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Abstract

We propose a new approach, Synthetic Optimized Layout
with Instance Detection (SOLID), to pretrain object detec-
tors with synthetic images. Our “SOLID” approach consists
of two main components: (1) generating synthetic images
using a collection of unlabelled 3D models with optimized
scene arrangement; (2) pretraining an object detector on

“instance detection” task—given a query image depicting an
object, detecting all instances of the exact same object in
a target image. Our approach does not need any semantic
labels for pretraining and allows the use of arbitrary, diverse
3D models. Experiments on COCO show that with optimized
data generation and a proper pretraining task, synthetic data
can be highly effective data for pretraining object detectors.
In particular, pretraining on rendered images achieves per-
formance competitive with pretraining on real images while
using significantly less computing resources. Code is avail-
able at https://github.com/princeton-vl/SOLID.

1. Introduction

Object detection is a key computer vision task. Currently,
state-of-the-art systems are trained on a large number of
manually annotated images. However, manual annotations
are costly to acquire; as a result, such reliance can potentially
become a bottleneck for further improvement. An important
question is whether additional performance gains can be
achieved by using alternative sources of data without manual
labels.

To reduce the dependency on manual labels, recent
work [3–5, 10–12, 14, 15, 17, 18, 23, 29, 30, 33, 36, 38, 47, 48,
54, 63, 64, 68, 71] has explored self-supervised pretraining,
which leverages the massive amounts of unlabeled images
online. Common approaches of self-supervision include con-
trastive learning [5, 12, 15, 17, 30, 33, 54, 68, 71], where a
network learns features invariant to known 2D image aug-
mentations, and reconstructive learning [4, 14, 29, 48, 63, 64],
where a network learns to predict missing/masked parts of
data using the rest.

*work done while a student at Princeton University

Despite many promising results, self-supervised
pretraining still faces significant technical challenges.
Contrastive approaches heavily depend on effective image
augmentations, which can be difficult to design beyond a few
simple 2D transforms. Reconstructive approaches can be
highly sensitive to the relevance of the reconstruction task to
downstream applications. For example, reconstructing raw
pixel intensities may not be as useful for object detection
where invariance to intensity changes is important.

On the other hand, synthetic data has been widely used to
supplement real images for many computer vision tasks, with
notable successes in 3D vision [8,39,42,44,59,61,65,72,73].
However, using synthetic data has yet to become common
practice for object detection, except in specialized domains
such as autonomous driving [1, 37, 50, 60]. One possible
reason for this discrepancy is that for synthetic data to work
well, they should closely approximate the real data (i.e. small
real-sim domain gap), but for object detection it is difficult
to generate synthetic data that matches real data in terms of
the diversity of objects and scenes. For example, it would be
extremely challenging to create a synthetic dataset to cover
all 80 object categories in the COCO benchmark [41], in-
cluding realistic compositions of scenes and varied instances
of each object category (e.g. varied dogs and cats). Thus it is
perhaps expected that outside specialized domain, synthetic
data would have a limited role to play for object detection.

In this work, we present a new result that defies conven-
tional wisdom: synthetic data can be surprisingly effective
for object detection, even with limited diversity and realism.
In particular, we can generate effective synthetic data
using only a collection of 3D models without any category
labels; pretraining on such synthetic data achieves results
competitive to self-supervised pretraining on real images.

We achieve this result through “Synthetic Optimized Lay-
out with Instance Detection (SOLID)”, a new approach we
introduce for pretraining object detectors. Our approach,
as illustrated in Fig. 1, consists of two main ingredients:
(1) generating synthetic images using a collection of unla-
beled 3D models, with optimized scene arrangement; (2)
pretraining an object detector on the “instance detection”
task [2,46]—given a query image depicting an object, detect-
ing all instances of the exact same object in a target image.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Overview of our approach. We generate synthetic images using unlabeled 3D models with optimized scene layout. We then
pretrain an object detector to perform instance detection: given a query object, detect all instances in a target image.

