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Abstract

Vision Transformers (ViTs) have emerged as powerful
backbones in computer vision, outperforming many tra-
ditional CNNs. However, their computational overhead,
largely attributed to the self-attention mechanism, makes
deployment on resource-constrained edge devices challeng-
ing. Multiple solutions rely on token pruning or token merg-
ing. In this paper, we introduce“Token Fusion” (ToFu), a
method that amalgamates the benefits of both token prun-
ing and token merging. Token pruning proves advanta-
geous when the model exhibits sensitivity to input inter-
polations, while token merging is effective when the model
manifests close to linear responses to inputs. We combine
this to propose a new scheme called Token Fusion. More-
over, we tackle the limitations of average merging, which
doesn’t preserve the intrinsic feature norm, resulting in dis-
tributional shifts. To mitigate this, we introduce MLERP
merging, a variant of the SLERP technique, tailored to
merge multiple tokens while maintaining the norm distri-
bution. ToFu is versatile, applicable to ViTs with or with-
out additional training. Our empirical evaluations indicate
that ToFu establishes new benchmarks in both classifica-
tion and image generation tasks concerning computational
efficiency and model accuracy.

1. Introduction

The recent rise of Vision Transformers (ViT) in the
domain of computer vision has undoubtedly marked a
paradigm shift from traditional Convolutional Neural Net-
works (CNNs) [10, 11, 13, 15, 17, 18, 20, 30, 32, 43]. Trans-
formers offer flexibility by allowing long-range interac-
tions between distinct parts of an image. However, with
increased power comes increased cost. In this context,
the cost translates to a need for more computational re-
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Figure 1. Input interpolation and the corresponding network out-
put of a pretrained ViT across different depths. (Top) Two inputs,
x1 and x2, are connected by a linear interpolation, represented by
the colored line, with the purple star denoting the average of the
two features. (Bottom) Outputs f1 through f4 correspond to the
four MLPs from depths 1 to 4 of the ViT. Each MLP module is
sandwiched between two randomly initialized linear layers: one
maps the 2D input to the MLP’s dimension, and the other reverts
it to 2D for visualization. The output from layers f1 and f2 devi-
ates significantly from the linear interpolation (direct connection)
between them. This deviation poses challenges for average merg-
ing, potentially producing outputs that diverge from the model’s
learned distribution.

sources as resolution increases, particularly due to the self-
attention mechanism inherent in transformers. This height-
ened resource demand often hinders their deployment in
real-world, resource-constrained scenarios, especially on
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edge devices.
Recognizing the need for more efficient transformers, the

research community has taken strides in multiple directions.
One notable approach is to reduce the number of tokens,
which directly leads to an increase in speed. Token prun-
ing has emerged as a pragmatic strategy, wherein certain
tokens, considered less consequential to the overall perfor-
mance, are systematically omitted [36, 49]. This determi-
nation is rooted in auxiliary loss functions employed during
training, which assess the importance of each token. How-
ever, this method has its drawbacks. The need to train the
model to determine which tokens to prune compromises its
user-friendliness. Moreover, pruning a significant number
of tokens inevitably results in information loss.

In parallel with token pruning, another intriguing strat-
egy, ‘token merging,’ has emerged [3, 4, 31]. Unlike prun-
ing, which discards certain tokens entirely, merging con-
solidates them by averaging tokens that are similar. This
approach aims to minimize information loss, ensuring that
the most informative aspects of similar tokens are retained
even as their total count decreases. ToMe [3, 4] showcases
commendable performance across various tasks, from clas-
sification to image generation, and offers the added advan-
tage of being applicable to pretrained models without the
need for additional training.

With the emergence of ToME, a pivotal question arises:
While average merging excels in many contexts, does it con-
sistently overshadow the benefits of pruning? Put another
way, are there scenarios where pruning might still be as ef-
fective as, or even surpass, the simplicity of average merg-
ing? This paper delves deeply into this question, exploring
the nuances and strengths of each approach.

Amidst the discourse on token pruning and token merg-
ing, we present Token Fusion (ToFu). ToFu combines the
advantages of both strategies, adjusting according to the
model’s ‘functional linearity’ concerning its input. This
term refers to the degree to which a model’s output for in-
terpolated inputs aligns with a linear behavior. Given that
neural network blocks are inherently non-linear, the model’s
response to interpolated inputs, x1 and x2—like in the case
of average merging—might deviate from the outputs for the
individual inputs, f(x1) and f(x2). This observation is ev-
ident in Fig 1, where the actual MLP layers (layers 1-4) of
pretrained ViTs are studied. The 2D projection of an MLP’s
response to interpolated inputs emphasizes the variability in
functional linearity across different layers.

