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Abstract

A powerful way to adapt a visual recognition model to a
new domain is through image translation. However, com-
mon image translation approaches only focus on generat-
ing data from the same distribution as the target domain.
Given a cross-modal application, such as pedestrian detec-
tion from aerial images, with a considerable shift in data
distribution between infrared (IR) to visible (RGB) images,
a translation focused on generation might lead to poor per-
formance as the loss focuses on irrelevant details for the
task. In this paper, we propose HalluciDet, an IR-RGB im-
age translation model for object detection. Instead of focus-
ing on reconstructing the original image on the IR modal-
ity, it seeks to reduce the detection loss of an RGB detector,
and therefore avoids the need to access RGB data. This
model produces a new image representation that enhances
objects of interest in the scene and greatly improves detec-
tion performance. We empirically compare our approach
against state-of-the-art methods for image translation and
for fine-tuning on IR, and show that our HalluciDet im-
proves detection accuracy in most cases by exploiting the
privileged information encoded in a pre-trained RGB detec-
tor. Code: https://github.com/heitorrapela/
HalluciDet.

1. Introduction

The proliferation of hardware sensors has greatly ad-
vanced the collection of large-scale datasets. Such datasets
have significantly improved the performance of deep learn-
ing (DL) algorithms across various fields, including surveil-
lance [2], industrial monitoring [16], self-driving cars [31],
and robotics [25]. By providing high-resolution data, these
sensors offer additional observations of common environ-
mental phenomena to aid in the effectiveness of DL algo-

¢) FastCUT - RGB detections

d) HalluciDet - RGB detections

Figure 1. Example of detections using baseline and HalluciDet
methods on LLVIP data. (a) Original RGB image with ground
truth annotations (yellow). (b) IR image with corresponding de-
tections of a fine-tuned model (green). (c) Translated image from
IR to RGB produced by FastCUT and corresponding RGB detec-
tions (green). (d) Hallucinated image produced by our method and
RGB detections (green); HalluciDet does not seek to reconstruct
all image details but only to enhance the objects of interest.

rithms [26].

The additional information from different sensors has
been employed in diverse settings [13, 30]. In computer
vision applications, combining sensors with distinct envi-
ronmental sensing perspectives, such as varying points of
view and modality sensing information, can increase model
performance, enabling possibilities that were previously un-
available. Furthermore, in the context of self-driving cars
and intelligent building applications, two modalities com-
monly used are visible (RGB) and infrared (IR) [32]. In par-
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ticular, the RGB modality offers valuable information for
tasks like object detection, which generates bounding boxes
for target objects within colored images. These colored im-
ages are known to have more diverse information due to
their characteristics on the RGB light spectrum, especially
in the presence of light. Thus, these RGB sensors are pre-
ferred to be used in daily activities where there is the pres-
ence of sunlight. On the other hand, the IR spectrum pro-
vides additional information for the visible modality when
the light is low, especially during the night [15], and also
complementary information, primarily related to thermal
sensing. Furthermore, IR is vastly applied in surveillance
applications [38], which require the device to capture infor-
mation in light-restricted environments. IR object detection
is known to detect objects using IR radiation emitted from
the object, which varies depending on the object’s material.

Despite the impressive performance of DL models, their
effectiveness can significantly deteriorate when applied to
modalities that were not present during the training [3,33].
For example, a model trained on RGB images may not per-
form well on IR images during testing [35]. To address the
issue, some studies utilize image-to-image translation tech-
niques to narrow the gap between modalities distributions.
Typically, these methods employ classical pixel manipula-
tion techniques or deep neural networks to generate inter-
mediate representations, which are then fed into a detector
trained on the source modality. However, transitioning from
IR to RGB has proven challenging due to generating color
information while filtering out non-meaningful data asso-
ciated with diverse heat sources. This challenge is partic-
ularly pronounced when the target category is also a heat-
emitting source, such as a person.