It is worth noting that our approach only uses unlabeled
3D models. That is, no semantic labels are necessary; in
fact, the 3D models can be arbitrary shapes that do not fit
into any known object category. Doing away with semantic
labels gets around the difficulty in generating 3D shapes that
conform to semantic categories (e.g. generating varied and
realistic 3D shapes of cats is an unsolved problem), allowing
the use of arbitrary 3D shapes which can significantly expand
the diversity of synthetic data. Coupled with this label-
free synthetic data is the instance detection pretraining task,
which, unsurprisingly, also requires no semantic labels. The
task is posed purely geometrically—finding in a target image
all instances of the 3D shape depicted in a query image.

Our instance detection task differs from the standard ob-
ject detection in that the input consists of two images, a query
image that specifies the object to detect, and a target image
in which to detect the instances of the object. The object
specified by the query image may be completely novel and
may have never been seen during training. In other words,
unlike standard object detection, there is no fixed, predeter-
mined list of objects or object classes to detect. During test
time, the network needs to detect all the instances given just
a single example of a new object.

Our “SOLID” approach is motivated by the hypothesis
that a significant source of difficulty of object detection is ge-
ometrical invariances, particularly invariances to occlusion,
illumination, and viewpoint. Such invariances are likely
learnable independent of category labels—an infant may
not know that the object she likes to play with is called a
“toy car”, but she can almost certainly find it in a photo ef-
fortlessly. This hypothesis naturally leads to the instance
detection task, which focuses the pretraining on learning
geometric invariances.

Given a collection of unlabeled 3D models, there are in-
finitely many possible synthetic images one can generate,
but only a finite subset of them can be used during pretrain-
ing and not all subsets are equally useful. We thus optimize

the parameters and design choices of the rendering pipeline
to maximize the effectiveness of the synthetic data. This
primarily involves the spatial layout of the objects in front
of the camera. A naive approach would be to try each pos-
sible layout, render a dataset, pretrain a model, fine-tune on
labeled data, and evaluate performance on a validation set of
real images. But this would be too expensive to be feasible.
Instead, we optimize the layout against a set of proxy met-
rics of scene complexity including object count, amount of
occlusion, and scale distribution, which we find to be good
indicators of the validation performance on real images.

The main novelty of work is a new pretraining method of
object detection that integrates two existing ideas: synthetic
data and instance detection. Neither synthetic data nor in-
stance detection is novel on its own, but to our knowledge no
prior work has combined the two for pretraining object detec-
tion. Our approach has unique advantages over existing alter-
natives. Compared to existing methods using synthetic data,
our approach does not require semantic labels, which means
that arbitrary 3D shapes can be used. Compared to existing
methods using real images, our approach allows 3D data
augmentations that are difficult to achieve with real images.

We evaluate our approach on the standard COCO [41]
dataset. We generate synthetic images using 3D models
from ShapeNet [13] and SceneNet [28], and pretrain
standard object detectors including Faster-RCNN [52]
and Mask-RCNN [31]. Experiments on COCO show that
pretraining on rendered images achieves performance
competitive with pretraining on real images, including
MoCov3 [19], DetCon [33] and SCRL [54], while using
significantly less computing resources. Our results demon-
strate that with our novel combination of optimized data
generation and a proper pretraining task, synthetic data can
be highly effective data for pretraining object detectors.
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2. Related Work
Supervised and Unsupervised pretraining for Object De-
tection Pretraining visual models including object detectors
has a long history. Early work [6, 35, 51] shows that pre-
training each layer with an unsupervised learning algorithm
before fine-tuning the network improves the network’s per-
formance significantly. A similar approach is also used
in a pedestrian detector [55]. Later, R-CNN [25] shows
that supervised pretraining on the ImageNet classification
dataset [21] significantly improves detection performance.
Since then, pretraining on the image classification task has
become a common practice in state-of-the-art object detec-
tors [57, 58, 74].

