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Figure 1. An illustration of a mixed scene and the influences of the layout guidance.

Abstract

The layout guidance, which specifies the pixel-wise ob-
ject distribution, is beneficial to preserving the object
boundaries in image inpainting while not hurting model’s
generalization capability. We aim to design an efficient and
robust layout-guided image inpainting method for mobile
use, which can achieve the robustness in presence of the
mixed scenes where objects with the delicate shape reside
next to the hole. Our method is made up of two sub-models,
which restore the pixel-information for the hole from coarse
to fine, and support each other to overcome the practi-
cal challenges encountered when making the whole method
lightweight. The layout mask guides the two sub-models,
which thus enables the robustness of our method in mixed
scenes. We demonstrate the efficiency and robustness of our
method via both the experiments and a mobile demo.

1. Introduction

In image inpainting, it remains a great challenge to pre-
serve the boundaries of objects residing next to the hole,
and we term such a scenario as the mixed scene, e.g.,
Fig. 1 (a). For example, in Fig. 1 (b), the airplane bound-
ary is contaminated during inpainting. The pixel-wise se-
mantic labels, which compose a semantic mask, can pro-
vide the layout guidance for preserving object boundaries,
so the topic of semantic-guided image inpainting attracts
attention, e.g., AIM 2020 Challenge on Image Extreme In-
painting [19]. However, the semantic guidance is in fact a
double-edged sword. Its first disadvantage is that the pixel-
information which a pretrained inpainting model can gener-
ate is limited by the semantic classes defined in the training

dataset, which thus restricts the generalization capability of
a semantic-guided method. The second disadvantage is that
the bias of the appearance of a semantic class in the training
dataset will further impair the generalization capability of a
semantic-guided method. For example, in Fig. 1 (c), SGE-
Net [11] preserves the airplane boundary well, but it gen-
erates the light blue sky for the hole instead of the reddish
brown sky which is similar to the contexts beyond the hole.
This is because the skies in the training dataset are usually
light blue, such that the SGE-Net memorizes this bias in the
training dataset. Compared to SGE-Net, SPG-Net [23] is a
much more lightweight method, but it is also impacted by
the bias memorization issue, which is demonstrated by the
clear hole boundary in its result.

In order to circumvent the aforementioned two disadvan-
tages in the generalization capability, we eliminate the se-
mantic labels in a semantic mask to form a layout mask. The
differences between a semantic mask and a layout mask are
two-fold. First, the indices of a semantic class are fixed
across different images according to the definition in the
training dataset, which is not necessary for the case of a lay-
out mask. This enables a layout-guided inpainting method
which is able to generalize to novel semantic classes which
have not been seen in the training dataset. In addition, the
semantic-agnosticism of the layout mask liberates an in-
painting method from memorizing the bias of the appear-
ance of semantic classes. Second, a semantic mask fully
covers the whole image plane, it is not necessary for a lay-
out mask to do so. This enables multiple convenient ways of
preparing the layout masks on a mobile device for image in-
painting. Given a full layout mask output by a segmentation
model, the hole can be filled either by the model inference,
e.g., the first stage of [23], or by user scribbling via a pen
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associated with the mobile device. Rather than relying on
a segmentation model to generate a full layout mask, users
can use a pen, e.g., Apple Pencil, to sketch a partial lay-
out mask which indicates the contexts for the hole. The al-
lowance of user scribbling or sketching on the layout mask
enable users to adjust the contour or shape of an object.

The goal of this paper is to design a robust and effi-
cient layout-guided inpainting method for the mobile end
which can overcome the shortcoming of the existing meth-
ods [7,9,11,23,27,29,31,35] in mixed scenes. Thus, the
design of our method is driven by challenges in making the
model lightweight and robust in mixed scenes. One phi-
losophy shared by the existing methods is to progressively
restore the pixel-information or textures for the hole from
outside to inside. This can be achieved by a neural net-
work with a considerable depth, which leads to the large
overhead. A much shallower network is required for the
sake of efficiency, but reducing the network depth leads to
insufficient receptive field for the network to handle large
holes. Therefore, it is desirable that before an image is fed
to the inpainting network, the hole can be roughly and ef-
ficiently restored by a nonparametric model, e.g., empirical
diffusion methods [2, 3, 17], which would significantly re-
lieve network’s burdens for dealing with the void hole re-
gions. However, the conventional diffusion methods are ag-
nostic to content being propagated, so the propagated con-
tents of different objects tend to be mixed for large holes,
which causes artifacts. Thus, we propose a new layout-
guided diffusion method which efficiently propagates the
over-smoothed textures toward the hole regions.