In this work, we argue that achieving a robust inter-
mediate representation for a given task needs guiding the
image-to-image translation using a task-specific loss func-
tion. Here, we introduce HalluciDet, a novel approach
for image translation focusing on detection tasks. In-
spired by the learning using privileged information (LUPI)
paradigm [34], we utilize a robust people detection network
previously trained on an RGB dataset to guide our trans-
lation process from IR to RGB. Our translation approach
relies on an annotated IR dataset and an RGB detector to
identify the appropriate representation space. The ultimate
goal is to find a translation model, hereafter referred to as
the Hallucination network, capable of translating IR images
into meaningful representation to achieve accurate detec-
tions with an RGB detector.

Our main contributions can be summarized as follows:

(1) We propose HalluciDet, a novel approach that leverages
privileged information from pre-trained detectors in the
RGB modality to guide end-to-end image-to-image transla-
tion for the IR modality.

(2) Given that our model focuses on the IR detection task,
HalluciDet uses a straightforward yet powerful image
translation network to reduce the domain gap between
IR-RGB modalities, guided by the proposed hallucination
loss function incorporating standard object detection terms.

(3) Through experiments conducted on two challeng-
ing IR-RGB datasets (LLVIP and FLIR ADAS), we
compare HalluciDet against various image-to-image trans-
lation and traditional pixel manipulation methods. Our
approach is seen to improve detection accuracy on the
IR modality by incorporating privileged information from
RGB.

2. Related Work

Object detection. Different from classification tasks, in
which we want only to classify the object category, in ob-
ject detection, additionally, the task is to know specific po-
sitions of the objects [36]. Deep learning object detection
methods are categorized as two-stage and one-stage detec-
tors. The two-stage detector extracts regions of interest
or proposals for a second-stage classifier. Then, the sec-
ond stage is responsible for classifying if there is an ob-
ject in that region. One commonly used two-stage detector
is the Faster R-CNN proposed by [27]. It is the first end-
to-end DL object detector to reach real-time speed. The
speedup was achieved by introducing the Region Proposal
Network (RPN), a network responsible for the region pro-
posals without impacting the computational performance
compared with previous region proposals algorithms [28].
The one-stage detectors mainly focus on end-to-end train-
ing and real-time inference speed of the object detectors. In
this scenario, the object detector has a single neural network
to extract the features for the regression of the bounding box
and give the class probabilities without an auxiliary network
for the region proposals. Recently, there are detectors that
were developed to remove the requirement of defining an-
chor boxes during training. For instance, the Fully Con-
volutional One-Stage Object Detection (FCOS) is one of
these models that, due to its nature, reduces all complicated
computation related to anchor boxes, which can lead to an
increase in inference time.

Learning using Privileged Information (LUPI). In hu-
man learning, the role of a teacher is crucial, guiding the
students with additional information, such as explanations,
comparisons, and so on [34]. In the LUPI setting, during
the training, we have additional information provided by a
teacher to help the learning procedure. Since the additional
information is available at the training stage but not during
the test time, we call it privileged information [34]. Re-
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cently, [17] proposed the usage of privileged information to
guide the variance of a Gaussian dropout. In a classification
scenario, additional localization information is used, and its
results show that it improves the generalization, requiring
fewer samples for the learning process [17]. [21] designed a
large-margin classifier using information bottleneck learn-
ing with privileged information for visual recognition tasks.
In the object detection problem, [12] was the first work to
present a modality hallucination framework, which incor-
porates the training RGB and Depth images, and during test
time, RGB images are processed through the multi-modal
framework to improve the performance of the detection.
The modality hallucination network is responsible for mim-
icking depth mid-level features using RGB as input during
the test phase. [20] used depth as privileged information for
object detection with a Depth-Enhanced Deformable Con-
volution Network. In this work, we use the privileged infor-
mation coming from a pre-trained RGB detector to improve
the performance of the infrared detection. In practice, in-
stead of destroying the information of the RGB detector by
fine-tuning, we use the RGB detector as a guide for trans-
lating the IR input image into a new representation, which
can help the RGB detector boost performance by enhancing
the objects of interest.

