unfair behavior. In this work, we pro-
pose a similarity score argument backpropagation (xSSAB)
approach that supports or opposes the face-matching deci-
sion to visualize spatial maps that indicate similar and dis-
similar areas as interpreted by the underlying FR model.
Furthermore, we present Patch-LFW, a new explainable
face verification benchmark that enables along with a novel
evaluation protocol, the first quantitative evaluation of the
validity of similarity and dissimilarity maps in explainable
face recognition approaches. We compare our efficient
approach to state-of-the-art approaches demonstrating a
superior trade-off between efficiency and performance.
The code as well as the proposed Patch-LFW is publicly
available at: https://github.com/marcohuber/
xSSAB.

1. Introduction
Automated face recognition (FR) has become an increas-

ingly important part of our lives. It can be used to unlock a
smartphone, cross borders at automated border checkpoints,
or pay with a face. This is due, among other things, to the
ease of use and high accuracy of modern FR systems. In re-
cent years, the high accuracy of biometric systems has been
driven primarily by larger databases [2], innovative solu-
tions [4, 27], and advances in deep learning [5, 9, 13, 24].

However, the methods based on deep learning have the
disadvantage of being difficult to understand because they
include millions of parameters and are highly complex
models [31]. For various reasons, biometric systems re-
quire that they are more understandable to humans. Un-
derstanding increases trust, can highlight unfair or unequal

Figure 1. An example visualization of our proposed efficient
explainable face verification explanation, xSSAB, on the novel
Patch-LFW benchmark and its evaluation protocol. The added
patches from an imposter identity on an original genuine pair
shifted the model’s decision to non-match. During the evaluation,
the added imposter clues (patches) are replaced by the original pix-
els based on the identified dissimilar area (pink) of our approach.

behavior toward different subgroups, or help develop better
systems [1, 3].

The reasons or clues why two face images are deter-
mined to be a match or non-match by an FR system have
received increasing attention recently [17,23,25,29,30]. Es-
pecially in security-relevant areas, but also for usability, it
is interesting to understand why two images are falsely rec-
ognized as a match or falsely recognized as a non-match
(e.g. why didn’t I match my passport at the automatic bor-
der control gate?).

In the field of biometrics, explainability and inter-
pretability of biometric decisions and systems have been
identified as outstanding problems [20]. In the area of more
understandable face matching decisions, Lin et al. [25] pro-
posed xCos. Their approach is based on a novel more in-
terpretable cosine metric that provides meaningful explana-
tions. Huber et al. [17] have proposed modeling the uncer-
tainty and confidence of model decisions using stochastic
forward passes to gain more insight into the decision pro-
cess. In comparison, Knoche et al. [23] proposed a confi-
dence score and a visualization approach based on system-
atic occlusions. A current trend is to follow a black-box ap-
proach [23,29,30], where only the input is changed and the
changes in the output are observed, without a deeper under-
standing of the inner workings of the model. While these
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approaches provide meaningful explanations, they require
plenty of forward calculations which are time-consuming.
Different approaches are white-box explanation approaches
[25], which require access to the model, but can be more
efficient. Our proposed approach follows the white-box ap-
proach to provide fast explanations without additional train-
ing.

One remaining challenge in the field of explainable FR
is having an evaluation protocol to assess the validity of the
explanations. Often, they are evaluated only on the basis
of visualizations on a subjective basis without a quantita-
tive evaluation [23, 25, 29, 30], which makes it difficult to
compare different approaches objectively.

In this work, we 1) propose a novel, efficient, and
training-free white-box approach based on similarity score
backpropagation to indicate areas in a pair of face images to
explain, which parts of the image are interpreted as similar
or dissimilar for an FR model, with an example shown in
Figure 1, 2) propose an objective evaluation dataset and an
evaluation protocol that allows comparing the performance
of different explainable face matching approaches based on
visualization.

Our contributions are:
• 1) A training-free explainable FR approach that is

competitive with state-of-the-art (SOTA) on several FR
models while being time-efficient

• 2) The first explainable FR benchmark, Patch-LFW,
including an evaluation protocol that allows to com-
pare explainable face matching approaches in an ob-
jective manner.

2. Related Work
In recent years, the performance of FR systems has been

improving and has already surpassed the performance of
humans [26]. This improvement is based on larger data
sets, larger models, and new loss functions, such as Arc-
Face loss [8], CurricularFace loss [15], MagFace loss [27]
or ElasticFace loss [4]. With the increase in verification
performance, the models became less understandable due
to their complexity and size, which raises questions about
the inner workings and causes of decisions.

