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Abstract

Recent studies on semi-supervised learning (SSL) have
achieved great success. Despite their promising perfor-
mance, current state-of-the-art methods tend toward in-
creasingly complex designs at the cost of introducing more
network components and additional training procedures. In
this paper, we propose a simple method named Ensemble
Projectors Aided for Semi-supervised Learning (EPASS),
which focuses mainly on improving the learned embeddings
to boost the performance of the existing contrastive joint-
training semi-supervised learning frameworks. Unlike stan-
dard methods, where the learned embeddings from one pro-
jector are stored in memory banks to be used with con-
trastive learning, EPASS stores the ensemble embeddings
from multiple projectors in memory banks. As a result,
EPASS improves generalization, strengthens feature repre-
sentation, and boosts performance. For instance, EPASS
improves strong baselines for semi-supervised learning by
39.47%/31.39%/24.70% top-1 error rate, while using only
100k/1%/10% of labeled data for SimMatch, and achieves
40.24%/32.64%/25.90% top-1 error rate for CoMatch on
the ImageNet dataset. These improvements are consistent
across methods, network architectures, and datasets, prov-
ing the general effectiveness of the proposed methods. Code
is available at https://github.com/beandkay/EPASS.

1. Introduction

Deep learning has shown remarkable success in a vari-
ety of visual tasks such as image classification [19], speech
recognition [1], and natural language processing [34]. This
success benefits from the availability of large-scale anno-
tated datasets [20, 21,27, 31, 32]. Large amounts of an-
notations are expensive or time-consuming in real-world
domains such as medical imaging, banking, and finance.
Learning without annotations or with a small number of
annotations has become an essential problem in computer
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Figure 1. Quantity vs quality of pseudo-labels on ImageNet 10%
with and without EPASS.

vision, as demonstrated by [5,6, 10-12,17,18,23,24,26,35,
9 9 9 ]'

Contrastive self-supervised learning (CSL) is based on
instance discrimination, which attracts positive samples
while repelling negative ones to learn the representation
[10,18,40]. Inspired by CSL, contrastive joint-training SSL
methods such as CoMatch [26] and SimMatch [51] lever-
age the idea of a memory bank and momentum encoder
from MoCo [18] to support representational learning. In
the current mainstream contrastive joint-training SSL meth-
ods, a multi-layer perceptron (MLP) is added after the en-
coder to obtain a low-dimensional embedding. Training
loss and accuracy evaluation are both performed on this em-
bedding. The previously learned embeddings from a low-
dimensional projector are stored in a memory bank. These
embeddings are later used in the contrastive learning phase
to aid the learning process and improve the exponential
moving average (EMA) teacher [36]. Although previous
approaches demonstrate their novelty with state-of-the-art
benchmarks across many datasets, there are still concerns
that need to be considered. For instance, conventional meth-
ods such as CoMatch [26] and SimMatch [51] are based
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Figure 2. Training phase for contrastive joint-training SSL with-
out/with the proposed EPASS. 2a represents the conventional
training phase without EPASS [26,51]. Unlike 2a, in 2b, instead
of using only one projector to learn the embeddings, EPASS uses
multiple projectors to ensemble the embeddings, which is less
biased and more generalized.

on the assumption that the learned embeddings are cor-
rect, regardless of confirmation bias. This assumption
is directly adopted from CSL; however, in a joint-training
scheme, the easy-to-learn representation could easily domi-
nate the hard-to-learn representation, leading to biased dis-
tributions and embeddings. This would become even worse
when confirmation bias happens and the embeddings are
driven away by the incorrect pseudo-labels. As a result, the
embeddings stored in the memory bank are also affected,
causing the confirmation bias issue and the erroneous EMA
teacher.

The confirmation bias could be seen in Figure 1, where
CoMatch only has 80.56% correct pseudo-labels and Sim-
Match has 90.61% correctness for pseudo-labels. When the
embedding bias happens at the instance level and the con-
firmation bias happens at the semantic level, they degrade
the performance of the EMA teacher. As a result, the well-
learned embeddings at the instance level could be driven
away by the confirmation bias at the semantic level during
backward propagation, and vice versa.

Method WRN-28-2 WRN-28-8
Original [6,7,35,38,43,47] 14M 23.4M
Chen et al. [9] 37M(12.3) 199 M (*, | 3.5)
CoMatch [26] 1.5M 2371 M
SimMatch [51] 1.5M 2374 M
CoMatch [26] + EPASS (3 projs) 1.54 M ( ) 24.30M ( )
SimMatch [51] + EPASS (3 projs) 1.56 M ( ) 24.39M( )

Table 1. Comparison with multi-head co-training. ’*’ indicates
different architecture as Chen et al. [9] modified the number of
channels of the final block from 512 to 256.

