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Abstract

Multi-task approaches to joint depth and segmentation
prediction are well-studied for monocular images. Yet, pre-
dictions from a single-view are inherently limited, while
multiple views are available in many robotics applications.
On the other end of the spectrum, video-based and full
3D methods require numerous frames to perform recon-
struction and segmentation. With this work we propose
a Multi-View Stereo (MVS) technique for depth prediction
that benefits from rich semantic features of the Segment
Anything Model (SAM). This enhanced depth prediction, in
turn, serves as a prompt to our Transformer-based seman-
tic segmentation decoder. We report the mutual benefit that
both tasks enjoy in our quantitative and qualitative stud-
ies on the ScanNet dataset. Our approach consistently out-
performs single-task MVS and segmentation models, along
with multi-task monocular methods.

1. Introduction

Depth prediction and semantic segmentation are core
tasks for visual understanding in robotic perception. The
ability to recognize what the objects are and where they are
in the scene, with respect to the robot’s viewpoint, plays a
key role in enabling effective navigation and interaction in
complex environments.

The tremendous success of deep learning methods has
significantly improved the performance of both tasks in re-
cent years. Moreover, depth prediction and semantic seg-
mentation have been shown to carry mutually beneficial in-
formation: depth complements the visual RGB information
with geometric cues to help segmentation [16,20,27,44,57],
and conversely, segmentation can help guide depth predic-
tion [7, 18, 29, 60]. To take it one step further, rather than

Figure 1. Generalized semantic features help to build a richer cost
volume for MVS. In turn, the depth predicted from the cost volume
serves as a rich prompt for semantic decoding.

treating tasks in isolation or solving them sequentially, a
range of multi-task approaches were proposed to jointly
solve depth estimation and semantic segmentation, espe-
cially in the monocular image domain [34, 37, 46, 49]. The
discovery of this complementarity between the tasks im-
proves the generalization capabilities of both [45]. In the
single image domain, it is natural, from an architectural de-
sign perspective, to combine these two since both can be
addressed using a 2D convolutional encoder-decoder archi-
tecture. Nevertheless, a significant amount of geometric and
relational context is often missing from the monocular esti-
mation algorithms since it is challenging to estimate geom-
etry and semantics purely from a single view.

On the other end of the spectrum, full 3D recogni-
tion [24] and reconstruction [36,43] models showed impres-
sive performance on a range of tasks. These approaches
typically operate on video sequences [13] or complete 3D
scans [9]. Such data can be expensive to acquire and/or
process. Moreover, in robotics applications, scenarios arise
that necessitate achieving visual understanding from just a
few frames without a holistic scene analysis. This is partic-
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ularly prominent in dynamic scenes that are impossible to
measure completely at a single point in time.

Multi-View Stereo (MVS) approaches have the potential
to bridge the gap between weaker monocular methods suf-
fering from the absence of explicit geometry notions, and
full video-based or 3D-based solutions. Indeed, the goal
of MVS models is to successfully predict depth from just
a few input views by leveraging principles and concepts
from traditional camera geometry [23]. Modern MVS mod-
els [10, 17, 55] extract deep 2D geometry-aware features
for cost volume construction. Unfortunately, while these
MVS models do perform complex intra-frame reasoning,
their feature extraction process is relatively simplistic. Due
to this, the model predictions can suffer and may be highly
error-prone, most notably in textureless regions. This chal-
lenge can only be mitigated to a limited extent with standard
multi-scale and planar prior methods [51, 52].