The first direction of research that focused on making
the face matching process more understandable were works
related to uncertainty mapping. The idea for uncertainty
mapping comes from thinking that faces may be ambigu-
ous or lack identity information. Moreover, the problem
of model and data uncertainty is of general interest in the
deep learning community [12, 21]. Shi and Jain [36] pro-
posed probabilistic face embeddings, where each face im-
age is represented as a Gaussian distribution with the fea-
ture as the mean and the uncertainty of the features as
the variance. This general idea has then been adopted in
several ways [6, 7], including propagating the uncertainty
present in the process of face matching to the comparison

itself [17, 18]. Others tried to explain the performance vari-
ations in FR over different demographic groups [11], or as-
sign the different in explainability performs [16] as well as
the different levels of face image quality [10, 38].

The second research direction towards explainable FR
followed the trend in computer vision to visualize impor-
tant areas using saliency or heatmaps [35,40], there are also
works that visualize the crucial areas in the decision-making
of FR. Applying methods known from computer vision like
GradCAM [35] or Score-CAM [40] are not natively appli-
cable for FR models in an optimal manner, since they are
designed for classification problems and not for a process
that consists of feature (embedding) extraction followed by
embedding comparison (matching), which is typically ap-
plied in SOTA FR systems.

To visualize the important areas for an FR model, Lin
et al. [25] proposed a novel similarity metric named xCos
based on a learnable module to provide meaningful expla-
nations. Their approach can be applied to most of the ver-
ification models, however, the module has to be trained,
which reduces its adaptability, if the underlying model is
often changed. Knoche et al. [23], Mery [29] and Mery and
Morris [30] proposed to explain black-box FR models, fol-
lowing a justification explainability approach [33] designed
to visually communicate the decisions’ evidence instead of
an introspective approach reflecting the inner workings vi-
sually [33]. Their approaches are designed to work without
access to the FR model and are based on perturbing or alter-
ing the input face images and investigating changes in the
output. While this produces interpretable saliency maps,
the calculation is time-consuming. This poses a problem in
practical applications, for example, if the user has to wait
a long period of time for a reaction from the system, or if
the data has to be transferred to a more powerful system in
order to be processed there.

All the saliency map-producing approaches mentioned
above did not evaluate their approaches in a quantified way,
but rather limited their evaluation to visualizations, making
an assignment and comparison in terms of the correctness
and quality of the proposed approaches hard. They also did
not present or use a well-defined benchmark specifically de-
signed to demonstrate their results in a comparable manner.

3. Methodology
In this section, we present and rationalize our proposed

xSSAB approach to explain face verification decisions ef-
ficiently. Understanding which parts of an image pair lead
to a matching or non-matching decision is crucial to make
FR more transparent and explainable. We propose to back-
propagate the similarity score of face image pairs through a
Siamese FR setup to efficiently indicate which parts of the
image pair contribute to a match or non-match decision. By
investigating the positive and negative impact of feature di-
mensions on the similarity-based comparison score, gradi-
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Figure 2. Overview of the proposed approach: In a siamese fashion, both face images are processed by a FR system M that is extended
with an additional cosine similarity layer, which simply calculates the cosine similarity between the face embeddings.. Based on the system
decision threshold and the contribution of the different features to the similarity score, gradients are backpropagated to obtain maps that
highlight similarity and dissimilarity. These maps are then fused in a final step to get a single map, highlighting both.

ents based on these impacts can be backpropagated to high-
light important pixels. An illustration of our methodology
is shown in Figure 2.

In the first step, we propagate both images through a
siamese network of FR model M to gain feature embed-
dings Ei, Ej of the face images Ii, Ij as demonstrated in
Figure 2. We extend the FR model M by adding a co-
sine similarity layer, which calculates and outputs the co-
sine similarity SC of both input face images to include the
matching process in the network architecture. To simplify
the calculation we also internally normalize the embedding
vectors, Ei and Ej , before calculating the cosine similarity
which simplifies the cosine similarity formula:

SC(Ei, Ej) =
Ei · Ej

∥Ei∥∥Ej∥
, (1)

to

SC(Ei, Ej) =

N∑
n=1

Ei
n · Ej

n, (2)

as ∥Ei∥∥Ej∥= 1. N denotes the number of dimensions of
the embeddings, Ei and Ej . Ei

n and Ej
n denotes the feature

value at position n of Ei or Ej , respectively. Our extended
FR model M can therefore be defined as:

M i,j =
∑

M(Ii) ·M(Ij), (3)

where M(Ii) is similar to the embedding Ei and M(Ij) to
the embedding Ej :

M i,j =

N∑
n=1

Ei
n · Ej

n. (4)

Since M i,j includes weights dependent on the provided in-
put images to calculate the cosine similarity (M i,j output)
of the provided input images, Ii and Ij , it is dependent on
the input.