Specifically, through analysis, we find that token ‘prun-
ing’ gains the upper hand over averaging in scenarios where
subsequent operations are low in functional linearity. This
is attributed to the fact that the interpolation of inputs could
lead to misalignment in the output space, leading to po-
tential information loss or distribution shift. On the con-
trary, pruning directly operates on existing token represen-

tations, eliminating the challenge introduced by such inter-
polations. However, averaging is beneficial when the model
shows high functional linearity, because averaging permits
the model to aggregate information from multiple tokens,
capturing a more comprehensive and nuanced representa-
tion. Drawing from these insights, we integrate this ratio-
nale into a single unified algorithm.

Since Token Fusion combines both pruning and merging,
we seek to further refine the conventional average merging
technique. Standard token merging, in its averaging pro-
cess, fails to preserve the original feature norm. This can
potentially alter the feature distribution and adversely af-
fect its performance. In contrast, pruning leaves the feature
norms of the remaining tokens intact. To address the short-
comings of average merging, we introduce MLERP merg-
ing. Inspired by the SLERP technique, this method is tai-
lored to merge multiple tokens while conserving the norm
distribution.

We demonstrate that Token Fusion, a dynamic combina-
tion of pruning and merging tailored to each layer’s proper-
ties, excels over standalone token merging or pruning in Im-
ageNet 1K classification [9]. Specifically, ToFu not only de-
livers superior accuracy than ToMe but also operates faster.
Furthermore, when applied to stable diffusion image gener-
ation tasks [38], ToFu outperforms ToMe, producing class
conditional images more structurally akin to those gener-
ated using full number of tokens.

In summary, our paper contributions are
• Introduction of Token Fusion (ToFu), a method that

combines token pruning and token merging. ToFu dy-
namically adapts to each layer’s properties, ensuring
optimal performance based on the model’s functional
linearity with respect to the interpolation in its input.

• Presentation of the MLERP merging technique, an en-
hancement over traditional average merging, inspired
by the SLERP method. This approach merges tokens
while preserving their norm distribution, addressing a
significant limitation in traditional token merging.

• Empirical validation of ToFu’s advantage over token
merging and pruning in ImageNet 1K classification
and image generation task. Our results show dual ad-
vantages: heightened accuracy and faster speed.

2. Related Works

2.1. Efficient Transformer

The advent of Vision Transformers (ViT) marked a
pivotal shift in computer vision, presenting a compelling
alternative to traditional Convolutional Neural Networks
(CNNs) [10, 11, 13, 15, 17, 18, 20, 30, 32, 43]. By foster-
ing holistic interactions between image positions through
transformer blocks, ViTs addressed the inherent spatial con-
straints of CNNs. The significant computational cost of
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Figure 2. (Left) Token Fusion integration within a ViT backbone. Each Transformer block incorporates a token reduction operation,
denoted by R. In this illustration, R is invoked before the MLP. Using Bipartite Soft Matching (BSM), each R identifies r indexes with
the highest similarity, for example, r = 2 in this depiction. Notably, the depth of the layer determines the chosen merging strategy: early
layers use pruned merging, while later layers transition to average (or MLERP) merging. This dynamic approach accelerates ViT while
preserving most of the performance of full token inference. (Right) A visualization of different merging approaches for combining two
features, x1 and x2. All methods can be adapted to merge more than two features.

the attention modules has spurred efforts toward deploying
more efficient ViT models.

Numerous strategies have been proposed to curb the
computational demands of the attention mechanism in
transformers [2, 5–8, 29, 37, 39, 45]. Some noteworthy tech-
niques include approximation with hashing (or sparsity)
such as those presented in [6, 8], low-rank approximations
like [29], and a combination of both sparse and low-rank
approximation methods to further enhance performance, as
seen in [2, 37]. Moreover, [28] emphasized the redundancy
present within multi-head attention modules, advocating for
the removal of such redundancies for efficiency.

However, many of these adaptations primarily focus on
accelerating the attention module, which represents just a
fraction of the entire network. In contrast, our method em-
phasizes reducing the number of tokens, directly increasing
processing speed. Furthermore, our technique can be seam-
lessly integrated with works like [7] that aim to expedite the
computation speed of the attention module.