Image Translation. The objective of image translation is
to learn a mapping between two given domains such that
images from the source domain can be translated to the tar-
get domain. In other words, the aim is to find a function
hy : Xy — X, such that the distribution of images hy(X;)
in the translated domain is close to the distribution of im-
ages & in the target domain. Early methods rely on au-
toencoders (AEs) [11] and generative adversarial networks
(GANSs) [8] to learn cross-domain mapping. Unsupervised
AE methods aim to learn a representation of the data by
reconstructing the input data. GANs are a type of genera-
tive model that can learn to generate new data that is similar
to the training data. More recently, diffusion models have
gained popularity. They are capable of generating high-
quality images but lack some properties for domain trans-
lation, like on CycleGANs. For improving models such as
CycleGAN, techniques such as Contrastive Unpaired Trans-
lation (CUT) [23] and FastCUT [23] were developed. CUT
is an image translation model based on maximizing mu-
tual information of patches, which is faster than previous
methods while providing results as good as others. On
RGB/IR modalities, the InfraGAN [22] proposes an image-
level adaptation using a model based on GANS, but for RGB
to IR adaptation, with a focus on the quality of the generated
images, thus optimizing image quality losses. Additionally,
using image translation for object detection on RGB/IR us-
ing pre-train models, Herrmann et al. [10] used RGB object
detectors without changing their parameters. The IR images

are adapted to the RGB images using traditional computer
vision pre-processing at the image level before applying it
as input to the RGB object detector.

None of these methods provides an end-to-end way to
directly train the image translation methods for detection
applications. Furthermore, traditionally, they require more
than one kind of data set composed of the original domain
and the target domain. For instance, CycleGAN is based on
adversarial loss, and U-net is based on reconstruction loss.
Thus, if we have access to the already trained detector on
the original domain, this knowledge can possibly be used
during the learning of the translation network.

3. Proposed Method

Preliminary definitions. Let x; be a given image with
spatial resolution W x H and C channels. An object detec-
tor aims to output a set of Ny, object proposals, each repre-
sented as a bounding box b;; = (¢, d, e, w, h), where (d, e)
is the location of the top-left pixel of the bounding box for
the j-th object, and w and h are the width and height of
the object, respectively. Additionally, a classification label
c € {1,2,..., Ny} is assigned to each object of interest rep-
resenting the region’s class. In terms of optimization, such
a task aims to maximize the detection accuracy, which typ-
ically is approximated through the average precision (AP)
metric over all classes. Then, to train a detector, formally
defined as the mapping fy: x; — b, a differentiable surro-
gate for AP metric is used, also known as the detection loss
function, Ly (b, x; 0).

The detection loss can be divided into two terms. The
first one is the classification loss L¢s(9c,yc) responsible for
learning the class label c. In this work, we use the cross-

entropy loss function to assess the matching of bounding
Nc]s

log(p;), where
Ncls ]:Zl yCJ g( J)

N is the total number of classes, and g, is the class indi-
cator function, i.e., Yo = 1 if ¢; is the true class of the ob-
Ject, or y.; = 0 otherwise. The probability provided by the
detector for each category j is p;. To ensure the right posi-
tioning of the object, a second regression term Lieg(¥b,yb)
is used, being the Lyi(¥y,¥p) = Zif Yo, — ybl| and
Li2(Vy,, ¥p,) = Zivzf (Yo, — ybi)2 losses the most com-
monly employed in the literature. Here Ny, is the number
of bounding boxes on the image x;. Then, the final detection
loss function can be defined in general terms as:

£det(xv ba 0) = Ecls(fﬁ (x)a C)
+ A Ereg(.f@(x)rb)a

boxes categories Lee(Je, Ye) = —

)]

where A is a hyperparameter that controls the balance be-
tween the two terms, and 6 is a vector containing the detec-
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Figure 2. HalluciDet leverages privileged information for modality hallucination with pre-trained detectors. During training, the hallucina-
tion network learns how to use the privileged information encoded by the RGB detector to translate the IR image into a new hallucination
modality representation. Then, during inference, the model provides better IR detection using the translated modality.

tor learnable parameters. The detectors used in this work
use this general objective during their optimization process.
However, they adapt each term to their specific architecture.