Given the simplified cosine similarity function (Equation
2), we can observe that, expectedly, the cosine similarity

will increase if the feature values xn and yn share the same
direction and, otherwise, decrease the score. Since the fi-
nal decision of match or non-match is not just dependent on
the similarity score but also includes the system-dependent
decision threshold thd, we include this in the calculation
of our approach. With the assumption, that each feature in
the different feature dimension ideally at least contributes
equally to the matching decision and therefore to the simi-
larity score, we define an argument threshold th±. This th±
is set to:

th± =
thd

n
, (5)

where n refers to the number of dimensions in the feature
space. We then define a feature argument an for each fea-
ture dimension n as:

an = Ei
n · Ej

n. (6)

The interpretation is then that the feature argument an in
the feature dimension n with a positive impact on the score
(an ≥ th±) provides a positive argument and with a neg-
ative impact on the score (an ≤ th±) as provides a nega-
tive argument. The intuition is, that the argument threshold
th± defines the minimum strength of an argument an to be
considered a positive argument (an ∈ a+) depending on
the system-dependent threshold thd. This is the case if the
argument is at least as strong as it has to be if all other ar-
guments equally contribute to a matching decision. In the
other case, it is considered a negative argument (an ∈ a−).

Starting from the calculated positive argument set a+
and negative argument set a−, we calculate the gradient
based on the arguments, either only for the set of positive
arguments (a+) or for the set of negative arguments (a−).
We calculate the gradients backward through the FR model
M i,j to obtain the pixels that have the most influence [37]
on the positive or negative arguments given both images Ii
and Ij . To limit the calculation to only the impact on the
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positive or negative arguments, we manipulate the weight
wi of the cosine layer of M i,j (which is originally equal to
Ej , since it computes SC), so only the weights are included
in the forward and backpropagation process that are either
positive or negative:

wi
n =

{
Ej

n if an ∈ a+

0, otherwise
, (7)

if we want to obtain the similarity map of image Ii given
image Ij and

wi
n =

{
Ej

n if an ∈ a−

0, otherwise
, (8)

if we want to obtain the dissimilarity map of image Ii given
image Ij . We define the models with the adjusted weights
wi

n as M
+

i,j in the first case and M
−
i,j in the second case.

Since we manipulate the weights depending on the given
comparison image, we get two different models and maps
for the images Ii and Ij .

To calculate the gradient based on the positive (grad+)
and negative arguments (grad−), we compute:

grad+(Ii) =
∂M

+
i,j

∂Ii
, (9)

for the similarity map and

grad−(Ii) =
∂M

−
i,j

∂Ii
, (10)

for the dissimilarity map. This allows us to calculate
gradient-based maps only based on the features that have
a positive or negative impact regarding a matching or non-
matching decision based on the system’s decision threshold.

To optimize the visualization further, we take the mean
of the gradients of the three color channels (c). To be inde-
pendent of the sign of the gradients, we also take the abso-
lute value:

grad+(Ii) =
1

3

3∑
c=1

|grad+, c(Ii)|, (11)

for the positive explanation map grad+. The negative (non-
matching) map, grad−, is calculated in the same manner,
only based on grad−, c(I

i). Our approach provides us with
two explanation maps, showing which pixels lead to a pos-
itive or negative argument regarding the final matching de-
cision of the FR system depending on the given decision
threshold thd and the investigated face images Ii and Ij . To
get a single explanation map, grad±, explaining both, sim-
ilarities and dissimilarities, we combine the two calculated
explanations maps naturally by subtracting the negative ex-
planation map from the positive explanation map:

grad± = grad+ − grad−. (12)

To have a less fragmented visualization, we finally apply a
Gaussian blur filter with 5× 5 filter and with σ = 5, similar
to Knoche et al. [23].