2.2. Learned Token Reduction

Efficiency in token usage within ViTs is often achieved
through learned token reduction, a technique that identifies
and eliminates redundant tokens. This generally necessi-
tates the training of auxiliary models to rank importance of
tokens in the input data [14,16,23–26,28,33–36,41,44,50].
For instance, DynamicViT [36] employs an MLP to learn
pruning masks, further refined with distillation. A-ViT [49]
introduces an efficient approach to ascertain halting proba-

bilities using the first channel of features, complemented by
auxiliary losses. Recently, GQA [1] ingeniously proposes
sharing key and value heads across groups of query heads,
bridging multi-head and multi-query attention.

However, the reliance on auxiliary module fine-tuning is
often seen as a drawback, prompting the search for meth-
ods that don’t require model fine-tuning. Our method, To-
ken Fusion, harmoniously integrates the strengths of both
pruning and merging, offering superior performance and ef-
ficiency without necessitating auxiliary module fine-tuning,
setting it apart from existing techniques.

2.3. Heuristic Token Reduction

In contrast to the learned token reduction techniques,
several works have proposed heuristic token reduction that
can be applied to the off-the-shelf ViTs without further
finetuning [3, 4, 14, 31]. Token Pooling [31] is one such
technique. Adaptive-Token Sampling [14] samples tokens
based on cls token’s similarity to other tokens in the atten-
tion map, with inverse sampling proving superior to top-k
sampling. However, a limitation of this method is its depen-
dence on the class (cls) token which may not be present in
dense prediction task such as image generation.

Recently, Token Merging [3, 4] has proposed a novel
non-training method which averages similar tokens based
on the efficient biparite matching algorithm. In contrast, To-
ken Fusion dynamically synergizes the benefits of pruning
and merging, while also addressing the inherent limitations
of average merging with MLERP merging.
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3. Proposed Method
In this section, we explain the details of Token Fusion.

The module is designed to be inserted into the ViT [11]
Transformer blocks. The module increases the model’s
speed minimal performance trade-offs.

Background For a standard ViT, consider an input fea-
ture denoted as X ∈ RN×C . Conventionally, a transformer
block processes as follows (omitting LayerNorm for the
sake of clarity):

X∗ = X+ ATTN(X) (1)
Y = X∗ + MLP(X∗). (2)

Approaches like token pruning or merging traditionally aim
to discover a function R that reduces the number of tokens
to gain computational efficiency. Specifically:

X∗ = RA(X+ ATTN(X)) (3)
Y = RM (X∗ + MLP(X∗)). (4)

Here, RA and RM transform from RN×C to R(N−r)×C ,
when r ≥ 0 for ATTN and MLP. For r = 0, RA and RM

would simply function as identity operations and for r > 0,
the output Y always retains a smaller number of tokens.

Token Fusion is a generalization of pruning and merging
in a unified algorithm. Central to its operation is the Bipar-
tite Soft Matching (BSM) algorithm [3], which discerns the
top r token pairs based on their mutual similarity. Specif-
ically, given two disjoint sets of tokens (SRC, DST), BSM
establishes edges between tokens in SRC and DST, assign-
ing weights based on token similarities. The algorithm then
selects the top r most similar pairs. Selected pairs are iden-
tified by their respective indexes idxSRC and idxDST. Upon
selection, r × 2 tokens are gathered by idxSRC and idxDST
from SRC and DST respectively. While every idxSRC re-
mains unique, the idxDST can recur, as multiple tokens from
SRC can be paired with the same token in DST.

3.1. Token Fusion

Given r similar tokens idxSRC and idxDST, from BSM
algorithm, we introduce three merging strategies that can
be harnessed to reduce the number of tokens.

Average Merging The most straightforward approach to
fuse tokens is through the average merging strategy. By
averaging, it seamlessly blends information from different
tokens, ensuring that no significant features are lost during
the merging process. First, the candidate tokens for merg-
ing, denoted as ‘src’, are extracted from the SRC based on
the idxsrc. This is represented as:

src← SRC.gather(idxsrc) (5)

Subsequently, these ‘src’ tokens are averaged into the DST
at their designated locations specified by idxDST. This is
efficiently implemented using the scatter reduce operation:

dst← DST.scatter reduce(src, idxdst,mode=“mean”) (6)

Mode=“mean” refers to averaging the scattered tokens at
each index including the DST tokens.

Pruned Merging Pruning refers to the elimination of to-
kens based on specified criteria. While traditional pruning
methods target tokens with low feature norms or employ
auxiliary models to predict token importance, our approach
employs similarity-based pruning, aligned with the princi-
ples of average merging. The tokens indexed by idxsrc and
idxdst are deemed to have high similarity. Our strategy piv-
ots on this observation by opting to discard the ‘src’ tokens,
premised on the understanding that redundant information
can be safely pruned if a similar representation exists in an-
other token. From the implementation perspective, this ap-
proach circumvents the operations detailed in Eq. 5 and 6,
thus offering faster execution than average merging.