We propose the use of semantic cues to help recover bet-
ter from those errors. There are several challenges to over-
come to achieve joint MVS depth prediction and segmen-
tation in indoor settings. Our first challenge is that 2D fea-
tures in the MVS pipeline are not naturally good at extract-
ing broad semantics. A vast amount of models trained end-
to-end for 2D semantic segmentation exist [2,4–6,39,44,59]
that could be used to augment MVS 2D features with se-
mantic cues. However, in our studies we show that their in-
termediate features might still lack the generalizability re-
quired to help MVS. One of the main reasons is that the
sample diversity in existing indoor datasets [8, 42] is fairly
limited—even with millions of images, those datasets typ-
ically only contain a limited number of scenes. Second,
contrary to the single-task domain, performing joint predic-
tion of MVS depth and semantics in a multi-task way is less
straightforward due to the divergence of their models’ ar-
chitectural design: while semantics still follow the convolu-
tional or attention-based design, MVS depth is naturally in-
ferred from correlation or variance-based cost volumes [55].
This is the gap we plan on bridging in this work.

Additionally, MVS methods are not yet well explored
for indoor environments and robotics scenarios. Popular
datasets that are used to benchmark MVS methods [26, 30]
often feature inward-facing views with a single object of
interest captured from many perspectives, while in the in-
door scenario, it is often the case that cameras are facing
outwards and thus view baseline sampling options may be
limited, as shown in Figure 2.

Our key contribution is to introduce a joint depth
and segmentation prediction network using the multi-view
stereo framework where we can reason about the 3D scene
using a few images (3-5). The previous joint depth and seg-
mentation approaches are either monocular [34, 37, 46, 49],
or require a full dense scan of the environment [9, 19]. Our
pipeline’s concept is illustrated in Figure 1. We aim to

Figure 2. Challenges of view sampling in real-world scenarios.
Top: DTU [26] dataset, commonly used for benchmarking MVS
methods, has inward facing cameras: the views have wide baseline
and the object of interest is featured from multiple angles. Bottom:
ScanNet [8] indoor recognition dataset often features outward fac-
ing cameras with camera motion close to pure rotation.

exploit the advances in large pre-trained foundation mod-
els for image segmentation, The Segment Anything Model
(SAM) [28], which offers strong generalizable semantic
features. In this work, we use the SAM feature encoder to
guide the construction of better cost volumes for MVS. We
also propose a SAM-style decoder to extract semantic maps
and use the depth predicted by the MVS branch as a dense
decoder prompt. Our experimental results show improved
performance from the use of these depth cues.

We perform an extensive quantitative and qualitative
evaluation on the large ScanNet [8] dataset of indoor scenes.
We demonstrate considerable improvement over monocu-
lar multi-task methods (11% relative improvement in the
semantic mIoU metric, and more notably, 40% improve-
ment in the absolute depth error). Our method also per-
forms better than the competing single-task MVS meth-
ods (with a 10% relative improvement in depth prediction
over CasMVSNet), and better than the competing single-
task segmentation approaches (17% relative improvement
over AdapNet++ [44]), matching the performance of RGB-
D algorithms, while requiring only RGB inputs.

Summarizing our contributions, we present:

1) A unified architecture that simultaneously solves the
Multi-View Stereo and the Semantic Segmentation
problems, filling the gap between monocular and full
3D multi-task methods, a first to our knowledge;

2) A method to enrich MVS-based cost volumes for depth
prediction using rich SAM segmentation features;

3) A semantic decoder that takes advantage of both the
rich SAM features, and the predicted depth;

4) Quantitative and qualitative studies of the proposed ap-
proach on the ScanNetv2 dataset show consistent im-
provement over both multi-view depth prediction and
segmentation models and over algorithms that jointly
predict depth and segmentation from a single image.
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Figure 3. Architecture overview. Given a set of input RGB views (one reference and several other source images), we produce a depth
map, and a semantic segmentation map for the reference view. The model first extracts per-view 2D features fusing the outputs of the
convolutional MVS encoder and a transformer-based semantic encoder. The 2D features are warped onto the reference view with an array
of depth hypotheses, and a 3D cost volume is constructed at a range of scales, where the initial depth prediction from a coarser scale
allows to increase the resolution of the hypothesis step at a finer scale, focusing on refinement around the established coarse value. A 3D
convolutional network decodes the cost volume into a depth prediction at each scale. The final depth prediction is used as a dense prompt
for the transformer-based semantic decoder. The model is supervised with the ground truth depth and semantic labels during training.