The proposed xSSAB approach, therefore, generates a
single face verification explanation map based on the pix-
els’ influence on the final matching or non-matching deci-
sion based on the system-dependent decision threshold. To
achieve this, gradients based on the similarity score argu-
ments are utilized. Calculating the explanation maps rather
based on the internal behavior than just interpreting the
model in a black-box fashion and altering the input, allows
more efficient transparency of the models’ behavior.

4. Experimental Setup
4.1. Face Recognition Models

To show the validity and the generalizability of our ap-
proach, we utilize four different SOTA FR models in our ex-
periments. All models share the same ResNet-100 [13] ar-
chitecture and have been trained with the corresponding loss
functions. All the models were trained on the MS1M-V2 [8]
dataset. The used models are: ArcFace [8], ElasticFace-
Cos [4], ElasticFace-Arc [4], and CurricularFace [15], and
they are all used as pre-trained models provided in their re-
spective official repositories. We utilize these models to
show that our approach can be applied to a wide range of
diverse FR models without training or fine-tuning and the
models are competitive to other SOTA models such as Mag-
Face [28] or AdaFace [22].

4.2. Evaluation Benchmark: Patch-LFW
For the evaluation of the proposed explainable face

matching approach and the comparison with other meth-
ods, we build a new benchmark dataset, Patch-LFW. Patch-
LFW is based on the Labeled Faces in the Wild (LFW) [14]
dataset. Since in most cases it is more interesting, from
a practical perspective, to know why the system made a
wrong decision than to understand why it made the right
decision, we artificially increase the errors that the system
makes. The reason we chose LFW as the starting point for
our Patch-LFW is the simplicity of the dataset. To measure
how well we explain wrong decision reasons, we need to
minimize unknown reasons for wrong decisions and only
have the ones we control, thus we need a benchmark that
SOTA FR makes as minimum as possible wrong decisions.
SOTA systems solve the verification problem in the LFW
dataset almost perfectly, which minimizes other influences
apart from the patches we add, which is what we need.
Choosing a more challenging dataset as the baseline would
make it harder to distinguish if the approaches can identify
the added deterioration (patches) or inherent ”clues” such
as bias [39] or occlusions [32,41]. To synthetically increase
the amount of ”false non-matches”, in each of the genuine
pairs, patches from a random image of a different identity
have been added to the reference image. To synthetically
increase the amount of ”false matches”, in each of the im-
poster pairs, patches from the same image have been added
to the reference image. In total, we randomly added 27
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(a) Genuine Pairs (b) Imposter Pairs

Figure 3. Example pairs from Patch-LFW: the images with the
yellow outline in LFW are in Patch-LFW replaced by the images
with the red outline. By adding information from a random im-
poster identity (genuine case) or from the same image (imposter
case) the amount of false matches (FM) and false non-matches
(FNM) increases.

patches of size 16 × 16 pixels which may overlap per im-
age. Before adding the patches, the images of LFW [14]
are preprocessed following the procedure of Deng et al. [8].
Examples of the newly created images and the original im-
ages from LFW [14] are shown in Figure 3. Given the new
Patch-LFW, the ”false match” rate as well as the ”false non-
match” rate at a fixed threshold determined at the Equal Er-
ror rate (EER) [19] on using the whole LFW dataset [14]
increased drastically as shown in Table 1, which is our goal.

4.3. Evaluation Protocol: Decision-based Patch Re-
placement

To quantitatively determine the quality of explanation
maps, we evaluate on our newly proposed Patch-LFW with
a novel evaluation method (Decision-based Patch Replace-
ment (DPR) curve). The DPR curves are inspired by the In-
sertion and Deletion curves [34]. First, the similarity maps
for the original image pairs in the Patch-LFW dataset are
determined. Based on these maps and the decision thresh-
old thEER determined on the original LFW without patches
for each FR model, we proceed as follows:

• 1) If the patched image pair is considered a match
based on thEER, the most similar pixels are adjusted
based on the explanation map. If the patched image
pair is considered a non-match, the least similar pix-
els are adjusted. During the adjustment, the identified
pixels are replaced by the original pixels from LFW.

• 2) After adjusting a fixed amount of pixels (in our case
5%), the FR systems are utilized to evaluate the new
performance in terms of FMR and FNMR. If the ex-
plainability approach is of high quality, it should be
able to detect the areas (added patches) that lead to
”false matches” and ”false non-matches” and reduce
the errors when more and more pixels are replaced. If
a pixel is detected to be replaced that is original and
not part of an added patch, it is left unchanged. This
step is repeated until all pixels have been replaced.