After the rough restoration by the layout-guided diffu-
sion method, we refine the pixel-information of the hole
using a shallow refinement network. Between the encoder
and decoder in the network, we attempt to add the widely
used contextual attention mechanism [30] which can esti-
mate the relevance of contexts, sample the potentially rel-
evant contexts from the image plane, and aggregate them
to refine the pixel-information of the hole. The contex-
tual attention should be a necessary supplement to make
up for the limited receptive field of our shallow network.
Yet, the contextual attention exposes two drawbacks when
being placed in the refinement model. The first drawback
is that the estimation of the context relevance, i.e., atten-
tion weight, is unreliable for scenes with various semantic
classes, causing the ambiguity artifacts. The second draw-
back is caused by our first effort to improve the efficiency,
i.e., layout-guided diffusion method which outputs over-
smoothed pixel-information. As such, the nearby hole re-
gions of the same object share quite similar textures, and the
texture diversity becomes even lower for these regions after
the context aggregation for them, which causes the repet-
itive grid artifacts. To overcome these two drawbacks, we
propose Top-X attention which samples the top-ranked rele-

vant contexts with resort to the guidance of the layout mask,
and use an adaptive dropout mechanism to enable the diver-
sity for the sampled contexts. Thus, the Top-X attention
and the layout-guided diffusion method support each other
to make their respective efforts for efficiency and robustness
meaningful.

As shown in Fig. 1, our method is robust in presence
of mixed scenes thanks to the effective usage of the lay-
out mask. We demonstrate the robustness of our method in
mixed scenes against the others on a dataset merged from
subsets of COCO [13] and ADE20K [37]. In terms of the
efficiency, our method achieves at least 83.2% smaller in pa-
rameter size and the lowest computational cost. We prove
the efficiency and the practicability of our method through a
mobile demo on a Snapdragon 865+ with around 2 seconds
on average in latency.

2. Related Works

Semantic-guided image inpainting is a problem formu-
lation that is most related to ours, which attracts attention
recently because the semantic mask can provide the layout
guidance to address the mixed scenes. The Track 2 of AIM
2020 Challenge on Image Extreme Inpainting [19] is about
the semantic-guided image inpainting, of which the results
found that the semantic information can both increase and
decrease the performance on the inpainting task, based on
how its processing was implemented in the model. There-
fore, it is nontrivial to study how to make use of the lay-
out guidance. There are only a few existing methods focus-
ing on the semantic-guided image inpainting. For example,
Song et al. [23] proposed a two-stage network, in which the
first stage restores the hole regions of the semantic mask,
and the second stage restores the hole regions of the im-
age. Liao et al. [11, 12] proposed to estimate the semantic
mask on the fly, and the estimated mask is injected back to
influence the intermediate feature maps. An inherent disad-
vantage of the semantic-guided image inpainting methods is
the restricted generalization capability. This is because the
neural network parameters that process the semantic mask
(which is represented as a multi-channel tensor) are fixed
after training, and when a new semantic class occurs (a new
channel needs to be added in the tensor), in order for the
neural networks to process the new semantic class, the net-
work has to be retrained.

Empirical diffusion inpainting methods [1-3, 1'7] propa-
gate the information of neighboring non-hole regions to the
hole according to appearances, structures or both. As men-
tioned in §1, these nonparametric methods are not robust for
large holes.

Influences of hole regions. Hole regions of the input im-
age are usually initialized with zeros or mean values of the
whole image. This often leads to artifacts such as color dis-
crepancy and blur. To resolve this problem, Liu et al. [14]
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propose the partial convolution which maintains a mask
within a convolution operation to zero out values within the
hole and normalize the convolution result, and updates the
mask gradually following a predefined rule. Then, Xie et
al. [27] and Yu et al. [31] improves the partial convolution
by generalizing the rule-based mask estimation and updat-
ing mechanism to the learnable ones.