Hybrid Merging Average merging operates on the pre-
sumption that the subsequent non-linear operations (be it
MLP or ATTN) maintain a certain ‘functional linearity’
with respect to their inputs. This means that even if we
interpolate between two inputs, the output should lie close
to the line joining the outputs corresponding to the two
original inputs. While complete adherence to this linearity
isn’t imperative, significant deviations can lead to compli-
cations, as illustrated in Fig 1, where the subsequent opera-
tion might stray from the anticipated trajectory, potentially
veering away from the known distribution.

In Sec. 3.1, we delve deeper into this property within
the ViT model, revealing that its early layers tend to exhibit
reduced functional linearity. To exploit this characteristic,
our strategy involves leveraging pruned merging in these
early layers, which is not affected by functional nonlinear-
ity. Conversely, as we navigate to the deeper layers that
retain a more linear functional behavior, we shift to the av-
erage merging technique. This dual-approach, aptly termed
as hybrid merging, ensures that we harness the strengths of
both merging methods at different stages of the model. With
a hyper-parameter d which can be between 1 and maximum
depth of the model L, we let for each layer l

method = PRUNE if l < d else AVG (7)

As evidenced in Sec. 4, the decision to employ pruned
merging in the early layers (for instance, when d = 6) and
to transition to average in subsequent layers considerably
bolsters performance.
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Figure 3. A plot of functional linearity as defined in Eq. 8, mea-
sured using a ViT-S pretrained on ImageNet and evaluated with
the ImageNet validation set. The interpolation pairs are chosen by
the BPE algorithm with r = 3. An increasing trend in functional
linearity is also observed in other sizes of ViT. This trend informs
our development of a hybrid merging approach in Token Fusion.

Functional Linearity Analysis To evaluate the func-
tional linearity of various layers in a pretrained ViT, we
propose a metric that gauges the ratio of the direct dis-
tance between outputs to the distance along the interpolated
path. Given a function f : RC → RC and two points
X1, X2 ∈ RC , we want to compute the average finite differ-
ence between outputs to approximatethe path from f(X1)
to f(X2). Suppose the changes in X be

X(t) = (1− t)X1 + tX2

where t is a scalar that varies from 0 to 1. And the magni-
tude of the change in the function is

∆f(t) = ∥f(X(t+∆t))− f(X(t))∥2
where ∆t is a small change in t, i.e) ∆t = 1

N−1 where N is
the number of points in steps t. Then the summation of the
change is

∑N−1
i=1 ∆f(ti). The Functional Linearity (FL) is

FL(f,X1, X2) =
∥f(X1)− f(X2)∥2∑N−1

i=1 ∆f(ti)
(8)

where ti is the value of t at step i. The more linear the
function, the higher the value will be. Perfect linearity is 1.

In Fig 3, we present the functional linearity of a pre-
trained ViT-S model, evaluated over 50,000 ImageNet im-
ages [9]. The pairs X1 and X2 are taken from the BSM
algorithm with r = 5 and f is set to be the MLP layer of
each Transformer Block. An ascending trend is evident in
the initial layers, and notably, as we approach the terminal
layers, the FL value converges remarkably close to 1.0. We
devise our hybrid merging using these characteristics which
can be found in various ViT sizes.

Algorithm 1 Token Fusion

1: Input: X, r,method
2: Output: Xreduced, idxsrc, idxdst
3: B,N,C ← shape of x
4: SRC, DST, idxSRC, idxDST ← partition(X)
5: idxsrc, idxdst ← bipartite soft matching(SRC,DST, r)
6: idxunchanged = idxSRC \ idxsrc
7: unc← SRC.gather(idxunchanged)
8: if method == ‘pruned’ then
9: dst = DST ▷ Not using idxsrc

10: else if method == ‘average’ then
11: src← SRC.gather(idxsrc)
12: dst← DST.scatter reduce(src, idxdst,mode=mean)
13: else if method == ‘MLERP’ then
14: src← SRC.gather(idxsrc)
15: dst← DST.scatter reduce(src, idxdst,mode=mean)
16: n←∥DST∥.scatter reduce(∥src∥,idxdst,mode:max)
17: dst← dst

∥dst∥ × n

18: end if
19: Xreduced ← concatenate([unc, dst], dim=1)