HalluciDet. Our goal is to generate a representation from
an IR image that a given RGB detector can effectively pro-
cess. Let X C RW*H be the set of IR data containing
N images. During the learning phase, a training dataset
S = {(xj,b;)} is given such that x; € X is an IR im-
age and b; is a set of bounding boxes as defined in the
previous section. In addition, an RGB detector fy is also
available. Then, a representation mapping is here defined
as hy: X — R, where R is the representation space and
¥ are the learnable parameters of the translation model.
Such a representation space, R C RW*H*3 ig condi-
tioned to the subset of plausible RGB images that are suf-
ficient to obtain a proper response from the RGB detector
fo. To find such a mapping we solve the optimization prob-
lem ¥* = arg ming Ly, (x, b; ) which implicitly uses the
composition (hy o fp)(x) to guide the intermediate repre-
sentation.

Our proposed model, HalluciDet, comprises two mod-
ules: a hallucination network responsible for the image-
to-image harmonization and a detector. The Hallucination
network is based on U-net [29], but modified with atten-
tion blocks which are more robust for image translation
tasks [6, 18]. For training the HalluciDet, we train the hal-
lucination module and condition it with the detection loss,
which is the only supervision necessary for guiding the hal-
lucination training with respect to the privileged informa-

tion of the pre-trained RGB detector. This phase is respon-
sible for translating the hallucinated image to a new repre-
sentation close to the RGB modality. Please note that this
strategy helps the final model to perform well on the IR
modality without changing the knowledge from the detec-
tor. Under this framework, the RGB detection performance
remains the same since the detector’s parameters 6 are not
updated during the adaptation learning. On the other hand,
detections over IR images are obtained by adapting the in-
put using the Hallucination network, followed by the eval-
uation over the RGB detector. As a side advantage, our
model allows evaluating both modalities by providing the
appropriate modality identifier during the forward pass, i.e.,
RGB or IR. Figure 2 depicts the training and evaluation pro-
cess of an IR image using privileged information from the
RGB detector.

The detector fy layers are frozen, thus preserving the
prior knowledge, but the weights ¥ of the hallucination net-
work hy are updated during the backward pass. The input
minibatch is created with images from X set, leading to the
hallucinated minibatch, which is then evaluated on fy to ob-
tain the associated detections. To find the appropriate rep-
resentation space, the hallucination loss Ly, (x, b, ¢) drives
the optimization by updating only the hallucination network
parameters. The representation space R is guided by Ly
to be closer enough to the RGB modality, which allows the
detector to make successful predictions. As the representa-
tion is being learned with feedback from the frozen detector,
it extracts the previous knowledge so that this new interme-
diate representation is tuned for the final detection task. The
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proposed hallucination loss shares some similarities with
the aforementioned detection loss but with the distinction
of only updating the modality adaptation parameters:

Lhan(x,b,9) = Lais(fo(ho(x)), c)

2
+A- Lreg(fa(hﬁ(x))v b)
Equation 2 is optimized w.r.t ¥. We added the hyperpa-
rameter \ to weigh the contribution of each term and for
numerical stability purposes.

4. Experimental results and analysis

Experimental Methodology. Hallucidet is evaluated on
two different popular IR/RGB datasets, the LLVIP [15], and
FLIR ADAS [7]. The LLVIP dataset is composed of 30, 976
images, in which 24,050 (12,025 IR and 12,025 RGB
paired images) are used for training and 6, 926 for testing
(3,463 IR and 3,463 RGB paired images). For the FLIR,
we used the sanitized and aligned paired sets provided by
Zhang et al. [37], which have 10, 284 images, being 8, 258
for training (4, 129 IRs and 4, 129 RGBs) and 2, 026 (1,013
IRs and 1,013 RGBs) for test. We chose to utilize these
paired IR/RGB datasets to ensure a fair comparison with
other image-to-image translation techniques that employ re-
construction losses. In our experiments, we use 80% of the
training set for training and the rest for validation. All re-
sults reported are on the test set. As for the FLIR dataset, we
only used the person category. Initially, we have the RGB
detector trained on the datasets using 5 different seeds. It’s
worth noting that this model starts with pre-trained weights
from COCO [19]. Then with the RGB model trained, we
use the model to perform the Hallucidet training. We tried
ResNetsq as the backbone for the detectors and ResNetsy
as the backbone for the Hallucination network. To ensure
fairness we trained the detectors under the same conditions,
i.e., data order, augmentations, etc. All the code is available
at GitHub ! for the reproducibility of the experiments. To
develop the code, we used Torchvision models for the de-
tectors and PyTorch Segmentation Models [14] for the U-
Net architecture of the hallucination network. Additionally,
we trained with PyTorch Lightning [5] training framework,
evaluated the AP with TorchMetrics [4], and logged all ex-
periments with WandB [1] logging tool.

