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Abstract

Food image classification is essential for monitoring
health and tracking dietary in image-based dietary assess-
ment methods. However, conventional systems often rely
on static datasets with fixed classes and uniform distribu-
tion. In contrast, real-world food consumption patterns,
shaped by cultural, economic, and personal influences, in-
volve dynamic and evolving data. Thus, require the clas-
sification system to cope with continuously evolving data.
Online Class Incremental Learning (OCIL) addresses the
challenge of learning continuously from a single-pass data
stream while adapting to the new knowledge and reduc-
ing catastrophic forgetting. Experience Replay (ER) based
OCIL methods store a small portion of previous data and
have shown encouraging performance. However, most ex-
isting OCIL works assume that the distribution of encoun-
tered data is perfectly balanced, which rarely happens in
real-world scenarios. In this work, we explore OCIL for
real-world food image classification by first introducing a
probabilistic framework to simulate realistic food consump-
tion scenarios. Subsequently, we present an attachable Dy-
namic Model Update (DMU) module designed for existing
ER methods, which enables the selection of relevant im-
ages for model training, addressing challenges arising from
data repetition and imbalanced sample occurrences inher-
ent in realistic food consumption patterns within the OCIL
framework. Our performance evaluation demonstrates sig-
nificant enhancements compared to established ER meth-
ods, showing great potential for lifelong learning in real-
world food image classification scenarios. The code of our
method is publicly accessible at https://gitlab.com/viper-
purdue/OCIL-real-world-food-image-classification

1. Introduction

Food image classification has shown great potential for
improving food pattern tracking [16,31,36], nutritional and
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Figure 1. R-OCIL for food image classification. The model h
learns new food class data sequentially from realistic consump-
tion patterns without accessing previously learned data. These data
streams may include repetitions and imbalanced sample distribu-
tions. The updated model should classify all food classes it has
encountered.
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health analysis [35,41], and dietary monitoring [12, 15,30,

]. Current food classification models have achieved re-
markable performance on static datasets that do not change
with time and have a fixed number of classes. However,
food patterns change and food classes expand in the real
world due to shifts in dietary styles and preferences [44,49].
This makes it necessary for food image classification mod-
els to adapt and learn the new information from the chang-
ing data [19]. In order to accommodate evolving data,
we propose to leverage Online Class Incremental Learning
(OCIL) approaches (outlined in detail in [34] ). These meth-
ods continuously learn from a growing stream of sequen-
tially arriving data. A major challenge in OCIL methods is
catastrophic forgetting [7, 13, 39] of old knowledge while
learning new data, leading to performance degradation. In
this work, we focus on Online Class Incremental Learning
(OCIL) frameworks [17,20,21] for food image classifica-
tion task. The OCIL setting is more realistic but challeng-
ing compared to offline, as the model must continually learn
new classes from an online data stream encountering each
incoming sample only once, while past observed data is not
accessible.

Nevertheless, existing OCIL approaches operate under
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Figure 2. (a) Conventional ER OCIL strategy, (b) Our proposed
realistic setting along with our DMU module. Existing OCIL ER
studies [2, 3, 14,29,45,48] used (a). Each ER technique employs
a different exemplar update and retrieval strategy, as indicated by
the corresponding arrows in the figure.

constraints that do not reflect real-world situations. For
instance, certain constraints may impose equal task sizes,
equal samples for each class in a task, and balanced train-
ing samples [2,3,14,48]. As aresult, many existing method-
ologies assume that the training data is perfectly balanced,
either explicitly or implicitly. However, real-world food
consumption patterns seldom exhibit such fixed structure
or balance. The most recent studies of Class-Incremental
with Repetition (CIR) in offline scenarios [9, 10,23,42] have
gained significant attention as a promising direction in Con-
tinual Learning. These settings offer enhanced flexibility in
task definition, facilitating the integration of new and pre-
viously encountered classes. However, the consideration of
repetition in this context remains under-explored in the on-
line setting. This poses a challenge, but it holds significant
relevance in practical, resource-constrained scenarios like
the classification of food images in applications such as diet
management and food intake monitoring systems [ 1, 15].