To address these limitations, we propose Ensemble
Projectors Aided for Semi-supervised Learning (EPASS),
a plug-and-play module to strengthen the EMA teacher as
well as to improve the generalization of the learned em-

beddings, as illustrated in Figure 2. Adding a projector
helps mitigate the overfitting problem, and the generated
features are more distinguishable for classification [26,51].
Chen et al. [13] proves the strengths of ensemble projectors
in teacher-student frameworks via knowledge distillation.
Therefore, we leverage those strengths with SSL, especially
contrastive joint-training frameworks. Although there has
been study about ensemble for SSL [9], they only discover
it in the classification head, thus resulting in a large number
of parameter overheads as shown in Table 1. Unlike [9], we
specifically enrich the learned embeddings from the model
by employing multiple projectors rather than only one, as it
is common in conventional methods. Using ensemble pro-
jectors in contrastive learning, where multiple projectors are
used instead of a single one, may improve the performance
and robustness of the learned representations. By using
multiple projectors, the model can learn different feature
representations from different perspectives, which can be
combined to produce more informative representations of
the data. Additionally, using ensemble projectors can help
to improve the generalization performance of the model, by
reducing the risk of overfitting to the specific characteristics
of a single projector.

Using ensemble projectors can also increase the robust-
ness of the model against variations in the data distribution,
as the multiple projectors can learn different features that
are less sensitive to changes in the data distribution. This
can be especially useful in situations where the data dis-
tribution is not well-defined or changes over time. There-
fore, the embeddings of the model would be the ensemble
ones, which are less biased and more robust than conven-
tional methods. Our comprehensive results show that such a
simple ensemble design brings a sweet spot between model
performance and efficiency.

By incorporating the ensemble projectors in a
contrastive-based SSL fashion, the proposed EPASS
makes better use of embeddings to aid contrastive learning
as well as to improve the classification performance
simultaneously. In addition, ensemble multiple projec-
tors introduce a relatively smaller number of parameters
compared with ensemble multiple classification heads.
Extensive experiments justify the effectiveness of EPASS,
which produces a less biased feature space. Specifically,
EPASS achieves a state-of-the-art performance with
39.47%1/31.39%/24.70 % top-1 error rate, while using only
100k/1%/10% of labeled data for SimMatch; and achieves
40.24%/32.64%/25.90% top-1 error rate for CoMatch on
ImageNet dataset.

The contributions of this paper are summarized as fol-
lows:

* We hypothesize that the conventional contrastive joint-
training SSL frameworks are sub-optimal since the
multi-objective learning could harm the learned em-
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beddings when confirmation bias occurs.

* We propose EPASS, a simple plug-and-play module
that improves a generalization of the model by impos-
ing the ensemble of multiple projectors, which encour-
ages the model to produce less biased embeddings.

¢ To the best of our knowledge, this is the first work to
enhance the performance of contrastive joint-training
SSL methods by considering the embedding bias.

» Extensive experiments on many benchmark datasets
demonstrate that EPASS consistently improves the
performance of contrastive joint-training methods.

2. Related Work
2.1. Semi-supervised Learning

Semi-supervised learning is an essential method to lever-
age a large amount of unlabeled data to enhance the training
process. Pseudo-label [24] is the pioneer of nowadays pop-
ular methods, including self-training-based or consistency-
based SSL approaches. In the pseudo-label-based meth-
ods, the model is first trained on a small amount of la-
beled data. Then, the model is used to make predictions for
unlabeled data. The unlabeled data and their correspond-
ing pseudo-labels are then used to train the model simulta-
neously with labeled data, forming the self-training-based
methods [2, 3,24, 28,36,42,49]. Consistency-based meth-
ods [5,6,26,29,35,47,51] use a high threshold to determine
the reliable predictions from weakly augmented samples.
Then, they will be used as pseudo-labels for strongly aug-
mented examples, and the low-confidence predictions will
be discarded. However, those approaches suffer from con-
firmation bias [2] since they overfit the incorrect pseudo-
labels during training. Moreover, methods using the high
threshold to filter noisy data only use a small amount of
unlabeled data during training, and when the model suffers
from confirmation bias, it leads to the Matthew effect.