Main Comparative Results. In Table 1, we investi-
gate how our model behaved in comparison with standard
image-to-image approaches and classical computer vision
approaches that are normally used to reduce the distribution
gap between IR and RGB. Furthermore, we highlight the

'https://github.com/heitorrapela/HalluciDet.

impact of using the proposed Ly, loss to guide the repre-
sentation. This is accomplished by comparing our approach
with a U-Net that shares the same backbone as ours but em-
ploys a standard £; ; reconstruction loss. To guarantee com-
parability, we reproduce the experimental setting of [10]
on our pipeline. We included basic pre-processing tech-
niques that were shown to enhance IR performance on RGB
models by Hermann et al. [10]. These techniques include
a combination of blurring, histogram equalization, stretch-
ing, and inverting pixels. Furthermore, we included Cy-
cleGAN, which is a more powerful generative model com-
pared with UNet. It is important to mention that training
the CycleGAN is computationally more demanding than the
Hallucidet. Additionally, due to the adversarial nature of
the method, it does not ensure reliable convergence for the
subsequent detection task. The CycleGAN was diverging
with the same hyperparameters as [15] on the test set, so
we tuned the hyperparameters and trained until the images
became good qualitatively. Because CycleGAN introduces
significant noise to the images as a result of its adversarial
training, the detector’s performance has notably decreased.
This is particularly evident due to the increase in false pos-
itives. Given that our final goal is object detection, we se-
lected FCOS, RetinaNet, and Faster R-CNN, each repre-
senting distinct categories within the universe of detection
networks. We can see that straightforward approaches like
inverting pixels for the IR and expanding it to three chan-
nels significantly enhance the initial performance of IR in-
puts on RGB detectors. As indicated in the table, our re-
sults demonstrate a significant improvement over previous
image-to-image translation techniques in terms of detection
performance. The most significant enhancement was ob-
served in Faster R-CNN, where our proposal exhibited a
remarkable 17% improvement compared to pixel inversion.

Hallucidet Visual Output. In Figure 3, we present a Hal-
lucination image and compare it with both RGB and IR. The
Hallucination emphasizes the person while smoothing the
background, helping the detector to distinguish the regions
of interest. In contrast to RGB, our method allows for easy
person detection even in low-light conditions. However, IR
images may introduce additional non-person-related infor-
mation that could bias the detector. A visual comparison
with FastCUT is also provided, revealing a correlation be-
tween the method’s low performance and the high number
of False Positives detected. It is important to note that while
we show the Hallucination for representation demonstra-
tion, our main goal is on detection metrics. In the figure, the
ground truth bounding box annotations are shown in yellow
on the RGB images. The corresponding detections obtained
from the IR data are presented in the following lines. It is
important to note that we display the predicted detections
on top of the intermediate representation for convenience.
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Image-to-image translation

Learning strategy

AP@5071

Test Set (Dataset: LLVIP)