MLERP (Norm Preserving Average) Another crucial
observation is that average merging diminishes the feature
norm, i.e., || (x1+x2)

2 || ≤ max(||x1||, ||x2||). Given the piv-
otal role of feature statistics in domain adaptation [27] and
style transfer [21,22], a reduced feature norm indicates a de-
viation from the training distribution. A potential correction
for two-token merging is to utilize spherical linear interpo-
lation (SLERP) [40]. But, SLERP is structured for 2 sam-
ples, rendering it inapplicable for more than two samples.
Thus, we introduce a norm-preserving interpolation named
Maximum Norm Linear Interpolation (MLERP). For a to-
ken set {x1..., xK}, MLERP is expressed as:

x̄ =
1

K

K∑
k=1

xk (9)

MLERP({x1...xK}) =
x̄

∥x̄∥
× max

k=1,...,K
||xk||. (10)

MLERP computes the normalized average of the features,
then scales this normalized average using the maximum
norm of the individual vectors. Transitioning from simple
average merging to MLERP merging has demonstrably en-
hanced performance, as illustrated in Tab 1 and 2.

In summary, the Token Highway function
R(X, r,method) is outlined in Algorithm 1 using Py-
Torch pseudo-code. Here, r represents the number of
tokens to reduce, and method can be one of (pruned, aver-
age, or MLERP). For hybrid merging, method = pruned is
used for layer depth less than 6; otherwise, MLERP is used.
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4. Experiments

We evaluate Token Fusion (ToFu) using ImageNet [9]
trained via MAE [18] and AugReg [42] for classification
tasks. Additionally, we test ToFu in conditional image gen-
eration using Stable Diffusion [38]. We leverage pretrained
model weights from the official MAE [18] repository and
TIMM [48], and are tested across multiple ViT sizes.

The placement of ToFu’s reduce operation, R, mirrors
that of Token Merging [3, 4]. For classification, the settings
align with ToMe [3], with token numbers linearly decaying
by factor r. We position R before the MLP module, and not
before the ATTN layer. The similarity scores in Bipartite
Soft Matching derive from the key in the ATTN module.
For the Stable Diffusion image generation [38], we follow
ToMeSD [4], placing the reduce operation before the ATTN
layer in the highest resolution Transformer Blocks, using.
The similarity scores in Bipartite Soft Matching derive from
X as opposed to the key in ATTN module.

Our experiments are conducted on the same setting as
ToMe. Inference throughput is gauged on V100 GPUs in
FP32 mode, while FLOPs are determined using fvcore [12].
It’s worth noting that image generation speed (in imgs/sec)
as opposed to the FLOP is influenced by factors including
CPU performance and I/O times; hence, we measure speed
on our hardware to ensure consistent comparisons.

4.1. Classification Task

In the context of classification, we implement Token Fu-
sion with pretrained ViTs, assessing the balance between
ImageNet validation top-1 accuracies and the accompany-
ing efficiency improvements. Tab.1 and 2 provide an ab-
lation study of the components within our proposed mod-
ule. “ToFu AVG” denotes Token Fusion using PRUNED
merging for layers l < d and AVG merging otherwise.
“ToFu MLERP” refers to MLERP merging for conditions
where AVG merging is used. We set the depth hyper-
parameter d at 6 for all models. Thus, the contrast between
ToMe and ToFu AVG highlights enhancements from hybrid
(PRUNED and AVG) merging. Meanwhile, the compari-
son of ToFu AVG and ToFu MLERP underscores the ad-
vantages of substituting simple average merging with max-
imum norm merging, preventing the norm’s diminishment.

Ablation of Proposed Modules Tab. 1 and 2 detail the
performance enhancements seen in both ViT-B and ViT-L
when pretrained using MAE [18]. For ViT-B, the accu-
racy for r = 8 improves from ToMe’s 82.86% to 83.19%
with ToFu AVG, and 83.22% with ToFu MLERP. This is
compared to the full token model performance of 83.74%.
Additionally, these enhancements are coupled with a speed
advantage over ToMe. The benefits amplify with higher
reduction rates: at r = 20, top-1 accuracy jumps from

Figure 4. A plot comparing throughput (measured in images/sec)
and top1 ImageNet accuracy for ViT-B and ViT-L. The plot shows
that ToFu Avg outperforms ToMe in both speed and accuracy.
While ToFu MLERP surpasses ToMe in accuracy, its speed is
slightly reduced due to norm calculations. Nonetheless, the over-
all trade-off favors ToFu MLERP as its curve (green) is situated
further out compared to ToFu Avg’s curve (red).