Sohn et al. [35] introduces a hybrid method named Fix-
Match, which combines pseudo-labeling with a consistency
regularization method. By using a high threshold to filter
out noisy pseudo-labels, FixMatch lets the model learn from
only confident predictions, thus improving its performance.
FlexMatch [47] introduces a Curriculum Pseudo Labeling
(CPL) method based on the Curriculum Learning (CL) [4].
CPL configures a dynamic threshold for each class after
each iteration, thus letting the model learn better for either
hard-to-learn or easy-to-learn classes.

2.2. Contrastive joint-training SSL

Li et al. proposes CoMatch [26], which combines two
contrastive representations on unlabeled data. However,

CoMatch is extremely sensitive to the hyperparameter set-
ting. Especially during training, CoMatch requires a large
memory bank to store the embedded features. Recently,
Zheng et al. [51] published work that takes semantic sim-
ilarity and instance similarity into account during train-
ing. It shows that forcing consistency at both the seman-
tic level and the instance level can bring an improvement,
thus achieving state-of-the-art benchmarks. Along this line
of work, [44,50] also leverage the benefit of Class-aware
Contrastive loss to the training process of SSL.

Previous methods might fail to provide the correct em-
beddings due to confirmation bias. Conventionally, confir-
mation bias does not exist in CSL; however, it occurs in
contrastive joint-training SSL by the use of a threshold. It
leads to the degradation of the classifier and the projector,
thus providing incorrect predictions and embeddings. Our
EPASS exploits the ensemble strategy for multiple projec-
tors, imposing consistency and improving generalization for
the learned embeddings, thus enhancing the correctness of
model predictions.

3. Method
3.1. Preliminaries

We first define notations used in the following sections.
For semi-supervised image classification problem, let X =
{(zp,yp) : b€ (1,...,B)} be a batch of B labeled exam-
ples, where x;, is training examples and y; is one-hot labels,
and U = {up:be(1,...,uB)} be a batch of uB unla-
beled examples where p is a hyper-parameter determining
the relative sizes of X’ and U/. For labeled samples, we apply
weak augmentation (A,,) to obtain the weakly augmented
samples. Then, an encoder f (-) and a fully-connected clas-
sifier h (-) are applied to get the distribution over classes as
p(y | ) = h(f (x)). The supervised cross-entropy loss for
labeled samples is defined as:

B
L= 5> M) n
b=1
where H is a standard cross-entropy loss function.
Conventionally, CoMatch and SimMatch apply a weak
(A,) and strong (A,) augmentation on unlabeled samples,
then use the trained encoder and fully-connected classifier
to get the predictions as p)’ = p(y | Aw (up)) and p; =
p(y | As (up)). Following CoMatch [26] and SimMatch
[51], the predictions that surpassing confidence threshold
7 would be directly used as pseudo-labels to compute the
unsupervised classification loss as:

1 LB

L, = B Z 1 (max (py) > 7)H (py.pp) (2
b=1
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where p’ = DA (p}’) is the pseudo-label for input A,, (us)
and DA is the distribution alignment strategy [26, 51] to
balance the pseudo-labels distribution.

Besides, a non-linear projector head ¢ (-) is used to
map the representation from encoder f(:) into a low-
dimensional embeddings space z = g o f. The embed-
dings then are used to compute contrastive loss, which we
simplify as the cross-entropy between the two normalized
graphs:

1 nB
Lo=-—=)> Hg a (3)

where ¢ = ¢ (L2 — norm (z)) is the result after the trans-
formation ¢ (-) of CoMatch or SimMatch on the Ly normal-
ized vector. In CoMatch, ¢ is building a pseudo-label graph
to guide the representation learning as described in Section
3.2.1. For SimMatch, ¢ is calculating the similarities be-
tween z" and ¢ — th instance by using a similarity function
sim(+), which represents the dot product between Lo nor-
malized vectors sim(u,v) = ulv/||ul|||v]]. As a result, we

have:
exp(sim(zy’, z)/T)

q = : ;
i eap(sim(zy', 2%)/T) @
= exp(sim(zg, 2z)/T)

= —% _ ;
21 €xp(sim(zy, 2%)/T)

The momentum embeddings stored in the memory bank and

the EMA model are then defined as:

ze & mzi—1+(1—m)zy; 0 < mb_1+(1—m)b; (5)

where z is the embeddings, 6 is the model’s parameters, ¢
is the iteration, and m is the momentum parameter. The
overall training objective is:

3.2. EPASS

We propose a simple yet effective method to boost the
performance of the conventional contrastive-based SSL that
maximizes the correctness of the embeddings from different
projections by using the ensemble technique.