Recent approaches [12,15–17,19,30] based on contrastive
learning [27] has achieved competitive performance against
supervised pretraining on various downstream tasks. In con-
trastive learning, a network learns to predict similar embed-
dings for augmented views of the same image. But these
approaches rely on image-level features to predict the em-
beddings, which is not ideal for object detection. Newer
approaches have proposed new pretraining tasks that focus
on the object-level features. SCRL [54], ReSim-FPNT [68]
and DetCo [69] train a network to predict similar embed-
ding vectors between patches of the two augmented views.
Instead of patches, DetCon [33] uses regions that are seg-
mented by a graph-based algorithm. InsLoc [70] randomly
crops two overlapping patches from an image, paste them
onto different images and train a network to predict similar
embedding vectors between the patches.

UP-DETR [20] proposes a pretraining task where random
patches are extracted from an image and a network is trained
to localize them in the same image. DETReg [5] proposes to
train an object detector to predict bounding boxes generated
from the selective search algorithm [62] and to mimic the
output of a network trained with contrastive learning.

Our approach is similar to these existing approaches
in that our pretraining task can be thought of as a form of
contrastive learning—predicting embeddings to distinguish
image regions of the same object from other regions. But
our approach differs in that we use synthetic images instead
of real images. Using synthetic images allows us to easily
generate augmented versions of the same object with
occlusion and viewpoint change. Such augmentations would
be very difficult to generate for natural images.
Instance Detection The instance detection task has also been
studied by prior work. Ammirato et al. [2] and Mercier et
al. [46] suggest this task is useful for robotics and augmented
reality applications which often require recognizing a very
specific instance, and propose different approaches to the
task. Compared to these works, the novelty of our work is in
integrating synthetic data and the instance detection task to
pretrain object detectors.
Synthetic Training of Object Detectors Prior work has

also studied how to use synthetic data to train an object
detector. Peng et al. [49], Alhaija et al. [1], Hinterstoisser
et al. [34] and Tremblay et al. [60] generate the synthetic
data by rendering 3D models over a real world background
scene. The synthetic data are then used to fine-tune networks
pretrained on ImageNet.

Other work has obtained training data from computer
games for object detection and semantic segmentation.
Bochinski et al. [7] use Garry’s Mod to train a detector
for cars, persons and animals. Richter et al. [53] obtain data
for semantic segmentation in Grand Theft Auto. Shafaei
et al. [56] show that a network pretrained on synthetic data
collected from a game outperforms network pretrained on
real world data after fine-tuning. Data extracted from the
games may not come with foreground or background labels.
So extra steps such as background subtraction [7] or manual
labelling [53] are needed to identify foreground objects or
pixels.

Our method also uses synthetic data, but unlike these
existing approaches, we introduce a new pretraining task.
All of these prior works perform pretraining in the form of
standard object detection—the input consists of a single im-
age and the task is detect objects in a fixed, pre-defined; as a
result, the network needs to memorize through training what
each object in the list looks like. In contrast, our instance
detection pretraining task has two input images (a query
image and a target image), and the network only needs to
learn geometric invariances as opposed to the object-specific
visual features which are less transferrable to new domains.

3. Approach
Our “SOLID” approach involves two main ingredients:

generating synthetic images and pretraining a network on
instance detection–given a query image of an unknown ob-
ject, detecting all instances of the same object in a target
image. After pretraining, the pretrained object detector is
fine-tuned on a downstream dataset. Fig. 1 gives an overview
of SOLID.

3.1. Generating Synthetic Images

We generate our synthetic images by placing 3D models
from ShapeNet [13] into backgrounds from SceneNet [28].
There is a large space of possible layouts of the objects rela-
tive to the camera, but some of them are likely to be more
useful than others as synthetic data. We can find out the
usefulness of a subset of layouts by using them to pretrain
a detector and evaluate the validation performance on real
images, but this would be prohibitively expensive. Instead,
we propose a set of proxy metrics of scene complexity to
guide data generation. These proxy metrics can be evaluated
quickly without going through actual pretraining and capture
the known failure cases of object detection (crowded scenes,
occlusion, small objects, viewpoint change, etc.). Empiri-
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Figure 2. The first row shows query images and the second row shows target images.

cally we find these metrics to correlate well with the final
validation performance.
Proxy Metrics We use the following proxy metrics of scene
complexity:

• Average occlusion: For each object, in addition to
the usual segmentation mask mp used in the instance
segmentation task, we render a segmentation mask mf

by hiding other objects in the scene. The occlusion of
an object is defined as (nf − np)/nf where np is the
number of pixels in mp and nf is the number of pixels
in mf .