67.54% to 74.06%, and speed improves from 736.91 to
745.40 images per second. This underscores the merits of
hybrid merging and the transition from AVG to MLERP
merging, both crucial in preserving performance while op-
erating with fewer tokens. Fig. 4 illustrates the efficiency-
accuracy trade-off for both ViT-B and ViT-L, with ToFu
MLERP emerging as the optimal choice, as evidenced by
its curve positioning in the upper right quadrant.

Ablation of d Table 3 ablates the influence of the hyper-
parameter d, which designates the transition layer between
PRUNED merging and AVG merging in ViT-B. By vary-
ing configurations from a complete PRUNE setup (denoted
as PPPPPPPPPPPP) to an all AVG scenario (notated as
AAAAAAAAAAAA), we rank ToFu’s performance based on
the top-1 accuracy on the ImageNet Validation set. The de-
lineation in performance between the top three and bottom
three configurations underscores the consistent advantage
of deploying PRUNE merging prior to AVG merging. A
direct comparison reveals that beginning with PRUNE and
then transitioning to AVG yields an accuracy of 80.17%,
whereas the reverse order (initiating with AVG and later
shifting to PRUNE) results in a diminished 77.73%. This
stark difference indicates the preferability of refraining
from interpolations in the input space during the prelimi-
nary layers. Our optimal results are derived with d = 6, and
this configuration is adopted for all following experiments.
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ViT-B
r = 8 r = 12 r = 16 r = 20

Acc Speed FLOP Acc Speed FLOP Acc Speed FLOP Acc Speed FLOP
Full Model 83.74 323.61 17.58 83.74 323.61 17.58 83.74 323.61 17.58 83.74 323.61 17.58

ToMe 82.86 413.67 13.12 81.82 489.72 10.93 78.88 607.30 8.78 67.54 736.91 7.14
ToFu AVG 83.19 417.74 13.12 82.43 494.41 10.93 80.43 615.53 8.78 72.19 748.75 7.14

ToFU MLERP 83.22 413.86 13.12 82.46 490.47 10.93 80.70 610.44 8.78 74.06 745.40 7.14

Table 1. Performance on ImageNet using ViT-B. As the reduction r increases, the inference speed (in images/sec) rises, but at the expense
of Top1 accuracy. ToFu AVG outperforms ToMe in both accuracy and speed, due to the hybrid merging. ToFu MLERP achieves better
results than ToFu AVG with a slight speed reduction. The trade-off between accuracy and speed favors ToFu MLERP, as shown in Fig. 4.

ViT-L
r = 8 r = 12 r = 16 r = 20

Acc Speed FLOP Acc Speed FLOP Acc Speed FLOP Acc Speed FLOP
Full Model 85.95 97.52 61.60 85.95 97.52 61.60 85.95 97.52 61.60 85.95 97.52 61.60

ToMe 84.22 182.05 30.99 60.65 266.32 20.90 13.52 350.20 15.86 4.97 427.64 12.86
ToFu AVG 84.51 182.82 30.99 65.89 268.02 20.90 16.91 353.16 15.86 6.98 432.04 12.86

ToFU MLERP 84.67 181.31 30.99 67.38 266.53 20.90 27.71 351.29 15.86 12.42 429.91 12.86

Table 2. Performance on ImageNet with the ViT-L model, utilizing d = 6. Across varying backbones and r values, ToFu MLERP
consistently surpasses ToMe. Given that ViT-L comprises 24 layers, its token reduction impact is more pronounced than in ViT-B. This
accounts for the sharper performance decline observed with increasing r values.

Acc1
Merge

Configuration
Num Prune Num Average

80.17 PPPPPPAAAAAA 6 6
80.00 PPPPPPPAAAAA 7 5
79.96 PPPPPAAAAAAA 5 7

... ... ... ...
77.85 AAAAAAPPPPPP 6 6
77.74 AAAAAAAAPPPP 4 8
77.73 AAAAAAAPPPPP 5 7

Table 3. Ablation study on hybrid merging strategies: pruned
merging (P) and average merging (A) with the ViT-B model. The
table evaluates ImageNet Top-1 accuracy across different merge
configurations. For instance, the configuration PPPPPPAAAAAA
represents d = 6, where the pruned merging is applied to the first
6 layers and average merging to the subsequent 6 layers.