Figure 4. Comparison of different approaches: explanation maps
visualized for different approaches. Pink areas indicate dissimilar-
ity, and green areas indicate similarity. The values are not normal-
ized. The design of the maps is very different. While the xFacex
approaches tend to highlight contiguous areas, the highlighting in
xCosx is patch-wise. Our approach, on the other hand, is more
fine-grained. More examples are provided in the supplementary
material.

To determine the quality, we now look at the drop in error
rates over the proportion of pixels replaced. If the curve
is lower, it indicates a better performance of the explana-
tion map as the error rate is lower. This proves that the ex-
planation map detected the artificially inserted patches and
replaced them with the original pixels, which removes the
clues that led to the artificially created error. Such plots are
presented in Figure 5 and will be discussed in Section 5.

4.4. Explainable Face Verification Methods
To evaluate our proposed efficient explainable face veri-

fication approach based on similarity score argument back-
propagation (xSSAB), we compare our approach in terms
of quality and latency with two SOTA solutions: xCos [25]
and xFace [23].

xCos [25] modifies the backbone of the model with a
1 × 1 convolution to preserve the position information of
each feature. With an additional attention mechanism, two
outputs are retrieved: an attention weight map W and a
patched cosine map S. Since the authors only provided a
pre-trained version for an ArcFace model [8], we stick to
the comparison with this model. We experimentally tested
to use the proposed pre-trained cosine module and metric
on the other models as well, but the equal error rate on
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LFW Patch-LFW
Model EER FMR FNMR

ElasticFace-Arc [4] 0.003 0.434 0.649
ElasticFace-Cos [4] 0.002 0.639 0.475
CurricularFace [15] 0.005 0.643 0.444

ArcFace [8] 0.005 0.660 0.606
Table 1. Performance of the utilized models on LFW [14] and the
proposed benchmark Patch-LFW. The FMR and FNMR at Patch-
LFW have been evaluated at the EER threshold thEER determined
on LFW. By definition, the FMR and FNMR of LFW are equal to
the EER. The results show that the introduced patches increased
the FMR and FNMR on all models, providing an experimental
setup for explainable face matching methods.

ElasticFace-Arc [4] was 0.2533, which is not competitive
when compared to the performances presented later in Sec-
tion 5. We investigated the performance by inserting pixels
either based on the weight map (xCosW ) or based on the
patches cosine map (xCosS). Because both of the maps
provide equally-sized patches that share the same value, we
do not iteratively replace 5% of the pixels but replace them
patch-wise. An example of both maps is shown in Figure 4.

xFace [23] follows the black-box approach and consid-
ers the FR models as pure input-output functions. The core
principle of their proposed approach is based on occlud-
ing parts of the image and investigating the deviation of
the occluded and non-occluded images. In total, they pro-
posed three variations of their approach, which we refer to
as xFace1, xFace2, and xFace3. For the parameters of
their approach, we follow their proposed values and select
stride s = 5 and patch sizes p ∈ {7, 14, 28}. An example of
the visualization of the maps can be seen in Figure 4.

We also compare our approach against a random ap-
proach (RND). The random approach randomly selects
pixels to replace and serves as a minimum baseline.

4.5. Evaluation of Latency
To evaluate the efficiency, we perform the computations

on the same machine equipped with an NVIDIA Quadro
P4000 GPU and an Intel Core i9-7920X CPU. We use
the reference implementations of the respective authors and
only consider the time for creating the similarity maps. For
the latency determination, we use 200 random images from
LFW, in total 100 image pairs. To get as close as possible to
a realistic application for an end user, we also evaluate the
time for a run and process the pairs in pairs and not batch-
wise. We report the total time over the 100 image pairs as
well as the average time per processed pair. For an end-user
application scenario, the user (whether an individual or op-
erator) would expect a timely response, as being verified is
not his main goal but e.g. crossing a border or getting access
to a restricted area/device.
5. Results

In this section, we present the qualitative and quantitative
results, as well as the efficiency of our approach compared

to the state-of-the-art. We start with a short qualitative anal-
ysis to investigate the visualized explanation maps produced
by our approach, xSSAB. We then investigate the perfor-
mance of our approach and state-of-the-art on the novel
Patch-LFW benchmark following the protocol introduced
in Section 4.3. Last, we present data on the efficiency of
our approach and state-of-the-art.