• Scale distributions: Following the definition in COCO,
we divide the objects into small, medium and large
objects by the number of pixels in their segmentation
masks. We then calculate the percentage of each scale.

• Object count: This is the number of visible objects in
the rendered image. Some objects may not be visible
in the rendered image because they may be completely
occluded.

Rendering Pipeline The scenes from SceneNet come with
3D models. We remove all 3D models in the scenes except
the ceiling, floor and wall before using them as backgrounds.

After initializing the background, we randomly place a
camera away from the center of the background and point it
toward the central area of the background to allow enough
space for placing the 3D models. Because there may be
walls in the background, we perform ray casting to find out
the nearest obstacle to the camera. If it is too close, we
sample another location until there is enough space to place
the objects. Only the locations within the viewing frustum
is considered in the subsequent steps, which improves effi-
ciency and ensures that at least part of the objects can be
visible in the final images. We randomly select, scale, and
rotate a 3D model and place it at a location where its 3D
bounding box does not intersect with 3D bounding boxes
from other models.

In our rendering pipeline, the spatial layout of objects is
influenced by several parameters and design choices, which

we optimize against our proxy metrics. Instead of randomly
placing a 3D model, we place it in front of or behind other
3D models with respect to the camera to increase the amount
of occlusion. To increase the object count, we pack more
objects into a scene by allowing them to be floating in the
air. We optimize the scales and the rotations of the 3D
models to have different scale distributions and include more
viewpoints for each object.

After placing all the objects, we apply three point lighting
to a random object in the scene to illuminate the scene before
we render the image. In all of our rendered datasets, we do
not run any physics simulation so that we have complete
control over the layout. We also render multiple query im-
ages for each object to be used in our instance detection task.
To render a query image, we place an object into an empty
background, rotate it along the z-axis and render an image
every 45 degrees. Fig. 2 shows some example target and
query images.

3.2. Pretraining with Instance Detection

Given a query image depicting an object, our instance
detection task is to detect the exact same instances of the
object in the target image.

Given an existing object detector, we propose a “wrapper”
architecture to pretrain an object detector on our instance
detection task as shown in Fig. 3. Our wrapper architec-
ture consists of two identical object detectors, one for the
query image and one for the target image. The first detector
predicts an embedding vector for the query image, while
the second detector detects objects in the target image and
predicts an embedding vector for each predicted box. The
embedding vectors should be similar if they depict the same
object. We use Faster R-CNN and Mask R-CNN as our
choice of detectors but other detectors such as one-stage
detectors can be used in this wrapper architecture. Below,
we use Faster R-CNN as an example to describe the details.

The first Faster R-CNN extracts an embedding vector qj
from a query image depicting an object j and does not predict
any box. The query image is padded so that it can be fed
into our network. We then use an RoIAlign layer to extract
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Figure 3. Our network architecture consists of two detectors. The first detector is applied to a query image to extract an embedding vector
for an object, which will be stored in a memory bank, and the second detector is applied to a target image to predict boxes and an embedding
vector for each box. We calculate the dot products between an embedding vector of a region to all of the embedding vectors in the memory
bank and apply contrastive loss, in addition to the standard regression loss and RPN loss. The first detector is updated by momentum while
the second one is updated by SGD.

features for the object to not include features from the padded
area. We also replace the classification head in this Faster R-
CNN with a fully-connected layer with 256 channels which
predicts an embedding vector from the features. Neither the
RPN nor the bounding box regressor in this Faster R-CNN
is used. Inspired by MoCo [30], we have a memory bank
that stores an embedding vector for every object.

There is a detail worth mentioning for updating the mem-
ory bank. We use multiple GPUs to train our detectors and
each GPU has its own data sampling process. Each process
chooses n query images for its batch of target images inde-
pendently. If there are more than n unique objects in the
target images, it randomly chooses n of them and picks one
random query image for each chosen object. Otherwise it
samples from objects that are not in the target images. As a
result each GPU uses different query images which creates
inconsistency between memory banks of different GPUs. So
before updating its memory bank, each GPU gathers the
embedding vectors from other GPUs.