2. Background and Related work

Monocular depth & segmentation Monocular seman-
tic segmentation and depth estimation both perform dense
predictions from a single image. Semantic segmentation re-
quires a class label for each pixel [2, 4–6, 39, 44, 59], while
depth estimation predicts depth values that lift the pixels
to 3D points [1, 31, 33, 38, 40]. There have been works
exploring sequential (one task guides the other) and joint
learning of both tasks (multi-task). Casser et al. [3] use
precomputed instance segmentation masks to handle ob-
jects in highly dynamic scenes. And a range of works ex-
ists that simultaneously learn to predict segmentation and
depth [14, 22, 47, 48]. We compare with four monocular
methods: MT RefineNet [37], PAD Net [49], MTI Net [46]
and MTAN [34]. PAD Net leverages a set of intermediate
tasks to guide the final segmentation and depth predictions.
MTAN proposes task-specific attention modules. However,
monocular approaches are naturally limited by the informa-
tion encoded in a single image and struggle to recover com-
plete geometry, so in this work we focus on reconstruction
from multi-view images.

Full 3D segmentation and reconstruction To utilize in-
formation from multiple images, methods based on Trun-
cated Signed Distance Functions (TSDF) have been pro-
posed which can perform real-time processing and fusion
of a sequence of images or a video. Atlas [36] and Neural-
Recon [43] use back-projection to lift 2D features into 3D

space and regress a TSDF in a voxel grid. Atlas [36] per-
forms a running average aggregation and produces a scene-
level voxel grid, while NeuralRecon [43] predicts fragments
of the scene and fuses them together through an RNN.

Segmentation and reconstruction can benefit from each
other by taking additional depth information into account
or by being guided by semantic information. Hane et
al. [19] simultaneously solve the tasks of dense 3D scene
reconstruction from multiple images and image seman-
tic segmentation by utilizing class-specific smoothness as-
sumptions in place of standard smoothness assumptions.
3DMV [9] utilizes the reconstruction of a RGB-D scan to
predict a 3D semantic segmentation.

While these methods achieve high quality reconstruction
and segmentation, they require many frames to work on and
sometimes other inputs such as an initial mesh reconstruc-
tion. Our work aims at jointly learning depth and segmen-
tation prediction from just a few views.

Multi-View Stereo (MVS) The goal of Multi-View
Stereo (MVS) is to reconstruct 3D scenes from multiple
posed RGB images, usually by predicting depth maps and
then fusing them together. One widely used approach builds
plane-sweep volumes [10, 17, 25, 55, 58] on top of depth
hypotheses. Many SOTA methods are built upon MVS-
Net [55], which consists of extracting image features, warp-
ing features using homography to construct 3D cost vol-
umes and applying a 3D CNN to estimate depth. CasMVS-
Net [17] builds the cost volumes in a cascaded way to im-
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prove time and memory efficiency. TransMVSNet [10] fur-
ther proposes to improve the feature extraction and match-
ing task by leveraging a transformer to aggregate long-range
context information within and across images.

Semantic segmentation has been deployed to improve
MVS quality in a range of works. Semantic features can
be used as a consistency constraint that favors the recon-
structions yielding a consistent segmentation across binoc-
ular [53] or multi-view images [50]. They also help with
3D plane fitting in textureless regions where photometric
feature matching often fails [41, 56].

However, to the best of our knowledge, no existing
method jointly learns MVS and segmentation in a multi-
task manner. Our method simultaneously estimates depth
and semantic maps. We show that the two tasks benefit from
each other. Furthermore, only a few MVS methods [54] re-
port their performance on indoor datasets, while others re-
port their performance on table-top datasets (see Figure 2).
We benchmark our method on ScanNet [8].