In this work, we fill this gap and extend the OCIL setting
to a more realistic setup by removing the constraints men-
tioned above, which we refer to as Realistic Online Class
Incremental Learning (R-OCIL) as shown in Figure 1. To

generate experimental benchmarks that closely mimic real-
world food patterns influenced by different dietary routines,
we first summarize real-world food consumption patterns
into three main categories, including short-term, moderate-
term, and long-term. We introduce a Realistic Data Distri-
bution Module (RDDM) to simulate these food consump-
tion patterns. These scenarios are formulated based on ap-
proaches for safe and sustainable weight loss and mainte-
nance, as explained in Section 3.3. We propose a simple
yet effective plug-and-play module for existing Experience
Replay (ER) OCIL methods called Dynamic Model Update
(DMU) as shown in Figure 2. The DMU optimizes the se-
lection of the most representative samples for training, fa-
cilitating the natural accumulation of knowledge over time.

The main contributions of our work can be summarized
as follows:

1. We propose a probabilistic framework called Realistic
Data Distribution Module (RDDM) for Realistic On-
line Class Incremental Learning (R-OCIL) methods.
To the best of our knowledge, this is the first such
framework proposed for simulating various realistic
food consumption patterns for image classification.

2. We introduce a dynamic plug-and-play module called
Dynamic Model Update (DMU), which can be inte-
grated with existing Experience Replay (ER) OCIL
methods to improve learning accuracy and mitigate
catastrophic forgetting in realistic scenarios.

3. We simulate three real-world food consumption pat-
terns - short-term, moderate-term, and long-term on
the challenging Food-101 [5] and VFN [18] datasets
using our proposed RDDM framework. We show that
incorporating our DMU module significantly improves
the performance of ER methods across all three scenar-
ios.

2. Related Work
2.1. Food Image Classification

Food image classification is a computer vision task that
assigns a food category or label to an input food im-
age. This task falls under the umbrella of image classifi-
cation, wherein deep learning models are trained to recog-
nize different food items based on their visual features as
in [16,31,40,41,46,47,51]. The task typically involves
assigning a single food category to an input image, assum-
ing that the image contains only one type of food. Fur-
thermore, recent research efforts have leveraged hierarchi-
cal structures [37] based on visual information to achieve
further performance improvements. Nonetheless, all these
methodologies rely on fixed food image datasets for train-
ing, lacking the capacity to learn from sequentially pre-
sented data. This limitation hampers their applicability in
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real-world scenarios where new foods are continuously en-
countered over time.

2.2. Online Class Incremental Learning

Class Incremental Learning (CIL) [4,6,24,50] is a ma-
chine learning paradigm where a model is trained to pro-
gressively incorporate new classes or categories of data over
time. This learning approach involves updating the model
in such a way that it can accommodate additional classes
without compromising its ability to recognize previously
learned classes. In the context of CIL, there are two pri-
mary learning protocols: (i)Offline [10,23,38] (We refer to
as CIL in this paper)(ii) Online [20,34](We refer to as OCIL
in this paper): In this protocol, the training data also arrives
sequentially, similar to the offline scenario, but the model
can only be trained on each sample once without accessing
data from the previous tasks. Current OCIL methods can be
taxonomized into two major categories: (i)Regularization-
based [8,25,28,32,33,52] and (ii) Experience Replay-based
methods. Regularization-based techniques involve includ-
ing an extra penalty term within the loss function to penalize
updates to important parameters. Experience Replay-based
(ER) techniques address the issue of catastrophic forgetting
by storing a subset of learned task data as exemplars within
a memory buffer. These exemplars are then employed for
rehearsal during the process of continual learning. When
compared to regularization-based methods, ER techniques
have showcased superior efficiency. In this study, we cen-
ter our attention on ER-based approaches for comparison.
The MIR [2] method executes a virtual parameter update
and retrieves data from the memory buffer that are primarily
impacted, using the loss from the current mini-batch. Ad-
ditionally, the buffer retrieval and storage procedures vary
significantly between the“online” and “offline” settings due
to the specific data access constraints.

In contrast, GSS [3] opts for exemplar selection based
on gradient directions. Although initially designed for
CIL(offline), iCaRL [34, 45] has exhibited effectiveness
even in the OCIL(online) context, achieved through ran-
dom exemplar selection coupled with the nearest-class-
mean classifier. ASER [48], singles out the most efficient
data for use as exemplars using adversarial shapley value.
DVC [14] introduces a gradient-based exemplar selection
process that primarily responds to incoming samples with
high interference. This approach also includes a represen-
tation learner that maximizes mutual information, drawing
inspiration from contrastive learning.