The second Faster R-CNN detects objects in target image.
Similar to a conventional Faster R-CNN, it first predicts a
set of region of interests (RoIs) and then uses RoIAlign layer
to extract features for each RoI. Conventionally, the features
are then used for predicting bounding box offsets and classes.
Our wrapper architecture still predicts bounding box offsets
but it predicts an embedding vector ki instead of a class for
region i. We replace the classification layer with a fully-
connected layer with 256 channels and the class-specific
bounding box regressor with a class-agnostic one.

We then measure the similarities between a region and all
objects by calculating dot products between an embedding
vector of a region and all embedding vectors in the memory

bank. We apply a contrastive loss function:

Lcon = −
M∑
i=1

log
exp (ki · qci/τ)∑N
j=1 exp (ki · qj/τ)

(1)

where M is the number of regions, N is the number of ob-
jects, ci is the object for region i and τ is a temperature
hyper-parameter to train the detectors to predict similar em-
bedding vectors for the same object. We follow MoCov2 [17]
to set τ to be 0.2 for all of our experiments. This loss is only
applied to the foreground regions.

We use SGD to optimize the full training loss:

L = Lcon + Lreg + Lrpn (2)

where Lreg is the bounding box regression loss and Lrpn is
the loss for RPN. And we use momentum [17, 30] to update
the parameters in Faster R-CNN for query images with a
momentum coefficient of 0.999 and the gradients to update
the parameters in Faster R-CNN for target images.

4. Experiments
Implementation Details We use 3D models from
ShapeNet [13], which can be used for non-commercial re-
search, and indoor scenes from SceneNet [28], which is
released under creative commons license, to construct our
datasets. In our ablation studies, we use a subset of ShapeNet
models that are used by SceneNet RGB-D [45] and render
images at 320 × 240. In experiments where we compare
with existing approaches, we use all ShapeNet models and
render images at 640× 480.

We use Blender 2.92 1, an open source 3D computer
1https://www.blender.org
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Table 1. We render multiple datasets of one million images each to demonstrate how pretraining data affects the performance of a detector. We
also include SceneNet RGB-D for comparison. Fig. 4 shows the viewpoint distributions of Random Placement, Occlusion and Rotation.

Dataset Obj
Count Occlu. Scale Dist.

(s / m / l)
Rotation

Axes Scene COCO
AP

SceneNet RGB-D [45] 5.41 - 45% / 40% / 15% - SceneNet 36.6%
Random Placement 8.73 19% 18% / 52% / 30% Z axis White Cube 37.2%
Occlusion 7.73 32% 23% / 48% / 29% Z axis White Cube 37.2%
Scale Distribution 8.47 33% 32% / 37% / 31% Z axis White Cube 37.5%
Rotation 8.10 33% 35% / 36% / 29% All axes White Cube 37.7%
SceneNet Background 8.72 37% 38% / 34% / 28% All axes SceneNet 38.8%
More Objects 13.72 38% 33% / 39% / 28% All axes SceneNet 39.0%
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Figure 4. Viewpoint distribution changes with both the camera and object poses. In Random Placement and Occlusion, we only rotate
along the z-axis so the top and bottom viewpoints are not well covered. In Occlusion, we restrict the camera poses so that it is easier to
create occlusions between objects in the final images, which reduces the variations in viewpoints. In Rotation, we still restrict the camera
poses but we rotate the objects along more axes to cover more viewpoints.

graphics software, and BlenderProc [22], a Blender library,
to render images and generate bounding box and mask an-
notations. We use the Cycles engine from Blender to render
all images on GPUs. And we render one million images for
each of the dataset in our experiments.

We implement our approach in Detectron2 [67] and
use the default hyper-parameters, except the training
schedule and input resolution, to pretrain our detectors.
After pretraining, we initialize a downstream detector with
weights in the detector for the target image excluding
the classifier and regressor. To provide a fair comparison
with other works, we fine-tune the detectors with the
same schedule in each downstream setting, which will be
described in detail in later sections.