Foundation models for segmentation The Transformer
model was initially proposed for natural language process-
ing (NLP) [1] introducing the attention mechanism to infer
dependencies between language tokens. Transformers were
then adopted for vision tasks achieving great success espe-
cially with the availability of large datasets [11, 35]. Vision
Transformer (ViT) [12] is now a widely used model, which
splits an image into patches and applies a Transformer on
the encoding of a sequence of image patches. Although ViT
was first introduced for image classification, it can serve as
a rich feature extraction backbone on a range of vision tasks,
similar to its convolutional counterparts like ResNet [21].

Producing truly universal features for segmentation was
not straightforward. In this work, we leverage the Segment
Anything Model (SAM) [28] that was recently proposed
as a foundation model for open-set segmentation. We use
SAM to extract semantic features to construct cost volumes
that are more efficient for depth prediction. SAM has ViT
as its image encoder and shows good zero-shot performance
on several tasks such as edge detection and instance seg-
mentation inside a given box. SAM’s mask decoder oper-
ates on the image embeddings and accepts prompts of two
types: sparse (e.g. foreground and background points of
the object of interest), and dense (e.g. coarse masks). We
follow this style of the decoder and adapt it to our needs,
so that MVS depth predictions serve as dense prompts and
learned class embeddings as sparse prompts.

3. Method
We consider the problem of joint depth prediction and

segmentation of a scene from a set of M RGB images.
Given input images Ii,∀i = 1, ...,M of spatial size W ×H
and corresponding camera poses Pi = {Ki, (Ri, ti)} (in-
trinsic parameters Ki, rotation matrix Ri and translation

vector ti), we aim to predict a pixel-wise depth map Di and
a segmentation map Si. We follow the Multi-View Stereo
(MVS) problem set-up, where we consider one of the M
images as a reference image and use the remaining images
to predict the depth map and segmentation map for the ref-
erence image. We repeat this M times by choosing each one
of the M images as the reference image. Note that this is
different from monocular depth map and segmentation esti-
mation techniques where each image is used in isolation for
prediction.

We take inspiration from the state-of-the-art MVS ar-
chitecture for depth prediction, CasMVSNet [17], and for
segmentation, Segment Anything (SAM) [28]. We propose
a novel approach, as shown in Figure 3, that unifies these
techniques to improve both depth and segmentation predic-
tion. The model extracts 2D features from individual views
through the geometry-aware convolutional MVS encoder,
as well as the semantic-aware transformer-based SAM en-
coder, and fuses these features. Section 3.1 describes the
2D feature pipeline in detail. A multiscale cost volume is
constructed from these per-view features and decoded into
a depth probability volume, as discussed in Section 3.2.
The depth prediction of the MVS branch is used as a dense
prompt for the transformer-based semantic decoder (Sec-
tion 3.3). The model is then trained end-to-end for joint
depth prediction and semantic segmentation.

3.1. 2D encoders and feature fusion for MVS

The first step of an MVS approach extracts deep
geometry-aware features that are good for matching across
M input views. We design this MVS-specific 2D encoder,
as shown in Figure 3, following CasMVSNet [17]. This en-
coder follows the design in [32] producing a feature pyra-
mid with increasing spatial resolutions at 3 scales.

We augment the geometry-aware features of the MVS
encoder with semantics-aware features. The Segment Any-
thing Model (SAM) [28] was very recently proposed as a
foundation model for open set segmentation. It uses the Vi-
sion Transformer (ViT) [11] as a feature encoder. Given a
high resolution (normally, with a long side of 1024 pixels)
RGB image at the input, the ViT encoder breaks it into to-
kens that have a spatial size of 16 × 16 pixels, producing a
grid of tokens. The transformer is applying multiple layers
of non-local attention, keeping the spatial resolution fixed
throughout all layers, producing a single rich segmentation-
aware feature tensor. We note that the spatial resolution of
these features roughly corresponds to the coarsest resolu-
tion of the MVS pyramid, and we resize the tensor with
bilinear interpolation to that resolution. We additionally
create a lightweight convolutional pyramid encoder for the
SAM features to match the spatial and feature dimensions
at all three scales of the MVS pyramid.