Coarse to fine. Apart from methods based on the one-
pass U-Net [7, 14, 15,27,32], there are many methods fol-
lowing the coarse-to-fine pipeline [18,22,28-31]. Most of
them include two stages. Their first stage focus on restor-
ing the coarse information such as edges [!18], the edge-
preserved image structure [22], the contour of foreground
object [28], monochromic image [25], and the coarse tex-
tures [5, 16,21,29-31,33]. Their second stage restore the
fine-grained textures based on the restored coarse informa-
tion at the first stage. Compared to the edges [ 18], the lay-
out mask contains richer layout information, i.e., the layout
correspondence between the hole regions and the non-hole
regions. With such a layout correspondence, it is much eas-
ier for a method to locate the valid non-hole contexts for
each hole region.

Large holes. There are some recent works attempting
to address the large hole challenge. Suvorov et al. [24]
introduced the fast Fourier convolutions to image inpaint-
ing for the sake of accessing image-wide receptive field at
early layers. Li et al. [9] introduced the transformer archi-
tecture to the image inpainting to capture the long-range
dependencies of contexts. Zheng et al. [36] proposed the
cascaded modulation GAN to capture both the long-range
dependency and high-level semantics of an image. Li er
al. [10] posed the image inpainting task as a filtering prob-
lem, and proposed a novel technique named multi-level in-
teractive siamese filtering.

Shape-guided object inpainting is another topic that is
related to our layout-guided inpainting problem. [4] first
completes the invisible part of a segmentation mask, and
then generates the invisible image textures based on the
completed segmentation mask. The difference between the
problem in [4] and our problem is that [4] focuses on in-
painting one object at a time, while we aim to inpaint an
arbitrary number of objects at the same time. [8] studies
the shape-guided video object inpainting problem. Specifi-
cally, [8] makes use of the temporal information to complete
the occluded object shape, and then uses the completed ob-
ject shape to recover the object flows. Finally, [8] inpaint
the occluded image textures based on the recovered object
flows and the completed object shape. The difference be-
tween the problem in [8] and our problem is that [8] makes
use of the additional temporal information to inpaint the ob-
ject, while we have no such information available. Given an
object shape, [34] first predicts its semantic class, and then
based on the semantic class, it generates the image textures

within the object shape. [34] aims to generate a novel object
which does not appear in the input image while our method
attempts to fill the partially missing regions of objects in the
input image.

3. Method

Our method restores the textures for the hole from coarse
to fine in two stages. In the first stage, the layout-guided dif-
fusion method restores the coarse textures for the hole, and
outputs the coarse image. In the second stage, the coarse
image is refined by a refinement model which is equipped
with the Top-X attention. The layout mask is used as in-
put in both stages. The design philosophy of the two sub-
models is to support each other in order to overcome the
encountered practical challenges when making the whole
method efficient and robust.

3.1. Layout-guided diffusion method

The reduction of the network’s depth is of great bene-
fit to the efficiency, but the resulting receptive field of the
network will be overstretched for the large hole. In order
to complement the shortcoming of the shallow network, we
propose a layout-guided diffusion method, which can re-
store the coarse textures for the hole regions in an efficient
nonparametric fashion. Specifically, the layout mask guides
the diffusion method to propagate the textures of the non-
hole regions to the hole regions of the same class.

Fig. 2 shows the pipeline of the layout-guided diffusion
method, which is an iterative process with three sub-steps
in each iteration. The hole regions are initialized with all
zeros. There are three classes in the input image, which are
colored in blue, green and orange, respectively. According
to the layout mask, the hole regions belong to either the
blue class or the green one. The orange class resides next
to the hole, which thus leads to a mixed scene. In order
to shield against the artifacts brought by mixing different
classes, we split the image plane by the class distribution.
In Fig. 2, we mark regions of the other classes with the brick
patterns, which are fixed to zero constantly throughout the
whole process.

Then, we aggregate the neighboring contexts as the con-
tent for the hole. The more distant a non-hole region is to
a hole region, the lower impact it should have on this hole
region. Thus, we employ a 2D Gaussian kernel of which
the weights follow a 2D Gaussian distribution with the cen-
ter placed at the square kernel center. For each hole region,
we aggregate its contexts by performing the 2D convolution
centered on it with the 2D Gaussian kernel, and we name
such an operation as “Gaussian Blur”, i.e., Sub-step (D in
Fig. 2:
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Figure 2. The iterative pipeline of the layout-guided diffusion method, which contains three steps within each iteration. Three semantic
classes are marked in blue, green and orange, respectively. The white and black in the split binary layouts represent values 1 and O,
respectively. The gray in the blurred layouts represent values between 0 and 1.

where W € RK K represents a K x K Gaussian kernel,
with each entry belng positive. H represents a K x K
slice of input, i.e., split contexts or split binary layouts.
® denotes the Hadamard product. ¢(W,H) represents
the Gaussian Blur operation which consists of two sub-
operations, i.e., the Hadamard product between W and H,
and the normalization through the division of the Hadamard
product by the grand sum of W. We set K = 15 in practice.