In our ablation experiments, during pretraining, we
reduce the input resolution to half of the default input
resolution. Our wrapper architecture is pretrained on 4
RTX3090 GPUs for 450k iterations with a batch size of
128 query images and a learning rate of 0.02. Each GPU
samples 128 query images with a resolution of 112 × 112.
When we compare our results with other approaches, we
use the default input resolution in Detectron2 and increase
the resolution of query images to 224× 224. We optimize

the learning rate schedule on COCO val2017 under the 1x
fine-tuning schedule. The wrapper architecture is pretrained
on 8 A6000 GPUs for 750k iterations with an initial learning
rate of 0.1 and a cosine annealing schedule [43]. The target
network uses batch normalization while the query network
uses exponential moving average normalization [9], a variant
of batch normalization designed for self-supervised learning.
Synthetic Optimized Layout We optimize the parameters
of our rendering pipeline against a set of proxy metrics so
that we maximize the effectiveness of the synthetic data.
We render multiple sets of synthetic images with different
proxy metrics and parameters. For each dataset, we pretrain
a Faster R-CNN [52] with a FPN [40] and ResNet-50 [32],
fine-tune it on COCO train2017 under 1x schedule and
evaluate it on COCO val2017. Tab. 1 shows the proxy
metrics of each dataset and the corresponding validation
performance. We also pretrain with SceneNet RGB-D [45],
which is a large scale synthetic dataset and consists of 5
million images, in Tab. 1 for comparison.
Random Placement: We start with randomly placing ob-
jects inside of a textureless cube. Each object is randomly
scaled between 0.4 and 2.0 and rotated along the z-axis. The
object is randomly placed in a location such that it does not
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Table 2. We compare our pretraining approach with existing pretraining approaches by fine-tuning a Mask R-CNN (2fc) with FPN and
R-50 on COCO train2017 under the standard 1x and 2x schedule, and evaluating it on COCO testdev. For each existing approach, we
fine-tune a Mask R-CNN using the provided pretrained weight to get the test AP. We also include both the validation APs reported by each
approach and validation APs reproduced by ourselves.

1x Schedule 2x Schedule
APbb APmk APbb APmk

reported
val

reprod.
val

test
reported
val

reprod.
val

test
reported
val

reprod.
val

test
reported
val

reprod.
val

test

Image Cls. 38.9 - - 35.4 - - 40.6 - - 36.8 - -
MoCov2 [17] 38.9 39.6 39.9 35.4 35.9 36.2 40.9 41.6 41.8 37.0 37.6 37.9
SwAV [12] - 40.0 40.5 - 36.6 37.2 - 42.1 42.5 - 38.2 38.7
DetCo [69] 40.1 40.0 40.3 36.4 36.2 36.6 - 41.5 42.0 - 37.6 38.1
ReSim-FPNT [68] 40.3 40.4 40.6 36.4 36.6 36.8 41.9 41.8 42.4 37.9 37.9 38.4
MoCov3 [19] - 40.7 41.1 - 37.0 37.5 - 42.2 42.6 - 38.4 38.6
DetCon2 [33] 42.7 41.5 41.8 38.2 37.6 37.9 43.4 42.5 42.8 38.7 38.4 38.7
SCRL [54] 41.3 41.6 42.0 37.7 37.5 38.0 - 42.8 43.2 - 38.7 39.0
InsLoc [70] 42.0 - - 37.6 - - 43.3 - - 38.8 - -
Ours - 41.4 41.5 - 37.3 37.5 - 42.1 42.8 - 38.0 38.6