Comparison with SoTA Methods Table 4 presents a
comparative analysis of Token Fusion against prior State-
of-the-Art techniques in token pruning and token merging
within the ViT-S framework. It is evident that ToMe not
only surpasses preceding methodologies but also stands out
alongside ToFu as the sole models operable without specific
training. Furthermore, their compatibility with batched in-
puts significantly amplifies the module’s usability.

4.2. Image Generation Task

Token Fusion (ToFu) is further extended to the text-
conditional image generation task using the Stable Diffu-
sion (SD) model [38]. The architecture of SD is charac-
terized by a U-Net shape, alternating between ResNet and
Transformer blocks. Within this design, the Transformer
block serves to integrate text-conditional data into the im-

Method Top1 FLOP img/s
Additional
Parameters

Batching
Compatible

DeiT-S 79.8 4.6 930 NA NA
A-ViT 78.6 2.9 - Yes No
DynamicViT 79.3 2.9 1505 Yes No
SP-ViT 79.3 2.6 - Yes No
ToMe DeiT

r13 79.4 2.7 1552 No Yes
ToMe AugReg

r13 79.3 2.7 1550 No Yes
ToFu AugReg

r13 79.6 2.7 1561 No Yes

Table 4. Comparison with SoTA token reduction methods. “Top1”
is the Top-1 accuracy on the ImageNet validation, while “FLOP” is
measured in GFLOPS.“img/s” represents the inference speed. The
column ”Additional Parameters” indicates whether the method ne-
cessitates training an auxiliary network. ”Batching Compatible”
shows if the method can reduce tokens with batched inputs.

age feature representation.
Following the configuration in [4], ToFu is incorporated

before the ATTN layer within the Transformer block, effec-
tuating a 50% reduction in the token count (i.e., r = 50%).
Since the subsequent ResNet requires the full number of to-
kens, tokens are unmerged to their original length, optimiz-
ing the computation speed in the ATTN module. However,
ResNet blocks and MLP layers remain unchanged.

The primary objective of applying ToFu in SD is to di-
minish token counts while ensuring performance remains
comparable to using full tokens. To evaluate this, 2 images
are sampled for each of the 1000 ImageNet class labels.
Each sample is prompted with A high-quality photograph
of a {CLASS}. Pairwise comparisons between ToFu, ToMe,
and the full token model are made, maintaining a consistent
random seed in each image generation.
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Figure 5. (First row) Images generated with SD v1.5 model using full tokens. (Second row) ToMe: r = 50%. (Third row) ToFu: r = 50%.
The random seed is consistent across each column. The comparison illustrates that ToFu maintains structural consistency in the images
more effectively, evident in the consistent head direction pose. However, both ToMe and ToFu compromise background details.

To gauge the effectiveness of image generation, three
metrics are employed: (1) FID [19]: Assesses the similar-
ity between class-conditional distributions of the full model
and reduced. (2) LPIPS [51]: Evaluates pairwise percep-
tual likeness. (3) MS-SSIM [46, 47]: Measures pairwise
structural consistency. Both LPIPS and MS-SSIM focus on
image-level pairwise comparisons, serving to quantify the
deviation from the full token with a fixed radom seed.

In Tab. 5, we present a comprehensive performance com-
parison. The FID scores indicate that ToFu’s image dis-
tribution aligns more closely with full token images than
ToMe does, signifying its superior capacity to maintain the
class conditional distribution. Furthermore, LPIPS and MS-
SSIM show ToFu’s proficiency in upholding both the struc-
tural and perceptual qualities inherent to full token images.

From an efficiency standpoint, ToFu exhibits a modest
edge over ToMe in image generation speed, boasting an ap-
proximate 32% enhancement when contrasted with the full
model. Fig. 5 shows a visual comparison of the generated
images from the full model, ToMe, and ToFu (with a re-
duction rate of r = 50%). This comparative visualization
explains why ToFu outperforms ToMe in three metrics as
ToFu maintains the structural content of full token images.
Such an accomplishment can be attributed to the early layer
Pruned Merging, which outclasses the AVG merging tech-
nique. And in UNet, early layer ATTNs are responsible for
setting the overall structural content of the image.