The context aggregation for a specific hole region should
be exclusive to only the non-hole regions. In (1), the
Hadamard product operation complies with this rule be-
cause of the zero values in hole regions. However, the nor-
malization operation violates this rule because the grand
sum considers all regions indiscriminately. Therefore, we
need to re-normalize the results of Gaussian Blur by elimi-
nating influences from other hole regions.

Thus, we design a re-normalization module, i.e., Sub-
step @ in Fig. 2, and we use the blurred layouts output by
Gaussian Blur as the denominator for the re-normalization.
Let H® denote a slice of split binary layout, and we define
an index set as Q = {4, j|HY, = 1}. The blurred layout
can thus be computed by inserting H® into (1), removing
the expression in the Hadamard product operation involving
Hf ; = 0, and reducing the expression in the Hadamard

product operation involving Hf ;=1
9(W,H%) = Wi, @)
SIS W, z wo, 2,

Then, the re-normalized aggregation result b’ for a specific

hole region can be computed by having (1) divide by (2).

- Z,JEQWZJZZ (W o H), . @)

i

As shown in Fig. 2, these aggregation results constitute the
diffused split contexts. In order for the new layout masks to
correspond to the diffused split contexts, we round up the
blurred regions' with values between 0 and 1 in the blurred
layout mask to 1, i.e., Sub-step 3 in Fig. 2. The diffused
split contexts and diffused split binary layouts are fed to the
next iteration as inputs. After several iterations, all coarse
textures will be restored in the diffused split contexts which
can be merged to form the coarse image.

3.2. Refinement model with Top-X attention

Given a coarse image restored by the layout-guided dif-
fusion method as input, we use a refinement model to enrich
its texture details. As shown in Fig. 3 (a), the refinement
model consists of three major components, i.e., (i) a shared
encoder for encoding both low-resolution (LR) and high-
resolution (HR) coarse images, (ii) Top-X attention mod-
ule for aggregating the contexts for each region, and (iii) a
decoder for reconstructing textures of the non-hole regions
and restoring those of the hole regions, and outputs the HR
refined image. Inspired by [35], in order to save the com-
putational cost, we perform the attention estimation at low

IThe blurred regions in the blurred layout masks correspond to the
newly diffused area in the diffused split contexts.
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Figure 3. (a) Refinement model with Top-X attention. The red dotted box encloses the detailed dissection of Top-X attention module.
We mark the restored hole regions using red arrows, which can be observed via the over-smoothed textures (restored by the layout-guided
diffusion method) on high-resolution (HR) coarse image and the normal textures on HR refined image. The two steps of Top-X attention
module are marked with the circled numbers: () marks the computation of layout-guided attention weights (reflected by the curved arrows
pointing from and to the same object layout), and (2) marks the adaptive dropout of the computed attention weights based on the saturation
standard deviation computed from the input coarse image. The dropout regions of attention weights are highlighted in red. (b) “Contextual
attention” vs. “Top-X attention” in effects. The first column shows images with holes (red). The red dotted boxes enclose the artifacts.

resolution. The shared encoder and the decoder are normal
convolutional network of which the architecture details are
presented in the supplementary.

We revisit the contextual attention mechanism [30] be-
fore diving into the introduction of Top-X attention mech-
anism. In order to exploit the useful global contexts which
are far away from the holes, Yu et al. proposed the con-
textual attention mechanism, which aggregates and projects
the information of the non-hole regions to hole regions ac-
cording to the estimated patch similarities, i.e., attention
weights. The role of contextual attention is crucial to us,
because the global contexts sampled by the contextual at-
tention can make up for the insufficiency of the receptive
field size due to the shallow depth of the refinement model.