5.1. Qualitative Analysis
To perform the qualitative analysis, we show two exam-

ple images in Figure 6. More examples are presented in the
supplementary material. xSSAB explanation map is more
fine-grained than the explanation maps from xFace [23] and
xCos [25]. In the FNM pair, our approach correctly iden-
tified the inserted patch at the nose as not similar but de-
tected the insert front head as similar, which is visually
understandable. The explanation maps based on the xFace
methods are pretty similar and identified the mouth region
as similar, and also the inserted nose patch as dissimilar.
Both xCos maps also identified the mouth region as similar.

For the FM pair, the explanation maps also look very
different. We can observe the same different style as in the
FNM pair. All the approaches, besides xCosS detect the in-
serted area in the left mouth region as similar. Our approach
and also the xFace methods detect the unchanged area be-
tween the eyes as being dissimilar. All previous works lim-
ited their evaluation to this visual presentation, however, we
believe that such solutions should be evaluated in a more
statistically significant quantitative manner as we do in the
next section.

5.2. Quantitative Analysis - DPR Curve
For a quantitative analysis of the quality of our proposed

approach and also to compare it objectively with state-of-
the-art, we utilize our proposed Patch-LFW and perform
the decision-based patch replacement as described in Sec-
tion 4.3. The results for the different approaches on the four
utilized models for both error rates, FMR and FNMR are
shown in Figure 5, and the AUC values are provided in Ta-
ble 2.

ElasticFace-Arc ElasticFace-Cos CurricularFace ArcFace
AUC FMR FNMR FMR FNMR FMR FNMR FMR FNMR

xFace1 1.76 5.12 2.96 2.96 3.49 2.84 4.61 7.25
xFace2 1.67 5.06 2.88 2.94 3.51 2.85 4.58 7.83
xFace3 1.63 4.81 2.92 2.87 3.62 2.80 6.86 5.31
xCosW - - - - - - 9.27 11.60
xCosS - - - - - - 15.28 18.74
Ours 2.57 8.04 5.26 5.34 5.85 4.74 8.34 12.64
RND 4.06 11.99 8.203 7.37 9.25 6.73 12.96 17.01

Table 2. The AUC values for the curves are shown in Figure 5.
A lower AUC indicates better explainability performance. Our
proposed approach beats the random approach and the xCosS ap-
proach on all models in terms of FMR and FNMR. On the ArcFace
model, our training-free approach is competitive with the xCosW
approach, which has to be trained in advance. The xFace ap-
proaches perform better than our approach but are not efficient, as
evaluated and discussed in Section 4.5
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(a) ElasticFace-Arc - FMR (b) ElasticFace-Cos - FMR (c) CurricularFace - FMR (d) ArcFace - FMR

(e) ElasticFace-Arc - FNMR (f) ElasticFace-Cos - FNMR (g) CurricularFace - FNMR (h) ArcFace - FNMR

Figure 5. Decision-based Patch Replacement (DPR) curves on Patch-LFW: The error in terms of FMR and FNMR at the fixed threshold
thEER determined on LFW, based on the percentage of replaced pixels. Our approach outperforms the random baseline (RND) on all
errors and on all models. Our approach shows to be applicable to a wide range of diverse FR models. Even though the xFace methods
show slightly better performance, they are not as efficient as discussed in Section 4.5. On the Arcface model, our approach outperforms
the pre-trained xCosS approach and is comparable to pre-trained xCosW , while being training-free. We did not evaluate the xCos-based
approaches on other models, since the pre-trained module did not provide competitive results on the other models, proofing that it is
necessary to train the xCos module before. The AUC values are provided in Table 2.

Figure 6. Visualization of the explanation maps of an FNM and an FM pair of Patch-LFW. Our example and the xFace explanation maps
are based on the Elasticface-Arc model, the xCos maps are created using the pre-trained module on Arcface. Our approach can detect the
inserted patch at the nose as dissimilar to the reference image in the FNM pair. Furthermore, it identified the similar-looking but inserted
forehead as similar. In the explanation for the FM, the unchanged area around the eyes is correctly identified as dissimilar.