The geometry-aware MVS features and the SAM seman-
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tic features are fused together with a simple pointwise sum-
mation at all scales of the pyramid, same as it is done in
other works (e.g. in FuseNet [20] for geometry-aware depth
features and the visual RGB features). In our preliminary
experiments other approaches, such as stacking didn’t show
any performance improvement.

3.2. Cost volumes and depth prediction

Once the features are extracted from individual views,
a range of depth hypotheses are created for each pixel of
the reference view i = 0. Features from source view i are
warped with each depth hypothesis d using a homogeneous
coordinate mapping:

u′

v′

1

 ∼ KiR
T
i

R0K
−1
0 d

u
v
1

+ t0 − ti

 (1)

This mapping creates per-view 3D feature volumes Vi in
the reference coordinate view. All Vi are aggregated into a
cost volume C using the variance-based cost metric:

C =
1

M

M∑
i=1

(
Vi − V

)2
, (2)

where V is the average feature volume. Such a 3D
cost volume is created at a range of scales, as proposed in
CasMVSNet [17], and decoded into the single-channel 3D
depth probability volume P with 3D convolutions. When
the probability volume is normalized, it defines a distribu-
tion over the range of depth hypothesis, and the depth pre-
diction for the reference frame at pixel (i, j) is inferred as:

Di,j
0 =

∑
t

P i,j,tdt . (3)

At the coarsest scale, the entire depth range is covered
for some fixed [dmin, dmax] with equally spaced hypothe-
ses dt. Once the coarser depth is predicted at one scale, it
is interpolated to a finer scale to serve as a mean of the new
(narrower) depth hypothesis range, allowing for higher res-
olution of the hypothesis interval. The final depth prediction
D0 is performed at the finest scale that has the same spatial
W ×H resolution as the input image.

3.3. Semantic segmentation

We use the SAM-pretrained encoder in Section 3.1 and
modify the mask decoder since our semantic segmentation
task is different from the open-set instance segmentation in
SAM. The mask decoder transforms the input image em-
bedding and a set of prompt embeddings into a set of output
masks. As a prediction is required for each of the K seman-
tic classes, we introduce K learned embeddings to serve as
prompts, analogous to SAM’s sparse prompts.

Additionally, the depth maps are available from the MVS
prediction branch, which we use similarly to SAM’s dense
prompts. A dense embedding is created with a shallow
convolutional network that aligns with the image feature
representation and is summed point-wise with the seman-
tic encoder’s features as shown in Figure 3. We note that
other learned dense prompts could be used as well in ad-
dition to our depth maps. For example, one may think of
using the SAM’s zero-shot edge maps, however such an
approach would be very computationally expensive (SAM
needs to decode 768 masks and run NMS and Sobel filter
post-processing to produce the edge map). We limit this
study to only our predicted depth prompt.

The decoder is represented by a lightweight two-way
transformer that communicates information between the
grid of image tokens and a set of queries, followed by
a dynamic mask prediction block. It is depicted in Fig-
ure 4. Each of the two transformer blocks starts with
token self-attention, followed by token-to-image cross-
attention (tokens serving as attention queries), a point-wise
MLP that updates the tokens, and finally image-to-token
cross-attention (with image embeddings serving as atten-
tion queries). Thus, each of the transformer blocks up-
dates both the tokens (entangling tokens via self-attention
and aggregating image features through token-to-image at-
tention), and the image features (infusing the tokens infor-
mation through image-to-token attention). Standard resid-
ual connections and layer normalizations are employed af-
ter each of the four steps in each block that are omitted from
Figure 4 to avoid clutter. Image features are also supplied
with positional encodings that are added pointwise at the
input of each attention layer.