Unlike conventional methods such as CoMatch and Sim-
Match, which assume that the learned embeddings from
one projector are absolutely correct, we propose using the
ensemble embeddings from multiple projectors to mitigate
the bias. While there could be diverse options to combine
multiple embeddings (e.g., concatenation, summation), we
empirically found that simply averaging the selected em-
beddings works reasonably well and is computationally ef-
ficient. As each projector is randomly initialized, it provides
a different view of inputs, which benefits the generalization
of the model. This intuition is similar to that of multi-view
learning. However, since we generate views with multiple

projectors instead of creating multiple augmented samples,
we introduce far less overhead to the pipeline. The ensem-
ble of multiple projectors helps mitigate the bias in the early
stages of training. In the joint-training scheme, the correct
learned embeddings help improve the performance of the
classification head and vice versa, thus reducing the confir-
mation bias effect. The embeddings stored in the memory
bank by Equation 6 therefore are updated as:

P
_ zpzl Zt,p

2t S Mz2i_1 + (1 — m)Zt, 2t = T (7)

where P is the number of projectors.

3.2.1 Application

SimMatch: Using our ensemble embeddings, we re-
define instance similarity in SimMatch [51] and rewrite the
Equation 4 as:

exp (sim (2, %) /T)

—w

COYR eap(sim (2, 7)) /T)

where T is the temperature parameter controlling the sharp-
ness of the distribution, K is the number of weakly aug-
mented embeddings, and i represents the ¢ — th instance.
Similarly, we can compute g; by calculating the similarities
between the strongly augmented embeddings z° and z;.

®)

exp (sim (z;,%;) /T)

S e im G 1)
The Equation 3 then is rewritten as:
1 &
ﬁfjggﬂmﬁ) (10)

CoMatch: In CoMatch, the embeddings are used to con-
struct a pseudo-label graph that defines the similarity of
samples in the label space. Specifically, the instance simi-
larity is also calculated as Equation 8 for weakly augmented
samples. Then, a similarity matrix W is constructed as:

1 ifb=7j
Wik =9q ¢ ifb#jandg-g>7 (1)
0 otherwise

where 7. indicates the similarity threshold. Also, an embed-
ding graph W~ is derived as:

ifh=j

itb#j (12

z __ exp (Zb : Zb/t)
e = {eXp (2 - 2j/t)
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where 2, = g o f (As (up)) and z;, = g o f (A’s (up)). The
Equation 3 then is rewritten as:

1 &E
Lo=5 ;H (Wg,W,f) (13)

where W,,; = ZW%?_, H (Wf , sz) can be decomposed
into: '

o . 5, 2 T
H (ng, sz) =— W log <e’{p(zsz>/)>

B z
=1 Wi
L exp (zp - Z;/T)
- 5 (22T
L S iz
Jj=1,j#b j=1"Vbj

4. Experiments
4.1. Implementation Details

We evaluate EPASS on common benchmarks: CIFAR-
10/100 [22], SVHN [30], STL-10 [14], and ImageNet [15].
We conduct experiments with varying amounts of labeled
data, using previous work [5,0,26,29,35,41,43,47,51].

For a fair comparison, we train and evaluate all meth-
ods using the unified code base USB [37] with the same
backbones and hyperparameters. We use Wide ResNet-28-
2 [45] for CIFAR-10, Wide ResNet-28-8 for CIFAR-100,
Wide ResNet-37-2 [52] for STL-10, and ResNet-50 [19]
for ImageNet. We use SGD with a momentum of 0.9 as
an optimizer. The initial learning rate is 0.03 with a cosine
learning rate decay schedule of = ng cos (176%), where 7
is the initial learning rate and k() is the total training step.
We set K = 220 for all datasets. During the testing phase,
we employ an exponential moving average with a momen-
tum of 0.999 on the training model to perform inference for
all algorithms. The batch size for labeled data is 64, with
the exception of ImageNet, which has a batch size of 128.
The same weight decay value, pre-defined threshold 7, un-
labeled batch ratio 1 and loss weights are used for Pseudo-
Label [24], IT model [33], Mean Teacher [36], VAT [29],
MixMatch [6], ReMixMatch [5], UDA [4 1], FixMatch [35],
FlexMatch [47], CoMatch [26], SimMatch [51], AdaMatch
[ 7], and FreeMatch [3&].

We use the same parameters as in [37, 43] for Dash
method. For other methods, we follow the original settings
reported in their studies. In Appendix ??, you can find a
comprehensive description of the hyperparameters used. To
ensure the robustness, we train each algorithm three times
with different random seeds. Consistent with [47], we re-
port the lowest error rates achieved among all checkpoints.