Let h; and h; denote the features at location ¢ and j from
the input feature maps, respectively. Let s; ; denote the at-
tention weight of location ¢ paid to location j, which can
be computed as s, ; = exp (« - cos(hi, h;))/ Son exp (a -
cos(h;, hi)), where cos(-) represent the cosine similarity
function. « is a hyperparameter that enlarges the range of
cosine similarity, and increases the attention paid to the rel-
evant locations. In practice, « is set to 10.

The contextual attention has two drawbacks. First,
it cannot exclude the influences from contexts of other
classes, because the estimated attention weights are not
accurate enough. This causes the ambiguity artifacts for
scenes with various classes as shown in Fig. 3 (b). The sec-
ond drawback is triggered by our layout-guided diffusion

method which outputs the over-smoothed textures. So the
nearby hole regions of the same class share quite similar
textures. Thus, the contextual attention will give these re-
gions similar attention weights over the similar sets of con-
texts, which causes the repetitive grid artifacts in Fig. 3 (b).
Top-X attention mechanism is proposed to overcome
these two drawbacks. Suggested by its name, “Top-X”, this
mechanism randomly samples “X” number of top-ranked
relevant contexts to aggregate for each region. As shown in
Fig. 3 (b), the Top-X attention can resolve the ambiguity ar-
tifacts and grid artifacts effectively. As shown in Fig. 3 (a),
Top-X attention includes two steps. The first step computes
the layout-guided attention weight as

X 5(0i = 05) exp (cv - cos(hi, hy))
Si,j = N o ) (4)
> 0(0i = ok) exp (- cos(hi, hr))

where o; denotes the index of the class to which the i*"
patch belongs. 4(-) is a delta function that outputs 1 when
the condition is true, and O otherwise. By (4), only the
patches of the same class, which are usually top-ranked, are
considered to be the valid contexts. In this way, we can ex-
clude the negative influences from the contexts belonging
to the other classes. If a partial layout mask is provided, the
class index for the white area without the layout guidance
will be 0, and the class indices for areas with the layout
guidance will be positive integers.

In order to resolve the grid artifacts in Fig. 3 (b), the
second step of the Top-X attention is to randomly sample
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Table 1. The quantitative experiments and efficiency comparison. 1 (}) means the higher (lower), the better. The best performances are
highlighted in bold. Block named “Fair” (“Unfair”’) indicates methods with the same (different) inputs as ours. The asterisk means that a
method only releases the executable file or API of its pretrained model or its training code is not useable. The “Unfair” block can show
broader context of this comparison, and show more insights about the influences of the input semantic mask on other methods. THOP [3§]

can only measure the computational costs of deep learning models, so it cannot measure those for PatchMatch [1]. THOP [

] also failed

to measure the computational costs of MAT [9] due to its unusual implementation fashion. We measure the latency and memory on a
Nvidia Titan X GPU. The latency and memory of PatchMatch is unavailable because it runs on CPU.

Method FID| | SSIM1 | Params M) | | MACs(G)J | Latency (s)) | Memory (G) |
5 | Ours 11.79 0.9587 0.48 8.20 0.04 0.62
§ Ours w/o layout-guided diffusion method | 15.78 0.9555 - - - -
2 Ours w/o Top-X attention 12.98 0.9586 - - - -
SPG-Net w/ mask [23] 16.66 0.9193 96.34 71.33 0.03 0.96
5 LBAM w/ mask [27] 12.17 0.9215 - - - -
i~ | FreeForm w/ mask [31] 13.23 0.9213 - - - -
EdgeConnect w/ mask [18] 16.19 0.9554 - - - -
PatchMatch w/ mask [ 1] 13.47 0.9449 - - - -
SGE-Net [11] 23.20 0.7986 73.61 212.34 0.08 1.57
LBAM [27] 13.60 0.9205 68.30 22.08 0.02 0.88
= | FreeForm [31] 14.24 0.9212 16.17 99.08 0.06 0.76
‘é EdgeConnect [ 18] 17.39 0.9552 21.54 122.56 0.04 0.62
= | PatchMatch [1] 20.92 0.9285 N/A N/A N/A N/A
DFNet* [7] 12.03 0.9568 32.88 9.71 0.01 0.74
IterFdbk* [35] 12.60 0.9063 19.46 116.68 0.07 0.63
CRA* [29] 21.57 0.8579 2.84 41.47 0.05 0.64
MAT* [9] 14.16 0.7969 FAILED FAILED 0.09 1.11