FCOS RetinaNet ~ Faster R-CNN
Blur [10] - 4259+4.17 47.06+£1.99 63.05%1.96
Histogram Equalization [10] - 33.10+4.64 36.45+2.02 5147+£4.03
Histogram Stretching [10] - 38.55+4.25 41.97+139 57.69 £2.78
Invert [10] - 53.62+2.07 5543+2.03 71.83+3.04
Invert + Equalization [10] - 50.03+244 5257+150 68.69+2.73
Invert + Equalization + Blur [10] - 5058 +£241 52.62+136 6891+2.74
Invert + Stretching [10] - 5148 £2.17 52.87+1.80 69.34 £3.07
Invert + Stretching + Blur [10] - 51.54+192 5296+1.80 69.59 +2.90
Parallel Combination [10] - 50.18 £2.25 5252+1.39 68.14£298
U-Net [29] Reconstruction 4294+4.14 4735+192 63.23+£2.03
CycleGAN [39] Adversarial 22776 £1.94 27.04+4.23 38.92+5.09
CUT [24] Contrastive learning 19.16 £2.10 21.61 £2.09 35.17£0.32
FastCUT [24] Contrastive learning 46.87 £2.28 52.39 £2.31 67.73 +2.14
HalluciDet (ours) Detection 63.28 £3.49 56.48 +£3.39 88.34 +£1.50

Table 1. Performance comparison of models on IR images using LLVIP dataset [15]. The table showcases the impact of different ap-
proaches, including pixel manipulation techniques, U-Net, CycleGAN, CUT, FastCUT, and HalluciDet. The detectors were trained with
RGB data and evaluated on IR. To make a fair comparison with our models, we decided to start with models that do not have strong data

augmentation that could benefit one modality over the other.

However, the actual inputs for HalluciDet approaches and
FastCUT are IR images. A significant number of False
Positives can be observed for FastCUT, while HalluciDet
(FCOS) and HalluciDet (RetinaNet) exhibit a high number
of False Negatives. The most accurate detection results are
achieved with HalluciDet (Faster R-CNN), which demon-
strates superior performance to the IR fine-tuned model in
cases where the person’s heat signature is not clearly evi-
dent, as seen in the last column. Additional figures can be
found in the supplementary material.

Comparison with fine-tuning. For this experiment, we
performed an evaluation of both RGB and fine-tuned IR de-
tectors that were trained on the LLVIP and FLIR datasets.
All methods from Table 2 were trained under the same ex-
perimental protocol using 3 different seeds.

Similar to the previous experiment, we utilized a detec-
tor from each family of methods, namely FCOS, RetinaNet,
and Faster R-CNN. The provided results include the mean
and standard deviation of the AP on the test set. In this ex-
periment, we compare three different approaches to adapt a
model trained on RGB images to IR. As baseline we con-
sider the case of No Adaptation, in which the model is used
directly on IR images. Then, we consider the case in which
a model is adapted to the IR data with normal fine-tuning,
which is the most common way of adaptation when anno-
tations are available. Finally, we train our HalluciDet to
generate a new representation of the image for the RGB de-

tector.

As seen in Table 2, in all cases, the fine-tuned IR model
outperformed the RGB detector over the IR modality, as ex-
pected. In the tables, we also observe a significant improve-
ment in the performance of HalluciDet compared to the per-
formance achieved through fine-tuning for Faster R-CNN.
This improvement aligns with the quality of the representa-
tion observed in Figure 3, where confusing factors, such as
car heat, have been removed from the image. A marginal
improvement was observed with center point-based archi-
tectures like FCOS for the LLVIP dataset, although a higher
difference in AP could be observed for the FLIR dataset. On
the other hand, the results using RetinaNet didn’t exhibit
much consistency; the AP was significantly worse than that
achieved through fine-tuning for the LLVIP dataset. Once
again, this is consistent with the observed representation
lacking the necessary discriminative information to detect
people in the image.

Hallucidet with different backbones. In Table 3, we in-
vestigated various encoder backbones for the Hallucination
network. The presented results include two MobileNet and
two ResNets with different widths. Additional outcomes
for alternative backbones are included in the supplementary
material. In all cases, the model consistently improves upon
the performance of the fine-tuned IR model. Notably, even
in models with a reduced number of parameters, such as
MobileNet, > with less than 7 million additional parameters,
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Figure 3. Illustration of a sequence of 8 images of LLVIP dataset. The first row is the RGB modality, then the IR modality, followed by
FastCUT and different representations created by HalluciDet over various detectors.

the gain remains consistent at nearly 5%.