3. Problem Formulation
3.1. Problem setup

Online Class Incremental Learning involves learning a
sequence of T tasks, denoted by ¢; to t7, one task at a time.

During the learning of any task ¢;, no data from any other
task other than ¢; is accessed. The model is updated from
h1 to hy. In each task ¢;, there are K; classes, and the dis-
tribution of samples and classes adheres to the three char-
acteristics detailed in Section 3.2. For a specific task ¢;, the
training data for the model is denoted as .S;, which consists
of n; sets of training examples presented in the structure
(i1,Yi1)s - (Tim,, Yin, ). Here, z refers to an image, and
y represents its associated label. The index ¢ corresponds to
the particular task ¢;, where ¢ € {1,2,...,T}.

3.2. Characteristics of R-OCIL

We identify three main characteristics of R-OCIL and
use them to propose a probabilistic formulation to sim-
ulate realistic food consumption patterns. Let C =
{C1,Cs,...,Cn} denote a set of N classes. The sample
sizes of different classes appear in a task ¢; € T are mod-
eled as a random vector S;, where each element s; ; repre-
sents the sample size of class Cj in task t;. We normalize
the total samples of a class C; by its occurrences across all
tasks 7.

Characteristic 1: The total number of classes in a given
task ¢; is not fixed. We denote the number of classes within
that task as K;, expressed as:

Ki:iEC’:ISZSi7j<N (1)
J

To uphold the concept of class incremental learning, we es-
tablish K; > K;_1+1, ensuring that each task ¢; introduces
at least one new class compared to the preceding task ¢;_1.
Additionally, by setting an upper limit below N (the overall
number of classes), we prevent all food classes from being
presented within a single task. This scenario, uncommon
in reality, would lead to the transformation of the problem
into Domain Incremental Learning [50]. In such cases, the
model would need to process all data simultaneously.
Characteristic 2: The sample sizes of occurring classes
within any given task ¢; may not be equal.

VYm,n€ N |m#n
P(Si,m # Si,n) > 07 vsim@ 7& Si,n 7& 0

Characteristic 3: Classes appearing across different tasks
could overlap. Let’s consider two tasks ¢;, ¢; such that ¢ # j

2

Cti N Ctj # (Z) (3)
where C, and C’tj denote the classes occurring in tasks ¢
and j.

3.3. Formulation of food consumption pattern cat-
egories

Food consumption patterns offer significant insights into
the dietary behaviors of individuals or communities within
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Table 1. Food consumption categories. The range of classes
for each dataset experimented with and the corresponding o and
[ values used to produce patterns reflecting the number of repre-
sented classes.

Food

Consumption @ B8 Food 101 VEN
101 Classes 74 Classes
Category
Short-term [9, 10, 11, 12] [1,2,3] 20-40 10-30
Moderate-term [5,6,7, 8] [4, 5, 6] 40-80 30-50
Long-term [1,2,3,4] [7,8,9] 80-101 50-74

a defined time frame. This encompasses details like the
kinds and quantities of ingested food and beverages, eat-
ing routines, meal frequencies, and food preparation meth-
ods. Understanding these patterns is essential for delving
into the relationship between diet and health consequences
[12,40,41].

Due to the unavailability of datasets capturing food con-
sumption patterns, we simulate them. Nonetheless, consid-
ering the multitude of potential permutations in food con-
sumption patterns, replicating every single one proves to
be a formidable task. To streamline this process, we clas-
sify these patterns into three primary types: short-term,
moderate-term, and long-term. These classifications draw
from dietary and nutritional recommendations [11,26].

In reality, food consumption patterns often do not in-
volve the consumption of every available food item. To
address this, we introduce two hyperparameters labeled o
and 5. The hyperparameter « controls the repetition of
previously observed classes and 3 controls the addition of
new food classes. We must consider diverse dietary styles
to determine suitable values for these hyperparameters cor-
responding to each food consumption category. For in-
stance, certain diets like low-protein regimens, which re-
strict caloric intake, are typically followed for short dura-
tion, around six months, to facilitate healthy weight loss
without negative consequences [26]. To simulate such a diet
within the short-term food consumption category, we cap
the number of accessible food classes at 40 for the Food-
101 dataset and 30 for the VEN dataset, respectively. Thus,
although « and f3 offer a broad spectrum of feasible values
for encompassing various food consumption patterns, we
have selected three sets of values as representatives of these
dietary habits. These specific values are elaborated upon in
Table 1.