4.2. CIFAR-10/100, STL-10, SVHN

The best error rate of each method is evaluated by av-
eraging the results obtained from three runs with differ-
ent random seeds. The results are presented in Table 2,

where we report the classification error rates on the CIFAR-
10/100, STL-10, and SVHN datasets. EPASS is shown to
improve the performance of SimMatch and CoMatch sig-
nificantly on all datasets. For instance, even though EPASS
does not achieve state-of-the-art results in CIFAR-10/100, it
still boosts the performance of conventional SimMatch and
CoMatch. It should be noted that CIFAR-10/100 are small
datasets where prior works have already achieved high per-
formance, leaving little room for improvement. More-
over, ReMixMatch performs well on CIFAR-100 (2500)
and CIFAR-100 (10000) due to the mixup technique and the
self-supervised learning part. Additionally, on the SVHN
and STL-10 datasets, SimMatch and CoMatch with EPASS
surpass all prior state-of-the-art results by a significant mar-
gin, achieving a new state-of-the-art performance. These
results demonstrate the effectiveness of EPASS in mitigat-
ing bias, particularly on imbalanced datasets such as SVHN
and STL-10, where overfitting is a common issue.

4.3. ImageNet

EPASS is evaluated on the ImageNet ILSVRC-2012
dataset to demonstrate its effectiveness on large-scale
datasets. In order to assess the performance of EPASS, we
sample 100k/1%/10% of labeled images in a class-balanced
manner, where the number of samples per class is 10, 13, or
128, respectively. The remaining images in each class are
left unlabeled. Our experiments are conducted using a fixed
random seed, and the results are found to be robust across
different runs.

As presented in Table 3, EPASS outperforms the
state-of-the-art methods, achieving a top-1 error rate of
39.47%/31.39%/24.70% for SimMatch and a top-1 error
rate of 40.24%/32.64%/25.90% for CoMatch, respectively.
The results clearly demonstrate the effectiveness of EPASS
in improving the performance of SSL methods on large-
scale datasets like ImageNet.

5. Ablation Study
5.1. ImageNet convergence speed

The convergence speed of the proposed EPASS is
extremely noticeable through our extensive experiments.
When training on ImageNet, we observe that EPASS
achieves over 50% of accuracy in the first few iterations, in-
dicating that the model is able to quickly learn meaningful
representations from the unlabeled data. This is likely due
to the fact that EPASS encourages the model to focus on
the most informative and diverse instances during training,
which helps the model learn more quickly and effectively.
Additionally, we find that the accuracy of SimMatch and
CoMatch with EPASS is consistently increasing with itera-
tions, outperforming conventional SimMatch and CoMatch
with the same training epochs. This suggests that the use
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Dataset \ CIFAR-10 \ CIFAR-100 \ SVHN \ STL-10