The results show, that on all models and for both er-
rors, our proposed xSSAB approach outperforms the ran-
dom baseline (e.g. AUC-FMR of 2.57 to AUC-FMR of
4.06 on random). On the ArcFace model, our training-free
efficient approach is competitive to the pre-trained xCosW
approach (FMR-AUC of 8.34 to 9.27 and FNMR-AUC of
12.64 to 11.60) and outperforms the pre-trained xCosS ap-
proach . The three black-box based xFace methods out-
perform our solution, but they require excessive comput-
ing power as we will demonstrate later. For the different
versions of xFace, no clear performance difference can be
observed in our quantitative analysis (e.g. ElasticFace-Arc
FMR-AUC of 1.76,1.67 and 1.63). Our efficient approach
shows good performance independent from the utilized un-
derlying FR model. Furthermore, it can be observed, that
the detection of the inserted patches on the genuine pairs is
easier for the applied methods, as the performance regard-
ing FMR, in general, is better than the performance regard-

ing FNMR. This can be also observed in the AUC values,
which are generally higher.

To the best of our knowledge, with this evaluation, we
provided the first quantitative analysis of explainable face
verification methods. Using the newly proposed Patch-
LFW with the decision-based patch replacement allows us
to evaluate the quality of the similarity and dissimilarity
maps in a quantified way, even though Patch-LFW is arti-
ficially created. An explainable face verification approach,
that is capable to correctly explain non-artificial triggers of
verification decisions, should also correctly identify artifi-
cially added clues.

5.3. Efficiency
To evaluate the efficiency, we observed the time needed

to process and create a single explanation map of a single
pair and also to process 100 pairs in total and create the
corresponding explanation maps. The times are reported in
Table 3. We can observe, that the xFacex methods are slow,
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Figure 7. Visualization of the Replacement: Depending on the similarity or dissimilarity, the most influential pixels are replaced with the
original pixels from the LFW dataset. Our example and the xFace explanation maps are based on the Elasticface-Arc model, the xCos maps
are created using the pre-trained module on Arcface. We can observe, that different areas of the face have been identified as important by
the different approaches. Our approach correctly detected the inserted patches at the lower left face side, shortly above the mouth.

Approach TMean TTotal

xFace1 12.49s 1249.69s
xFace2 12.53s 1253.31s
xFace3 12.38s 1238.87s
xCos 0.11s 11.18s
Ours 0.24s 24.30s

Table 3. Evaluation in terms of latency: The average time needed
to create an explanation map, as well as the total time needed to
create 100 different ones. Our approach is much faster than the
other training-free approaches, xFace. xCos is faster but has to
be trained in advance, which is not represented here and performs
worse.

as they treat the FR model as a black-box and need to ma-
nipulate the input multiple times to create meaningful out-
comes. In total, 1,130 forward passes are made per image
using the proposed parameters by the authors [23], leading
to 2,260 forward passes for a single explanation map, which
is time-consuming at not very efficient (around 12s per sin-
gle map). The xCos approach is more efficient in terms of
creating explanation maps (0.11s per explanation map) but
has to be trained in advance. Our training-free approach is
much faster than xFacex (only 0.24s per explanation map)
as it only requires one forward pass and one backward pass
per image. It also outperforms xCos as demonstrated ear-
lier in this section.

6. Conclusion
In this work, we proposed xSSAB, an explainable face

verification solution based on the backpropagation of sim-
ilarity score arguments. In our approach, the positive and
negative impact of the features on the similarity score based
on the FR systems’ decision is utilized to obtain visual-
ization of the impact of small, fine-grained face regions

on the final matching or non-matching decisions. Our ap-
proach efficiently produces fine-grained explanation maps
that highlight similar and dissimilar areas as we showed in
our experiments and in comparison with two state-of-the-
art approaches. To quantitatively evaluate our and other ap-
proaches in the field of explainable face verification sys-
tems for the first time, we also introduced Patch-LFW.
Patch-LFW is a benchmark that is based on LFW [14] and
has been artificially manipulated to provide more FMs and
FNMs by adding patch-wise clues from another or the same
identity. An explainable face verification system can now
be evaluated based on the Decision-based Patch Replace-
ment (DPR) curve, which represents how good an explain-
ability solution does its task. In an evaluation of latency,
we also showed the efficiency of our approach, which is
also training-free in comparison to black-box approaches,
which are time-consuming by design. As FR systems be-
come more ubiquitous in our daily lives and the precise
workings of highly complex deep-learning-based models
remain difficult to comprehend, increasing explainability,
interpretability, and transparency will continue to be impor-
tant, especially in the biometric area, as personal and private
data is processed.
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