4. Methodology

Our method comprises two primary components. Firstly,
we introduce a probabilistic framework called the Realistic
Data Distribution Module (RDDM). This module aims to
simulate realistic food consumption patterns, as elaborated
in Section 3.3, while aligning with the characteristics of Re-

alistic OCIL as outlined in Section 3.2. Secondly, we pro-
pose a plug-and-play module named the Dynamic Model
Update (DMU). This module is designed to seamlessly inte-
grate with existing experience replay-based OCIL methods.
The DMU operates by continuously assessing the model’s
current performance and dynamically selecting the most
representative food images from the input image sequence
within each task for training. This adaptive approach en-
hances overall learning and reduces forgetting.

4.1. Realistic Data Distribution Module (RDDM)

Simulating food consumption patterns can be challeng-
ing due to managing multiple variables and determining
suitable repetition and probabilistic distributions. Addition-
ally, it can be difficult to select which food classes to repeat,
their order and distributions. In this paper, we introduce a
framework for generating realistic food scenarios that can
be customized to various dietary patterns by changing the
input probability distribution and two hyperparameters. The
proposed framework aims to simplify the process of gen-
erating realistic food consumption patterns, which can be
helpful in various applications, such as food recommenda-
tion systems, continual health monitoring, and nutrition re-
search.

We consider an RDDM formulation for realistic food
consumption patterns following the three characteristics in-
troduced in Section 3.2.

K7 = D(i,a)
K" = D(i, ) )
Ki — K,wa + K;‘epeat

The task-specific distribution D determines the number
of classes K; present in a given task 7. We split this equation
into two parts. As described earlier, we are using the hyper-
parameter /3 to control the addition of new food classes and
the hyperparameter « to control the repetition of previously
observed classes. As a result, K; is a stochastic variable
that fulfills Characteristic 1. Different food consumption
patterns can be simulated by selecting various data distri-
butions D. For instance, in Section 5.3, we employ an ex-
ponential function as the data distribution D to generate a
more significant level of imbalance. The degree of imbal-
ance, represented by the imbalance factor (p), relies on the
number of categories present in the dataset and the hyper-
parameters « and [ as represented in Equation 5.

_N-E
o «

p 5

where N represents total number of classes and E represent
the number of encountered classes.

A; = L(K;, W,) (©6)
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Figure 3. Overview of proposed method: The left section of the diagram illustrates the Dynamic Model Update (DMU) process, contain-
ing two concurrent data inference pathways. The first branch encompasses a virtual model denoted as V' M1, which receives the complete
batch of data and the corresponding exemplars retrieved from the buffer. Simultaneously, the second branch involves another virtual model
named V M5, and receives only the non-repeated data (associated with new class samples) computed based on Equations 9 and 10 along
with its corresponding exemplars. At any given task ¢;, the virtual models correspond to the OCIL model trained until task ¢;—;. The
strategy for retrieving exemplars and updating the buffer depends on the specific ER method employed in the experiment. The accuracy of
these two virtual models is subsequently compared against the accuracy of the initial task, serving as the threshold. Next, the input image
sequence and exemplars from the virtual branch that exhibits superior performance are directed into the main OCIL model for training.

The binary indicator vector A; denotes which classes appear
in task ¢; and is drawn from distribution L(K;, W, ) shown
in Equation 6, where the value ”1” indicates the presence
of a particular class. This distribution is dependent on the
number of classes K; and satisfies Characteristic 3. The
weight vector Wi' determines the probability of a class ap-
pearing in task t;, with higher weights indicating a greater
likelihood of appearance. We set L as uniform distribution
in Section 5.1 as each class has an equally likely chance of
appearing in a task.

Si = Q(A:) )

S; represents the sample sizes of each class in A;, and is
drawn from the distribution (A;) as shown in Equation 7.
To simplify the setup, we allocate the total number of sam-
ples for a class by dividing it by the total number of occur-
rences across all tasks and satisfies Characteristic 2. For
example, if “class 5” has 500 samples and appears five
times in ten tasks, each appearance of “class 5” in a task
will have 100 samples. Any extra samples are allocated to
the first task if this number is not divisible.