collide with other objects and is on the floor. We randomly
place a camera at a height between 0.1m and 5.0m, and point
it toward a random point at a height between 0m and 2.0m
in the central area of the background. This gives us mostly
the eye-level and high-angle shots. The Faster R-CNN pre-
trained with this dataset achieves an AP of 37.2% on COCO
val2017.
Occlusion: Instead of random placement, the object is
placed in front of or behind other objects with respect to the
camera. The camera pose is adjusted to mostly eye-level
shots to create occlusions between objects in the image. This
increases the occlusion from 19% to 32% but reduces the
viewpoint variation due to more constrained camera place-
ment, as shown in Fig. 4. The AP stays at 37.2%. Later
we show that increasing viewpoint variation improves the
performance.
Scale Distribution: In the previous two configurations,
an object is randomly scaled between 0.4 and 2.0 and the
majority of the objects in the images are medium size. We
divide the range into three intervals, [0.1, 1.0], [1.0, 2.0] and
[2.0, 3.0], and randomly select an interval with a probability
of 0.7, 0.1 and 0.2 respectively. This adds more small objects
to the dataset and improves the AP from 37.2% to 37.5%.
Rotation: In this configuration, we not only rotate an ob-
ject along the z axis but also the x and y axes. This includes
more viewpoints of the objects in our dataset even if we are
mostly using eye-level shots. Fig. 4 shows how the view-
point distributions change between Scale Distribution
and Rotation. This dataset improves the AP from 37.5%
to 37.7%, which also explains why there is no improvement
in Occlusion.
SceneNet Background: We use backgrounds from
SceneNet and the AP improves from 37.7% to 38.8%.
More Objects: We put more objects into the scene by al-
lowing the objects to be floating. This increases the object
count per image from 8.72 to 13.72 and the AP from 38.8%
to 39.0%.

The above experiments show that our proxy metrics

are good indicators of validation performance. When we
compare with existing pretraining approaches later, we
build upon the More Objects configuration, using all 52k
models from ShapeNet and rendering images at 640× 480
instead of 320× 240.
Instance Detection versus Alternative Pretraining
Tasks We evaluate the effectiveness of our label-free in-
stance detection pretraining task by comparing it against
alternative ways of pretraining including one that uses se-
mantic labels. Using the SceneNet Background dataset,
we compare our pretraining against two baseline methods
to train the classifiers in the detector: (1) we treat each 3D
model as an independent class and we have 21k classes in
total; (2) we use the semantic labels in ShapeNet and group
the 3D models into 148 categories. With the first approach,
the training was unstable and diverged. With the second
approach achieves an AP of 38.1%. In comparison, the net-
work pretrained on our semantics-free instance detection
task achieves an better AP of 38.8%.
Comparisons with Existing Pretraining Approaches To
compare our approach with other pretraining approaches, we
pretrain a Mask R-CNN (2fc) with an FPN and a ResNet-50
on our synthetic data. Following [30], we then fine-tune it on
COCO train2017 under the standard 1x and 2x schedule
and the same fine-tuning settings. In Tab. 2, in addition to the
validation performance, we also include the test performance
for a fair comparison as our learning schedule is optimized
on the validation set under the 1x schedule. Since prior
work only report validation performance, we fine-tune the
network with the provided pretrained weights by ourselves
to get the test performance. Our reproduced APs are similar
to or better than the reported APs except for DetCon which
originally uses the TPU implementation of Mask R-CNN
and different data augmentations during fine-tuning. For the
network pretrained on ImageNet, the TPU version achieves

2DetCon originally uses the TPU implementation of Mask R-CNN
instead of Detectron2 and different data augmentation during fine-tuning.
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Table 3. We pretrain and fine-tune a Mask R-CNN (4conv1fc) with FPN and ResNet-50 by following the 400 epochs training schedule
from the train-from-scratch baselines in Detectron2. We pretrain the Mask R-CNN on our pretraining task for the first half of the training
schedule.

pretrain finetune APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 3x schedule 41.9 61.7 45.8 37.8 59.2 40.5
no 9x schedule 43.6 63.6 47.6 39.3 60.9 42.3
no 100 epochs + LSJ [24] 44.7 65.0 49.0 40.3 62.1 43.7
no 200 epochs + LSJ 46.3 66.7 50.7 41.7 64.1 45.0
no 400 epochs + LSJ 47.4 67.6 52.4 42.5 65.2 46.1
Ours 200 epochs + LSJ 47.8 68.2 52.7 43.0 65.7 46.6

Table 4. We fine-tune a Faster R-CNN with only 10%
of COCO train2017.

pretrain AP AP50 AP75

random 17.8 32.0 17.9
ImageNet 22.6 38.4 23.5
MoCov2 20.9 34.8 21.7
SimCLRv2 [16] 22.1 37.3 23.0
SwAV 25.5 43.3 26.4
BYOL [26] 25.5 42.3 26.9
SCRL 26.4 43.2 28.0
SCRL (reprod.) 26.7 43.3 28.3
Ours 26.3 41.3 28.2

Table 5. We evaluate our approach on the few-shot learning task.