5. Conclusion

This paper introduces ”Token Fusion” (ToFu), an inno-
vative technique that seamlessly integrates the benefits of

FID ↓ LPIPS ↓ MS-SSIM ↑ Time ↓ Mem ↓
Full 0.00 0.00 1.00 4.67 sec/img 11.50G

ToMe 15.74 0.3133 0.7304 3.19 sec/img 9.31G
ToFu 14.72 0.2706 0.7618 3.16 sec/img 9.31G

Table 5. Performance of Token Fusion in conditional image gen-
eration using the Stable Diffusion method.

token pruning and token merging within Vision Transform-
ers. Guided by the understanding that a model’s functional
linearity varies with respect to input across different depths,
we consolidate both methods into a unified framework. Fur-
thermore, we present MLERP merging as a superior alterna-
tive to conventional average merging, ensuring feature norm
conservation and thus curbing distribution shifts. Empirical
evaluations reinforce ToFu’s efficacy, especially in classifi-
cation and image generation scenarios. Given these promis-
ing outcomes, we believe ToFu holds significant potential
for optimizing the deployment of ViTs on edge devices.

Limitations While Token Fusion (ToFu) has demon-
strated notable advantages in the context of Vision Trans-
formers, it is not without limitations. The technique’s de-
pendence on the hyperparameter d for determining the layer
at which PRUNED merging switches to AVG merging may
necessitate additional tuning for diverse datasets or archi-
tectures. Additionally, the benefits of ToFu predominantly
arise in scenarios where the functional linearity of the model
varies across depths. In cases where this variation is mini-
mal or negligible, the hybrid strategy has to be tuned.
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Christopher Ré. FlashAttention: Fast and memory-efficient
exact attention with IO-awareness. In S Koyejo, S Mohamed,
A Agarwal, D Belgrave, K Cho, and A Oh, editors, NeurIPS,
volume 35, pages 16344–16359, May 2022. 3

[8] Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexan-
dros G Dimakis. Smyrf-efficient attention using asymmetric
clustering. NeurIPS, 33:6476–6489, 2020. 3

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In CVPR, pages 248–255, June 2009. 2, 5, 6

[10] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming
Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and Baining Guo.
CSWin transformer: A general vision transformer backbone
with cross-shaped windows. In CVPR, pages 12124–12134,
July 2021. 1, 2

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, Oct. 2020. 1, 2, 4

[12] facebookresearch. fvcore. https://github.com/
facebookresearch/fvcore, 2023. 6

[13] H Fan, B Xiong, K Mangalam, Y Li, Z Yan, and J Ma-
lik. Christoph feichtenhofer. multiscale vision transformers.
2021. 1, 2

[14] Mohsen Fayyaz, Soroush Abbasi Koohpayegani,
Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and
Jürgen Gall. Adaptive token sampling for efficient vision
transformers. In ECCV, pages 396–414, 2022. 3

[15] Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaim-
ing He. Masked autoencoders as spatiotemporal learners.

In S Koyejo, S Mohamed, A Agarwal, D Belgrave, K Cho,
and A Oh, editors, NeurIPS, volume 35, pages 35946–35958,
May 2022. 1, 2

[16] Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje,
Venkatesan Chakaravarthy, Yogish Sabharwal, and Ashish
Verma. PoWER-BERT: Accelerating BERT inference via
progressive word-vector elimination. In Hal Daumé Iii and
Aarti Singh, editors, ICML, volume 119 of Proceedings of
Machine Learning Research, pages 3690–3699, 2020. 3

[17] Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre
Stock, Armand Joulin, Herve Jegou, and Matthijs Douze.
LeViT: A vision transformer in ConvNet’s clothing for faster
inference. In ICCV, pages 12259–12269, Oct. 2021. 1, 2

[18] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, pages 16000–16009, Nov. 2021.
1, 2, 6

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. NeurIPS, 30, 2017. 8

[20] Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski,
Michael Auli, Wojciech Galuba, Florian Metze, and
Christoph Feichtenhofer. Masked autoencoders that listen.
In NeurIPS, volume 35, pages 28708–28720, 2022. 1, 2

[21] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. In NeurIPS, volume 34,
pages 852–863, 2021. 5

[22] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In CVPR, pages 8110–8119,
Dec. 2019. 5

[23] Gyuwan Kim and Kyunghyun Cho. Length-Adaptive trans-
former: Train once with length drop, use anytime with
search. Oct. 2020. 3

[24] Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami,
Woosuk Kwon, Joseph Hassoun, and Kurt Keutzer. Learned
token pruning for transformers. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’22, pages 784–794, New York, NY,
USA, Aug. 2022. 3

[25] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng,
Mengshu Sun, Wei Niu, Xuan Shen, Geng Yuan, Bin Ren,
Minghai Qin, Hao Tang, and Yanzhi Wang. SPViT: Enabling
faster vision transformers via soft token pruning. In arxiv,
Dec. 2021. 3

[26] Carlos Lassance, Maroua Maachou, Joohee Park, and
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