The resulting image features are upscaled with a shal-
low 2-layer deconvolutional network to match the W × H
resolution of the system’s input image, and tokens are ad-
ditionally embedded with a token-to-image attention block
and an MLP to produce the semantic class queries. Seman-
tic masks are decoded through a cross-product between the
image embeddings and the class queries.

Loss function We minimize the joint loss function:

L = Lseg + αLMV S , (4)

where Lseg is a cross-entropy semantic segmentation loss,
and LMV S is a smooth L1 depth loss.

4. Experiments
4.1. Training settings

Models are trained with the AdamW optimizer (β1 =
0.9, β2 = 0.999, weight decay = 10−2), a learning rate of
10−3, and a total batch size of 8 distributed over 4 GPUs,
for 16 epochs. With most of the SAM encoder parameters
frozen, we optionally tune the last 0− 3 blocks of the SAM
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Figure 4. Semantic decoder. Two-way attention blocks are used
to simultaneously update the class tokens and the image embed-
dings. Image embeddings are then upscaled, while the final MLP
transforms the class tokens into queries that decode the semantic
segmentation masks. Decoding is done by correlating the queries
with the final image embeddings at each spatial location.

Method #views Abs (cm) ↓ Rel (%) ↓
MVS2D [54] 3 10.8 5.9
TransMVSNet [10] 3 13.2 8.3
CasMVSNet* [17] 3 10.0 6.0
Ours, MVS + UNet feat 3 9.5 5.8
Ours, MVS + SAM feat 3 9.3 5.5
Ours, full 3 9.0 5.6

Ours, full 5 8.3 5.2

Table 1. Multi-view depth estimation. We follow the same cost
volume-based cascaded architecture as CasMVSNet. ”MVS +
UNet features” and ”MVS + SAM features” are single-task depth
prediction models that augment the 2D MVS geometric features
with semantic features (see Sec 3.1) and do not have a semantic
decoder. Our full model jointly predicts depth and semantic seg-
mentation and fine-tunes the last layers of the SAM encoder.

encoder with a 10× smaller learning rate (i.e. 10−4). The
input image size is set to 320 × 256, and both depth and
segmentation maps are predicted at this resolution. We use
a smooth L1 loss between the ground truth and the predicted
depth with β = 0.02 (i.e. the threshold is set at the error
value of 2 cm), ignoring values outside of the depth range.
Semantic and depth loss contribute equally (α = 1 in Eq. 4).

4.2. Architecture settings

ViT-base is used as a semantic feature extractor for SAM.
A cascade of cost volumes is constructed to predict depth

at 3 scales. The depth is predicted across the range of
[0.1m, 5.0m], assuming 192 virtual depth bins. This cor-
responds to the base interval of roughly 2.5cm between the
depth hypotheses. The network spaces the intervals with
a ratio of [4×, 1×, 0.5×] of the base interval at its three
scales, evaluating [48, 32, 8] depth hypotheses at each pixel
in the corresponding scales. Unless explicitly specified, our
networks use M = 3 input RGB views.

Method mIoU ↑ Abs ↓ Rel ↓ RMSE ↓
MT RefineNet [37] 42.0 32.4 21.7 44.3
PAD Net [49] 42.2 26.9 17.4 37.8
MTI Net [46] 53.7 22.4 14.0 32.2
MTAN [34] 56.1 22.7 14.6 32.6

Ours, 3 views 62.5 9.0 5.6 14.9

Table 2. Comparisons to monocular multitask methods for joint
depth prediction and semantic segmentation.