the top-ranked contexts for each hole region, such that we
can avoid the grid artifacts by improving the diversity in the
context aggregation for different regions. Thus, we propose
the adaptive dropout. In the red dotted box of Fig. 3 (a), we
illustrate that the (red) attention weights for hole regions are
processed by the adaptive dropout module, and the number
of such attention weights becomes fewer (shorter in length)
than those attention weights for the non-hole regions. The
dropout rate is determined adaptively according to the ap-
pearance similarities among hole regions. Intuitively, the
higher appearance similarities are, the higher dropout rate
is desired to ensure the diversity in the context aggregation.
In practice, we observe that the standard deviation of the
color saturation reflects the appearance dissimilarity prop-
erly, so we design a formula to estimate the dropout rate for
an image based on its standard deviation of the saturation:

rate = min (max ((—std + ) x 7,0)7 0.9)7 5)

where $ and  denote the bias and slope, respectively, and
we empirically set 3 = 80 and v = 0.008. The min and
max functions clip the dropout rate to the range [0, 0.9]. We
train the refinement model using the L1 loss. The training
details can be found in the supplementary.

3.3. Efficiency discussion

The reasons why our method is lightweight and efficient
are three-fold. First, our layout-guided diffusion method is
nonparametric, and its three sub-steps (Gaussian Blur, Re-
normalization, and Round Up) are all very efficient. Sec-
ond, thanks to the coarse image restored by the diffusion

method, our refinement model can be very shallow because
the network’s burdens are significantly relieved. Third, we
employ the shared encoder for our refinement model and
perform the attention estimation at low resolution.

4. Experiments

Dataset. We process the semantic mask annotations to
simulate the layout mask. There are no large-scale (> 50K)
inpainting dataset with the semantic mask annotations, so
we collect the outdoor images from both COCO [13] and
ADE20K [37] datasets, and create a dataset with nearly
53.4K training images and 1K test images. Similarly to
[35], we prepare the hole regions by randomly overlaying
16,000 real object instance masks onto the image plane,
and the object masks are harvested from the instance seg-
mentation annotations of COCO dataset. The reason why
we do not use the dataset of AIM 2020 Challenge on Image
Extreme Inpainting is because their online evaluation entry
has been closed for years.

Evaluation metrics. We adopt two widely used quantita-
tive evaluation metrics: Frechet Inception Distance (FID)
[6] and Structural Similarity Index (SSIM) [26]. FID mea-
sures the authenticity of the restored textures. We use SSIM
to measure how well the object boundaries are preserved in
the inpainting result, so we calculate the SSIM on the image
gradient level which can better reflect the edge sharpness
than the RGB images do. As for measuring the storage and
computational cost, we use THOP [38] to measure the pa-
rameter size for the storage cost, and measure the multiply-
accumulate operations (MACs) for the computational cost.

8455



FreeForm [29]

LBAM [25] SGE-Net [9] PatchMatch [1]

Input w/ Ours
ground-truth image
textures in the hole MAT [7]

(@

(b)

FreeForm w/ mask [29]

LBAM w/ mask [25] SPG w/ mask [21] PatchMatch w/ mask [1]

Figure 4. Qualitative comparison in mixed scenes. The top table indicates the display order. Textures enclosed by the red contours in
the first column are to be restored. Due to the space limit, the results of other methods and more results of these displayed methods are

presented in the supplementary material.

All reported quantitative results are obtained from the reso-
lution of 256 x 256.

4.1. Ablation study

For ablation study, we create two baselines by disabling
each key component of our method: (i) To disable the
layout-guided diffusion method, we follow the way of the
majority of works to prepare the input to the model, i.e.,
initializing the image hole regions with mean values, and

concatenating the input image with a binary mask indicat-
ing the hole area. (ii) We replace the Top-X attention mech-
anism with the contextual attention mechanism.

Layout-guided diffusion method. As shown in Table 1,
removing the diffusion method causes significant perfor-
mance drop both quantitatively and qualitatively. This
shows the importance of the efficient nonparametric diffu-
sion method to our method, which makes significant contri-
butions to both the robustness and efficiency. In addition, it
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also supports our aforementioned claim that the reduction of
network depth may cause the insufficiency of the receptive
field size, which hurts the inpainting result. Note that we
do not show the results of the diffusion method due to the
space limit. Please refer to the supplementary for results.