4.2. Dynamic Model Update (DMU)

In this section, we introduce the Dynamic Model Update
(DMU), as depicted in Figure 3. Given the common occur-

rence of repeated foods in real-life food consumption pat-
terns, which can act as natural replays and partially allevi-
ate the impact of forgetting, we designed a straightforward
and effective training module. The integration of DMU with
any existing ER method can be seamlessly achieved without
disrupting its workflow. Our primary objective is to enhance
the model update pipeline to integrate seamlessly with the
latest ER methods. Additionally, we showcase how our ap-
proach can be adapted to accommodate diverse buffer up-
date strategies employed by various ER methods, resulting
in enhanced performance for real-world food classification.

The key idea of our DMU is to avoid training the model
without being aware of the input image data from the se-
quence. Moreover, since the input sequence can contain
possible repetitions of previously encountered classes, the
model could overfit if images from a specific class appear
frequently. To address this, we have devised a strategy that
dynamically selects whether to incorporate the entire train-
ing batch or solely the new classes based on the model’s on-
going training performance. Upon encountering data from
task ¢; during the training phase, we establish two virtual
models: V M; and V M. All layers are frozen in these vir-
tual models, and gradient updates are not applied. These
virtual models are clones of the primary model trained until
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the current task ¢, denoted as h;_1. The first branch (V M)
of these models is deduced using the complete input batch
[X, Y] and corresponding exemplars [X g, Y], as depicted
in Equation 8.

For V M5, the second branch of the models, the input
comprises [Xpr, Yy|, alongside corresponding exemplars
retrieved from the buffer, represented as Xg,,,YE, . The
selection of exemplars for the two virtual branches differs
due to the distinct inputs of each branch. Each ER method
employs a distinct exemplar retrieval strategy, ranging from
random retrieval in iCaRL and GSS to constraint-based re-
trieval in MIR, ASER, and DVC. To acquire exemplars for
the non-repeated (new sample) class images, the prior label
distribution (P D(t;)) and the current input [X, Y] are com-
pared. Here, PD(t;) denotes the stored values of all unique
label sets that have emerged until task ¢;. The computation
of non-repeated data [ X7, Y| can be accomplished using
Equation 9, as illustrated in Figure 3.

. i
gy = VM ([X, XE))
prediction(x;) = argmax(@ZVMl)

N ®)
1 1
Accuracy¥ M = A Z[g}VMl = ¢V M)
=1

Where V1 = [V, Y] and N, is the corresponding batch
size.

The non-repeated labels are obtained by the function H,
as illustrated in Equation 10, subsequently facilitating the
extraction of the corresponding images.

[Yu] = [Y] N PD(k) (10)

Conversely, the second branch is inferred exclusively
with the new class image [Xpg,Yy| (i.e., non-repeated)
samples and their corresponding exemplars [Xg g, Y g,
as shown in Equation 11

9V = VM, (X, X))

prediction(x;) = argmaz (g, *?)
LN (11)
A VM2 — AV]\'fz — VM2
ceuracy N ;[y y” 2]
where VM2 = [Yy,Yg 5] and Ns is the corresponding
batch size.

Following the initial task, the achieved accuracy is pre-
served as the threshold accuracy (1T'H), given that different
food consumption patterns yield different accuracy and can-
not be fixed. Subsequently, the DMU module employs this
threshold accuracy to determine the branch with accuracy
surpassing the threshold. The data from this branch is then
directed into the main training pipeline. The primary model,

trained until task ¢; and represented as h;_1, is subsequently
updated via supervised backpropagation.

5. Experiments
5.1. Experimental setup

Datasets. We introduce two benchmarks for Realistic
Online Class Incremental Learning (R-OCIL) in the realm
of real-world food image classification: the Food-101 [5]
dataset (101 classes) and the VFN [ 18] dataset (74 classes).
We simulate food consumption patterns by utilizing the
RDDM module, which categorizes food classes into short-
term, moderate-term, and long-term, as discussed in Section
3.3. The Food-101 dataset comprises 101,000 images with
750 training images per class. The VFN dataset contains
over 15,000 training images across 74 classes, representing
commonly consumed food categories in the United States
based on the WWEIA database !. Test sets are balanced,
with 250 images per class for Food-101 and 50 images per
class for VEN. Our experiment involves assessing 5, 10, and
20 tasks using a SK memory buffer, facilitating performance
evaluation of all considered methods.