Label Amount | 40 250 4000 | 400 2500 10000 | 40 250 1000 | 40 250 1000
UDA [41] 10.20+5.05  5.404+0.28 4274005 | 51.96+127 29.47+052 23.59+0.32 2.39+0.53 1.9940.02  1.91+0.05 | 53.69+4.38 28.96+1.02  7.2540.50
MixMatch [6] 38.84+836  20.964+245 10.25+0.01 | 80.58+338 47.88+021 33.22+0.06 | 26.61+13.10 4.48+035 5.01+0.12 | 52.324+091 36.34+084 25.01+043
ReMixMatch [5] 8.13+0.58 6.34+0.22 4.65+0.09 | 41.60+1.48 25.7240.07 20.04+0.13 | 16.43+13.77 5.65+035 5.36+058 | 27.87+3.85 11.14+052  6.44+0.15
FixMatch [35] 12.66+4.49  4.95+0.10 4.26+0.01 45.384207 27.71+042  22.06+0.10 3.37+1.01 1.97+0.01  2.02+0.03 | 38.19+476  8.64+0.84 5.82+0.06
FlexMatch [47] 5.29+0.29 4.97+0.07 4244006 | 40.73+£1.44  26.17+0.18  21.75+0.15 5424283 8744332 7.90+030 | 29.12+504  9.85+£1.35 6.0840.34
Dash [43] 9.29+3.28 5.16+0.28 4.36+0.10 | 47.49+1.05 27.47+038 21.89+0.16 5.26+2.02 2.01+001  2.0840.09 | 42.004+494 10.50+137  6.30+0.49
CoMatch [26] 6.51+1.18 5.35+0.14 4.27+0.12 | 53414236  29.78+0.11  22.11+0.22 8.20+5.32 2.16+0.04 2.01+0.04 | 13.74+420  7.6340.94 5.71+0.08
SimMatch [51] 5.38+0.01 5.36+0.08 4.41+0.07 39.32+0.72  26.21+037  21.5040.11 7.60+2.11 2.48+061  2.05+£0.05 | 16.98+4.24 8.27+0.40 5.74+031
AdaMatch [7] 5.0940.21 5.13+0.05 4.36+0.05 38.08£1.35  26.66+033  21.99+40.15 6.14+5.35 2134004  2.02+005 | 19.95+5.17 8.5940.43 6.01+£0.02
FreeMatch [38] 4.90-+0.12 4.88-+0.09 4.16+0.06 | 39.52+001 26.22+0.08 21.81+0.17 1043+082  8.23+322  7.56+025 | 28.50+541  9.29+1.24 5.81+0.32
SoftMatch [&] 5.11+0.14 4.96+0.09 4274005 | 37.60+024 26.39+038 21.86+0.16 2.46+0.24 2.154007  2.0940.06 | 22.234+382  9.18-+0.68 5.7940.15
[26] + EPASS 5.55+021 5.31+0.13 4.2340.05 | 50.73+£033 29.51+0.16 22.16+0.12 2.98+0.02 1.93+0.05 1.85+0.04 | 9.15+325 6.27+0.03 5.40+0.12
[51] + EPASS 5.31+0.10 5.08+0.05 4.3740.03 38.88+024 25.68+033 21.32+0.14 2.31+0.04 2.0440.02  2.02+0.02 | 15.714+248  8.0840.26 5.5840.04
Fully-Supervised | 4.62:£0.05 \ 1930009 \ 2.13+0.02 \ None

Table 2. Error rate on CIFAR-10/100, SVHN, and STL-10 datasets on 3 different folds. Bold indicates best result and Underline indicates

the second best result.

‘ Top-1 ‘ Top-5 ‘ Top-1 ‘ Top-5 ‘ Top-1 ‘ Top-5

Method
\ 100k \ 1% \ 10%

FixMatch [35] 43.66 | 21.80 - - 28.50 | 10.90
FlexMatch [47] | 41.85 | 19.48 - - - -
CoMatch [26] 42.17 | 19.64 | 34.00 | 13.60 | 26.30 | 8.60
SimMatch [51] | 41.15 | 19.23 | 32.80 | 12.90 | 25.60 | 8.40
FreeMatch [38] | 40.57 | 18.77 - - - -
SoftMatch [8] 40.52 - - - - -
[26] + EPASS | 40.24 | 18.40 | 32.64 | 12.71 | 2590 | 8.48
[51]+ EPASS | 39.47 | 18.24 | 31.39 | 12.41 | 2470 | 744

Table 3. ImageNet error rate results. Bold indicates best result and
Underline indicates the second best result.
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Figure 3. Convergence analysis of SimMatch with and without
EPASS.

of EPASS enables the model to continue learning and im-
proving over time, rather than plateauing or becoming over-
fitted. Overall, these results demonstrate the effectiveness
of EPASS in improving the convergence speed and perfor-
mance of SSL methods.

5.2. Calibration of SSL

Chen et al. [9] propose a method for addressing con-
firmation bias from the calibration perspective. To evalu-
ate the effectiveness of EPASS in this regard, we measure
the calibration of CoMatch and SimMatch on the ImageNet
dataset with and without EPASS, using 10% labeled data I
Several common calibration indicators, including Expected
Calibration Error (ECE), confidence histogram, and relia-
bility diagram, are utilized in this study.

Figure 4 illustrates that when EPASS is used with 10%
of labels, the ECE value of the model decreases. More-
over, under the 1% label scheme, CoMatch and SimMatch
without EPASS are significantly overconfident and overfit-
ted due to confirmation bias. However, when EPASS is em-
ployed, it helps to reduce the ECE by a large margin and
also mitigate the overconfidence of the model. Notably,
models with EPASS have average accuracy and average
confidence that are approximately equal, whereas the aver-
age confidence of models without EPASS is usually higher
than the accuracy.

It is worth mentioning that since CoMatch does not im-
pose the interaction between semantic and instance similar-
ity like SimMatch, the effect of introducing EPASS to Co-
Match for calibration is not as significant as that for Sim-
Match. Additionally, the model with EPASS becomes un-
derfit and may benefit from additional training.