Hallucidet with a different number of training samples.
For the LLVIP dataset, in Figure 4, we explored various
quantities of training samples for our method, ranging from
1% to 100%. Notably, only 30% of the data was sufficient
for HalluciDet to achieve comparable performance to the
fine-tuned Faster R-CNN with the complete dataset. For the
FLIR dataset, in Figure 5, the trend to reduce the number of
training samples and improve over the fine-tuning is still
true, but in this case, around 70% of the training samples.
The different characteristics related to the exact number of
training samples with respect to the dataset are due to the
number of different environment changes on the datasets.
For the LLVIP, we do not have a big shift in the images

because the cameras are fixed in a surveillance context. In
the case of FLIR, the variance of the images is higher due to
the different capture settings; with the focus on autonomous
driving, the camera moves inside a car, which changes the
background consistency and introduces more variance to
the dataset.

5. Conclusion

In this work, we provided a framework that uses privi-
leged information of an RGB detector to perform the image-
to-image translation from IR. The approach involves utiliz-
ing a Hallucination network to generate intermediate repre-
sentations from IR data, which are then directly input into
an RGB detector. An appropriate loss function was also
proposed to lead the representation into a space that allows
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AP@5071
Method Test Set IR (Dataset: LLVIP)
No Adaptation  Fine-tuning  HalluciDet
FCOS 47.12+432  63.79+0.48 64.85+1.46
RetinaNet 50.63£3.22  76.26 +£0.75 56.78 +3.85
Faster R-CNN  71.51+£1.16 8494 +0.15 90.92 +0.20
Test Set IR (Dataset: FLIR)
No Adaptation  Fine-tuning HalluciDet
FCOS 38.52+£0.79 4222 +1.04 49.18 +0.99
RetinaNet 4413201 47.87+£2.21 49.01+4.08
Faster R-CNN  5585+1.19 6148+1.55 70.90+1.35

Table 2. AP performance for various models following distinct
training approaches on two datasets of LLVIP [15] (top half) and
FLIR [9] (bottom half): starting from COCO pre-training and fine-
tuning on the RGB data shown as (No Adaptation) and fine-tuning
on the IR data shown as (Fine-tuning). In the case of HalluciDet,
the trained RGB detector serves as the initial point, with the subse-
quent optimization of the Hallucination network using the IR data.
The reported performance is exclusive to the person category.

Method Params. AP@507
Faster R-CNN 41.3 M 84.83
MobileNet, 3, +3.1 M 85.20
HalluciDet MobileNet,» +6.6 M 89.73
ResNet;g + 143 M 90.42
ResNetsy +24.4M 90.65

Table 3. Comparison of the number of parameters for differ-
ent Hallucination Network backbones vs. AP@50 on the LLVIP

dataset with the Faster R-CNN detector.

for the enhancement of the target category’s importance.
In our experiments, we demonstrate that hallucination
networks can be helpful for modality adaptation by ob-
taining an intermediate representation that effectively sup-
ports accurate responses in the object detection task. The
proposed approach showed particular effectiveness for the
two-stage detector Faster R-CNN, resulting in a reduction
of non-person-related information. This reduction in back-
ground clutter had a positive effect on minimizing the num-
ber of False Positives, surpassing the performance of stan-
dard fine-tuning on IR data. The comparison with meth-
ods from the literature for image-to-image translation high-
lighted the significance of guiding the representation to
achieve successful detections. Our Hallucidet demonstrated
a significant performance improvement compared to the
other methods. Finally, the proposed framework offers
the additional advantage of maintaining performance in the
RGB task, which is beneficial for applications requiring ac-

AP@50 vs Percentage of training samples
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Figure 4. AP@50 vs. training samples percentages. The figure
shows the AP@50 over the LLVIP test set using various amounts
of training samples for the HalluciDet Faster R-CNN.

AP@50 vs Percentage of training samples
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Figure 5. AP@50 vs. training samples percentages. The figure
shows the AP@50 over the FLIR test set using various amounts of
training samples for the HalluciDet Faster R-CNN. Notably, 70%
of the data was sufficient for HalluciDet to achieve comparable
performance to the fine-tuned Faster R-CNN with the complete

dataset.

curate responses in both modalities.
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