Baselines. Our analysis will delve into the performance
of five prevalent ER OCIL methods, namely iCaRL [45],
MIR [2], GSS [3], ASER [48], DVC [14]. These methods
are discussed in Section 2 and are used for evaluation within
realistic food consumption scenarios simulated by RDDM.
A comparison will be drawn between these methods and
their enhanced versions, incorporating our proposed plug-
and-play DMU. We incorporate a baseline method dubbed
Fine-tune for reference. This method exclusively employs
data from new classes and cross-entropy loss for contin-
ual learning without considering prior task performance.
Hence, it serves as a performance lower bound. It is cru-
cial to emphasize that our comparison does not encompass
“offline” methods centered on repetition. This is due to the
fundamental distinction between “online” and “offline” set-
tings in terms of data encounter, training frameworks, and
buffer strategies, as outlined in Section 1.

Evaluation Metrics. For a fair evaluation, we consider
access to a held-out test set for each of the 7" tasks. Upon
the model’s completion of learning task ¢;, we assess its
test performance across all T tasks. This process allows us
to construct the matrix B € R”*7, where B; ; represents
the test classification accuracy of the model for task ¢; after
observing the final sample from task ¢; [33]. Letting b de-
note the vector of test accuracy for each task during random
initialization, and we use the following metrics for perfor-
mance evaluation: Average Accuracy = % 23:1 Bt ;
where B; ; is the accuracy on task j after the model has
been trained from task 1 through 1.

Thttps://data.nal.usda.gov/dataset/what-we-eat-america-wweia-
database
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Table 2. Average Accuracy (%) rate with task sizes of 5, 10, and 20 with a 5K memory buffer on the Food-101 and VFN dataset with
exponential distribution (D). Results include existing ER methods and the enhanced version using our method (DMU) leveraging the
RDDM framework for realistic food image sequences. The best accuracy results are highlighted in boldface.

Dataset Food-101 VEN

Task size 5 10 ‘ 20 5 10 20

Category Short Mod Long ‘ Short Mod Long ‘ Short  Mod Long Short Mod Long ‘ Short Mod Long | Short Mod Long
Finetune 53.00 51.00 48.65 | 4523 37.50 35.10 | 22.00 23.67 21.11 33.10 2550 2690 | 23.67 20.80 19.17 | 14.62 11.84 10.80
iCaRL [CVPR ’17] || 75.02 69.34 57.75 | 67.0 56.6 49.65 | 57.24 51.69 47.13 59.04 52.01 38.39 | 50.78 46.64 36.07 | 44.09 4796 34.81
iCaRL + DMU 76.04 70.68 59.22 | 67.14 62.29 52.19 | 59.72 53.65 50.37 59.77 53.36 4295 | 52.72 46.93 36.17 | 46.66 48.31 34.88
Gain (A) 1.02 1.34 1.47 0.14 569 254 2.48 1.96 3.24 0.73 1.35 4.56 1.94 031 0.10 2.55 0.35 0.07
MIR [NeurIPS °19] || 74.71 69.79 57.55 | 64.0 57.0 489 | 54.15 4839 4385 4941 46.01 43.88 | 44.01 4221 3583 | 3396 31.12 30.73
MIR + DMU 82.14 75.69 67.97 | 72.73 7117 67.72 | 65.50 63.03 62.04 54.33 48.06 44.90 | 50.78 45.64 36.50 | 38.81 34.95 34.81
Gain (A) 7.43 5.9 1042 | 8.73 14.17 18.82 | 11.35 14.64 18.19 4.92 1.96 1.02 6.77 343 0.67 4.92 3.83 4.08
GSS [NeurIPS °19] || 72.17 69.77 58.54 | 51.5 50.5 47.8 | 4033 428 38.51 53.41 45.64 37.19 | 44.68 44.13 3449 | 33.74 3475 29.82
GSS + DMU 76.29 74.01 68.19 | 55.07 66.17 66.06 | 47.43 49.86 50.13 55.59 47.52 38.83 | 48.10 47.91 3835 | 39.44 3570 30.08
Gain (A) 4.12 4.24 9.65 3.57 15.67 18.26 | 4.10 7.06 11.62 2.18 1.88 1.64 3.42 3.78 3.86 5.70 0.96 0.26
ASER [AAAI °21] 77.87 7251 62.89 | 67.70 66.6 61.12 | 59.70 5829 56.35 51.86 48.56 42.19 | 43.34 4232 36.01 | 33.68 32.14 28.61
ASER + DMU 7833 7396 64.06 | 72.27 68.17 64.06 | 60.59 59.74 56.084 || 52.78 51.15 46.08 | 43.59 4447 4036 | 33.74 32.75 30.07
Gain (A) 0.46 1.45 1.17 4.57 2.1 2.94 0.89 1.45 - 0.92 2.59 3.89 0.25 2.15 4.35 0.06 0.61 1.46
DVC [CVPR *22] 77.06 7286 6443 | 7346 66.89 61.05 | 58.74 60.51 59.90 48.55 39.88 38.57 | 41.64 2996 30.53 | 30.93 3456 27.66
DVC + DMU 7853 7496 65.95 | 74.52 68.75 62.15 | 60.51 61.82 59.94 50.06 40.63 41.28 | 44.23 39.59 32.87 | 36.81 3526 30.32
Gain (A) 1.47 1.35 1.53 1.06 1.86 1.1 1.77 1.82 0.04 1.51 0.75 2.71 2.59 9.63 2.34 5.88 0.7 2.66