5.3. Number of projectors

This section studies the effectiveness of the proposed
projectors ensemble method and how different ensemble
strategies affect performance. In this experiment, we study
the effect of different numbers of projectors on perfor-
mance. The top-1 classification accuracy of the proposed
EPASS with different numbers of projectors is shown in Ta-

Uhttps://github.com/hollance/reliability-diagrams
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Figure 4. Reliability diagrams (top) and confidence histograms (bottom) for ImageNet dataset. The first row and second row are conducted

with 10% and 1% of labels, respectively.

ble 4.

# projectors
s BEEA R E
CoMatch [26] + EPASS 73.6 | 73.8 | 74.1 | 73.9
SimMatch [51]+ EPASS | 744 | 748 | 753 | 752

Table 4. Top-1 accuracy (%) on ImageNet 10% using different
numbers of projectors.

In Table 5, we record the results of different ensemble
strategies for EPASS. Overall, averaging the embeddings
results in better performance than concatenation and sum-
mation.

Ensemble

strategy Concatenate | Sum | Mean
Method
CoMatch [26] + EPASS 74.0 739 | 741
SimMatch [51] + EPASS 75.1 748 | 753

Table 5. Top-1 accuracy (%) on ImageNet 10% using different
ensemble strategies.

5.4. Imbalanced SSL

Dataset | CIFAR-10-LT | CIFAR-100-LT

Imbalance A | A=50 A=150 | A=20 A=100
FixMatch [35] 18.5+048 31.2+1.08 | 49.1+062 62.5+036
FlexMatch [47] 17.8+024  29.5+047 | 48.9+071  62.7+0.08
FreeMatch [38] 17.7+033  28.8+0.64 | 48.4+091 62.5+0.23
SoftMatch [38] 16.6+029 27.4+046 | 48.1+055 61.1+081
CoMatch [26] 16.3+024 30.1+031 | 46.2+041  60.0+0.21
SimMatch [51] 20.3+031  28.7+048 | 45.4+055 60.1+0.21
[26] + EPASS 16.1+022 29.6+041 45.9+045 59.840.01
[51]1 + EPASS 18.2+034 28.4+043 45.2+051 59.6+0.11
FixMatch + ABC [25] 14.04022  22.3+1.08 | 46.6+069 58.3+0.41
FlexMatch + ABC [25] 14.24034 23.1+070 | 46.2+047 58.94051
FreeMatch + ABC [25] 13.94003 22.3+026 | 45.6+076 58.9+055
[26] + ABC [25] 14.1+021  23.1+032 | 43.0+052 59.04031
[517+ ABC [25] 14.5+025 20.5+021 | 43.3+044 58.9+0.50
[26] + EPASS + ABC [25] 14.0+0.19 2244041 42.7+055 58.54+041
[511+ EPASS + ABC [25] 13.3+0.09 20.2+026 42.7+041 58.84037

Table 6. Error rates (%) of imbalanced SSL using 3 different ran-
dom seeds. Bold indicates best result and Underline indicates the
second best result.

To provide additional evidence of the effectiveness of
EPASS, we assess its performance in the imbalanced semi-

supervised learning scenario [16, 25, 39], where both the
labeled and unlabeled data are 1mbalanced. Our experi-
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Dataset | CIFAR-100 | STL-10 | Euro-SAT | TissueMNIST | Semi-Aves
Label Amount | 200 400 | 20 40 | 20 4 | 100 500 | 3959
UDA [41] 30.7541.03 19944032 | 39.2242.87 23.5942.97 | 11.15£120 5.9940.75 | 55.8843.26 51.4242.05 | 32.55+0.26
MixMatch [6] 37.4340.58  26.17+024 | 48.98+141  25.5643.00 | 29.86+2.89 16.39+3.17 | 55.73+2.29 49.08+1.06 | 37.2240.15
ReMixMatch [5] | 20.85+1.42  16.804+0.59 | 30.61+347 18.33+1.98 | 4.53+1.60 4.10+0.37 59.2945.16  52.924+3.93 | 30.40+0.33
FixMatch [35] 30.4540.65 19.4840.93 | 42.06+3.94 24.054+1.79 | 12.484+2.57 6.41+1.64 55.95+4.06 50.93+1.23 | 31.7440.33
FlexMatch [47] 27.0840.90 17.6740.66 37.5842.97 23.40+1.50 7.07+2.32 5.58+0.57 57.234+2.50 52.06+1.78 | 33.09+40.16
Dash [43] 30.194+1.34  18.90+0420 | 43.34+146  25.9040.35 9.44+0.75 7.00+1.39 57.004+2.81  50.93+1.54 | 32.5640.39
CoMatch [26] 35.684054  26.104+0.09 | 29.70+1.17 21.46+1.34 | 5.2540.49 4.89+086 | 57.15+346 51.83+0.71 | 41.39+0.16
SimMatch [51] 23.264+1.25 16.824+040 | 34.12+1.63 22974204 | 6.88+1.77 5.86+1.07 57914460 51.14+1.83 | 34.1440.30
AdaMatch [7] 21.274+1.04  17.014+055 | 36.25+1.89  23.3040.73 5.70+0.37 4.92+0.87 57.87+447  52.28+0.79 | 31.5440.10
[26] + EPASS 35.104+055  25.534+050 | 29.56+2.50 21.14+0.31 | 3.41+0.24 291+041 | 56.88+493 51.06+1.09 | 41.19+0.43
[51] + EPASS 22.5240.83  16.78+0.59 | 30.03+0.71 22.654+1.94 | 5.35+0.81 3.814037 | 57.224597 50.40+1.44 | 33.8340.04
Fully-Supervised | 8.90+0.12 | - | 0.85£0.06 | 33.91+0.03 | -