Top-X attention. After we replace the Top-X attention
with the contextual attention, we observe the obvious down-
grade for FID and steady SSIM. In terms of FID, it means
that the Top-X attention mechanism plays an important role
in generating meaningful macro textures. The steady SSIM
means that our diffusion method can effectively undertake
the duty of preserving the delicate shapes of objects during
inpainting.

4.2. Comparison with other inpainting methods

We compare our method with ten existing methods
[1,7,9,11,18,23,27,29,31,35]. Note that we do not com-
pare our method with those participated in the AIM 2020
Challenge on Image Extreme Inpainting [19] because those
methods do not release their code. Table 1 and Fig. 4
show their quantitative, qualitative and efficiency compar-
isons, respectively. They show that though our method
yields much lower both computational and storage over-
head, it still achieves the best image texture and structure
quality. Among the eleven compared methods, there are
seven of them [1,9,11,18,23,27,31] with the code avail-
able. Except [11]% and [9]°, we modify the other five meth-
ods [1,18,23,27,31] to take exactly the same input as ours.
To modify the deep learning methods [18,23,27,31], we
concatenate their original input with the semantic mask and
adjust the input dimension of the first layer, and retrain
them on our dataset. PatchMatch [1] is a conventional diffu-
sion based method, so we use the layout mask to constrain
its patch matching such that only the patches of the same
semantic class can be used to fill the corresponding area
within the hole. As for methods without code [7,29,35], we
still show their results output by their executable file or API
of their pretrained models, in order to provide readers with
broader context of the comparison.

In Table 1 and Fig. 4, we use the postfix “w/ mask™ to
mark six methods which share the same input as ours. In
Table 1, by comparing “FreeForm” against “FreeForm w/
mask”, and “LBAM” against “LBAM w/ mask”, we find
that the semantic mask brings obvious benefits to the image
quality in terms of FID, but it cannot significantly improve
preserving the object boundaries according to the similar
SSIMs before and after the input augmentation. As shown
in Fig. 4 (a), even without the help of the layout mask, MAT
[9] can preserve the boundary of the simple object, i.e., the
station platform. As for the complicated objects such as

2 [11] requires the input to have exactly three dimensions in order to be
fed into a pretrained ResNet.
3Training code of [9] is not useable because it casts mysterious errors.

Inpainting result

Inpainting result

Figure 5. Generalization capability study. The semantic class
“moon” and “mountain” are absent in the training dataset.

airplane in Fig. 4 (c), MAT yields obvious artifacts. We ar-
gue that this is because MAT is trained on the huge Places2
dataset, and has learned to preserve the boundary for the
simple objects. SGE-Net [ |] estimates the semantic mask,
and applies the semantic mask via SPADE [20] to exert the
structural influences. However, its results in Fig. 4 (espe-
cially the airplane example) show that SPADE helps SGE-
Net to memorize data (the sky color) during the training,
which supports our discussion in §1 regarding the general-
ization issue of using the semantic information. By com-
paring “PatchMatch” against “PatchMatch w/ mask” in Ta-
ble 1 and Fig. 4, the layout mask significantly improves the
inpainting quality of PatchMatch, especially in preserving
the boundary clearness and generating reasonable textures
for objects with simple textures, e.g., Fig. 4 (c). However,
“PatchMatch w/ mask” generates over-smoothed and arti-
ficial textures for objects with sophisticated textures, e.g.,
station platform in Fig. 4 (a) and tree in Fig. 4 (b). All
above shows the value of our method which enables an ef-
fective way of using the layout guidance to achieve better
robustness and efficiency.

4.3. Generalization capability study

We perform the qualitative generalization capability
study. As shown in Fig. 5, we aim to inpaint the occluded
moon and mountain respectively, of which the semantic
classes are absent in the training dataset. Fig. 5 shows
that our method can successfully handle the out-of-domain
cases thanks to the generalization capability brought by the
layout mask.

5. Conclusion

We propose an efficient and robust layout-guided image
inpainting model which consists of a layout-guided diffu-
sion method and refinement model with Top-X attention.
These two sub-models perform the inpainting from coarse
to fine, and support each other to overcome challenges en-
countered when making the method efficient and robust.
Our method achieves outstanding robustness in presence of
the mixed scenes while maintaining high efficiency.
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