Implementation Details. We use ResNet-18 [22] pre- tempts to learn the most classes present across many tasks

trained on ImageNet [27] as the backbone structure for
all experiments in comparison, and our implementation
is based on PyTorch [43]. Pre-trained networks simplify
training and reduce training time, especially using complex
datasets like Food-101 [5] and VEN [18]. The input image
size for Food-101 and VFN is 224 x 224. For optimiza-
tion, we use a stochastic gradient descent optimizer with a
fixed learning rate of 0.001 and a weight decay of 107%.
The training batch size is 16, while the testing batch size
is 128. We set the distribution D (referring to Section 4.1)
as exponential. Throughout the training process, the model
encounters the incoming data, excluding exemplars, only
once across all experimental iterations. In order to evaluate
different experience replay methods, we establish a mem-
ory buffer size of 5K for storing exemplars during training
for knowledge rehearsal. We conduct experiments by vary-
ing task sizes (5, 10, and 20) within all food consumption
categories, as explained in Section 3.3.

5.2. Experimental Results

Table 2 presents the average accuracy across all task
sizes and the three categories of food consumption patterns
in both Food-101 and VEN datasets. It is evident that the
continual learning performance varies considerably for dif-
ferent food consumption categories and task sizes. For in-
stance, the model has fewer overall classes to learn in the
short-term food consumption pattern with the fewest classes
and the smallest task size. Consequently, even with fewer
repetitions, the model achieves higher accuracy and less
catastrophic forgetting. In contrast, we observe the low-
est performance figures as the task sizes increase and accu-
racy is measured in the long-term food consumption cate-
gory. This decrease in accuracy is because the model at-

(as « reduces and (5 increases), leading to lower accu-
racy and higher forgetting, despite the increase in repeated
classes. Specifically, we observe severe catastrophic forget-
ting problems when using Finetune due to the lack of train-
ing data for learned classes during the continual learning
process. All the existing ER methods outperform Finetune
since they store a small sample of learned training classes
for knowledge rehearsal during the continual learning pro-
cess. However, when we enhance the existing ER methods
with our proposed DMU module, we observe a substantial
increase in performance consistently across all categories
and task sizes in both Food-101 and VFN datasets. Our
DMU module selects the ideal data for training by compar-
ing the performance of the entire training batch with the new
class data, leading to higher learning and lower catastrophic
forgetting.

We immediately observe that the performance on the
VEN dataset is notably lower than that of the Food-101
dataset, as seen in Table 2. This difference in performance
is due to the VFN dataset’s smaller size, with only 15,000
training images across 74 categories, compared to the Food-
101 dataset, which has 75,750 training images across 101
categories. Furthermore, the VFN dataset is an inherently
imbalanced real-world dataset, which results in lower accu-
racy overall. Nevertheless, including the DMU module in
the existing ER methodologies still significantly enhances
performance across all experimented categories. On av-
erage, we demonstrate a 26% increase on the Food-101
dataset and a 12.5% increase on the VFN dataset, respec-
tively.
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Table 3. Average Accuracy (%) on Food-101 using DVC, and
enhanced DVC with DMU by varying data distributions with a SK

buffer. The best results are marked in bold.