Table 7. Error rate on CIFAR-10/100, SVHN, and STL-10 datasets on 3 different folds. Bold indicates best result and Underline indicates

second best result.

ments are conducted on CIFAR-10-LT and CIFAR-100-LT,
using varying degrees of class imbalance ratios. For the
CIFAR datasets, the imbalance ratio is defined as follows:
A = Npae/Nmin Where Ny, q, is the number of sam-
ples on the head (frequent) class and [V,,;, the tail (rare).
Note that the number of samples for class k is computed

as N = Nmax/\_%, where C' is the number of classes.
Following [16,25], we set Ny,q, = 1500 for CIFAR-10 and
Npae = 150 for CIFAR-100, and the number of unlabeled
data is twice as many for each class. We use a WRN-28-
2 [45] as the backbone. We use Adam as the optimizer. The
initial learning rate is 0.002 with a cosine learning rate de-
cay schedule as n = 19 cos (176%) where 7 is the initial
learning rate, k(K) is the current (total) training step and
we set K = 2.5 x 10° for all datasets. The batch size of la-
beled and unlabeled data is 64 and 128, respectively. Weight
decay is set as 4e~®. Each experiment is run on three dif-
ferent data splits, and we report the average of the best error
rates.

The results are summarized in Table 6. Compared with
other standard SSL methods, EPASS achieves the best per-
formance across all settings. Especially on CIFAR-100
at an imbalance ratio 100, SimMatch with EPASS outper-
forms the second-best by 0.6%. Moreover, when plugged
in the other imbalanced SSL method [25], EPASS still at-
tains the best performance in most of the settings.

5.5. Result using USB

In this section, we evaluate the effectiveness of EPASS
within the context of the USB [37] framework, adhering
strictly to the USB settings for CV tasks that utilize pre-
trained Vision Transformers (ViT). For a detailed overview
of hyperparameters used in these experiments, please refer
to Appendix ??.

As Table 7 indicates, EPASS improves the perfor-
mance of SimMatch and CoMatch on all datasets, albeit
marginally. These experiments utilize pre-trained ViT mod-
els, which provide a strong representation initialization on
unlabeled data, leaving little room for improvement when
applying SSL methods with this kind of model. Notably,
ReMixMatch [5] achieves the highest performance among
all SSL algorithms due to its usage of mixup [48], Distri-
bution Alignment, and rotation self-supervised loss. How-
ever, on CIFAR-100, STL-10, Euro-SAT, and TissueM-
NIST datasets, EPASS outperforms ReMixMatch.

6. Future works

While our experiments have shown the effectiveness of
EPASS in mitigating bias in computer vision tasks, it is un-
clear whether EPASS can be generalized to other domains,
such as natural language processing or speech recognition.
Therefore, future research could investigate the applicabil-
ity of EPASS to these domains and explore how it can be
adapted to different types of problems beyond classification
tasks such as object detection or segmentation, which have
different characteristics than classification problems and re-
quire more complex models.

7. Conclusion

Our proposed method, EPASS, enhances the perfor-
mance and reliability of conventional contrastive joint-
training SSL methods. EPASS achieves this by mitigat-
ing confirmation bias and embedding bias, which leads to
simultaneous performance improvement and reduced over-
confidence. EPASS outperforms strong competitors across
a variety of SSL benchmarks, especially in the large-scale
dataset setting. Additionally, EPASS introduces minimal
overhead to the overall pipeline.
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