10 Shot
Base Novel

AP AP50 AP75 AP AP50 AP75
ImageNet 32.9 52.2 36.3 8.8 17.4 7.9
DetCo 34.4 54.2 37.8 9.5 18.0 8.9
MoCov3 35.9 56.6 39.7 8.7 16.9 8.2
ReSim-FPNT 34.7 54.2 38.5 9.4 17.4 9.0
SCRL 36.0 55.9 39.5 9.9 18.8 9.4
SwAV 36.0 57.0 39.6 10.1 19.4 9.5
Ours 35.9 55.0 39.7 9.4 17.3 8.9

an AP of 39.6% while the Detectron2 version achieves an
AP of 38.9%. InsLoc modifies the architecture of Mask R-
CNN by adding four convolution layers to the bounding box
head, while other approaches use the architecture of Mask
R-CNN in MoCo. We include the reported number (which
is not directly comparable to other approaches) in Tab. 2
for reference. Our approach achieves results competitive to
the state-of-the-art pretraining approaches such as MoCov3,
SCRL and DetCon. It is worth noting that our approach uses
only 8 A6000 GPUs for pretraining while MoCov3 uses 16
V100 32G GPUs, SCRL uses 32 V100 GPUs and DetCon
uses 128 TPU v3 workers.
Pretraining versus Train-from-scratch He et al. [31] show
that a detector trained from scratch can be a strong baseline
if it is trained long enough. Detectron2 provides a train-from-
scratch baseline where it trains a Mask R-CNN (4conv1fc)
with an FPN and a ResNet-50 and strong data augmenta-
tion [24] for 400 epochs on COCO from scratch. This base-
line achieves an AP of 47.4%, while the baseline pretrained
on ImageNet only achieves an AP of 41.9%. To verify that
our pretraining still helps under a long fine-tuning schedule,
we follow the 400-epochs training schedule where we use
the first half for pretraining and fine-tune our network for
200 epochs. We use the same data augmentation and batch
size. Tab. 3 shows that our approach outperforms the strong
train-from-scratch baselines.
Low Data Regime Following SCRL [54], we evaluate our
approach in low data regime by fine-tuning the detector with
only 10% of COCO train2017 data, as shown in Tab. 4

which is adapted from SCRL. We also use the two-stage
fine-tuning approach (TFA) from FsDet [66] to evaluate our
approach on the few-shot learning task, as shown in Tab. 5.
The 20 classes that are in both COCO and PASCAL VOC
are used as novel classes while the 60 classes that are only
in COCO are used as base classes. Each novel class has 10
training examples. TFA first fine-tunes the whole network on
the base classes and then fine-tunes only the classifiers on the
novel classes. Experiments show that our approach achieves
results competitive to the state-of-the-art approaches.
Limitations Our “SOLID” approach mainly focuses on
the spatial layout of the objects when generating synthetic
images. But there are other aspects in the rendering pipeline
that can potentially generate more effective pre-training
data. Tab. 1 shows that using backgrounds from SceneNet
outperforms a textureless cube so it is possible that
even more diversified backgrounds would be beneficial.
Generating more photo realistic synthetic images may also
reduce the domain gap between real and synthetic images.
Conclusion. We have introduced SOLID, a new approach
to pretraining an object detector with synthetic data.
Our “SOLID” approach involves two main components:
(1) synthetics images generated from a collection of
unlablled 3D models with optimized scene arrangement;
(2) pretraining an object detector on the “instance detection”
task. Experiments on COCO show that synthetic data can
be highly effective data for pretraining object detectors.
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