Method | Distribution | Accuracy
DVC Exp 66.89
DVC+DMU Exp 68.75
Gain (A) 1.86
DVC Gauss 60.89
DVC+DMU Gauss 64.55
Gain (A) 3.75

Table 4. Average Accuracy (%) on VFN using best performing
methods on varied buffer sizes. The best results are marked in

bold.

Dataset VEN

Buffer size 2K 0.5K

Task size 20 20

Category short med long | short med long
MIR 30.50 28.93 2822 | 27.81 2472 26.24
MIR + DMU 31.17 3031 29.63 | 29.39 27.60 26.33
Gain (A) 0.67 1.38 1.41 1.58 2.88 0.09

ASER 3329 3378 2931 | 29.21 30.51 27.61
ASER+DMU 33.86 34.70 29.48 | 29.78 30.92 28.26
Gain (A) 057 092 0.17 | 057 041 0.65

DVC 21.66 20.02 19.00 | 20.95 19.73 18.80
DVC + DMU 2270 21.22 1842 | 21.08 21.06 19.41
Gain (A) 1.04 120 058 | 0.13 1.33 0.6l

GSS 2728 2932 2920 | 22.75 2647 25.06
GSS + DMU 2820 32.29 29.22 | 2449 30.85 25.98
Gain (A) 092 297 002 1.74 438 092
iCaRL 42.50 34.00 33.60 | 36.28 25.60 26.22
iCaRL + DMU | 46.34 41.67 45.25 | 37.74 36.67 39.04
Gain (A) 384 7.67 11.65| 146 11.07 12.82
5.3. Ablation Study

In this section, we perform ablation studies to assess the
effectiveness of our DMU module across varying memory
buffers (1K and 0.5K) and different data distributions D
simulated by RDDM (Section 4.1, Equation 4). Our focus
for the data distribution is on a scenario exhibiting reduced
imbalance. To achieve this, we configure D as Gaussian
with a mean of zero and a standard deviation of 0.4, aiming
to simulate a broader spectrum with decreased imbalance
effects. We apply the DVC [14] method, utilizing a con-
sistent exemplar size of 5K and a task size of 10 for the
Food-101 dataset. To assess the impact of different buffer
sizes on ER methods and the effectiveness of our proposed
model across these sizes and present the results in Table 4.

The results presented in Table 3 highlight the significant
enhancement our DMU module brings to the performance
of existing ER methods on the Food-101 dataset, even in the
presence of varying levels of imbalance (as demonstrated in
Figure 4). These improvements are consistent across differ-
ent buffer sizes, as highlighted in Table 4. Traditional ER

80%

=®= DVC(EXF)
—=— DVC+DMU(EXF)

=o= DVCZ(GAUSS)
—e— DVC+DMUZ(GAUSS)

70%

60% e

Average Accuracy (%)

50%
Tasks

Figure 4. Accuracy of each incremental task in the Gaus-
sian(GAUSS) and Exponential(EXP) distributions for the moder-
ate food consumption category on DVC (with our proposed DMU
module) using the Food-101 dataset with 10 tasks.

techniques, designed with balanced tasks and uniform sam-
ple distributions, are notably affected by the impact of input
stream repetitions and imbalances, resulting in performance
deterioration. These findings emphasize the effectiveness of
targeted training with optimal samples compared to training
with the complete set of input samples, irrespective of the
specific ER method employed.

6. Conclusion

This paper focuses on Online Class-Incremental Learn-
ing for real-world food image classification. We introduce
a novel Realistic Data Distribution Module (RDDM) to
simulate real-world food consumption patterns in different
scenarios along with a plug-and-play Dynamic Model Up-
date (DMU) module, which is compatible with existing ER
methods by independently targeting the training pipeline for
improving performance. We show that our data distribu-
tion considers more realistic scenarios than existing OCIL
systems, including a corresponding experimental bench-
mark. Furthermore, experimental results demonstrate our
proposed method outperforms existing methods in more re-
alistic food image classification settings on the challenging
Food-101 and VFN datasets. Our future work will focus
on improving the exemplar storage procedure by exploiting
the most representative samples simulated by the RDDM
framework. We also plan to evaluate our method on large
supervised open-world datasets in the future.
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