4.3. Datasets

We evaluate our results on the ScanNet [8] dataset. Scan-
Net is a large-scale established indoor recognition bench-
mark. It contains 1513 scans across 707 locations. Seman-
tic segmentation tasks includes 20 categories. For most of
our studies (e.g. Tables 1, 2, 4) we use the train/validation
split provided by MVS2D [54] to benchmark the results of
the methods on the same sets of views. For other experi-
ments, the official split of the ScanNet v2 scenes into train-
ing and validation sets is used.

4.4. Metrics

We use the standard metrics for evaluating the predicted
depth maps [15]: mean absolute depth error (Abs err),
mean relative depth error (Rel err), root mean square er-
ror (RMSE). Absolute depth error and RMSE can are in
centimeters, relative depth error is measured with respect to
the ground truth. Lower is better for all depth evaluation
metrics. Segmentation outputs are evaluated by the mean
intersection-over-union (mIoU). Higher is better.

4.5. Depth prediction

CasMVSNet [17] and TransMVSNet [10] serve as our
MVS baseline models for depth prediction. We use the
train/validation split released in MVS2D [54] that includes
both the scene partitions, and the view sampling, in order
to perform a fair comparison of the M -view MVS meth-
ods against each other. MVS2D is trained using the pa-
rameters reported in [54]. The paper’s codebase is publicly
available and results are reported on ScanNet. CasMVSNet
and TranMVSNet are trained using our custom settings de-
scribed above. In Table 1 we analyze the benefits of using
semantic features to augment the geometric MVS features
during cost volume construction. Our baseline CasMVSNet
has an absolute depth error of 10.0, and MVS2D shows as
10.8. TransMVS, although reported as a superior model on
the standard MVS datasets [26,30], shows a worse general-
ization to ScanNet with an absolute depth error of 13.2.

We first demonstrate the benefit of using standard
encoder-decoder semantic features. A U-Net [39] with a
ResNet [21] backbone is pre-trained on the same ScanNet
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Method Modality #views mIoU ↑
SegNet [2] RGB 1 27.5
DeepLab v2 [5] RGB 1 43.9
DeepLab v3 [6] RGB 1 50.1
AdapNet++ [44] RGB 1 53.0

FuseNet [20] RGB-D 1 63.8
EMSAFormer [16] RGB-D 1 63.8
SSMA [44] RGB-D 1 67.4

Ours RGB 5 62.1

Table 3. 2D semantic segmentation on ScanNet validation set.

train split, and the three scales of the decoder pyramid that
correspond to the MVS decoder spatial scales are used in-
stead of our SAM encoder in Figure 3. The semantic pre-
diction heads are discarded in this experiment, and all the
remaining U-Net weights are tuned during the training, im-
proving the depth prediction performance to 9.5.

Augmenting 2D features with the SAM encoder output
brings the error down to 9.3cm even without any encoder
tuning, while training our full model with the segmentation
branch and tuning of the last 3 SAM encoder layers demon-
strates an additional improvement with an error of 9.0. Note
that although the segmentation decoder outputs are not in-
fluencing the MVS branch during inference, during train-
ing the gradients still propagate back to the SAM encoder
features, serving as an additional regularizer. Note that the
the evaluation is performed against the ground truth depth
maps that are also noisy and imprecise, and thus the lower
bound for a method’s performance is greater than zero, and
unknown, as discussed below in Section 4.6. Interpreting
the errors’ absolute values is therefore not straightforward
without looking at some qualitative results.

In Table 2 we compare with monocular multitask meth-
ods for joint depth prediction and semantic segmentation
with open-source implementation. We re-train the methods
on our train/val split of ScanNet to report the results. We
notice that the results are similar to those reported in the
papers for NYUD2, since the datasets have similar data dis-
tributions. For example, Multi-Task RefineNet [37] reports
42.02 mIoU and 56.5 RMSE on NYUD2, while our perfor-
mance on ScanNet shows 42.0 mIoU and 44.3 RMSE.

4.6. Qualitative studies

Table 6 shows the depth estimation results for three
methods: multitask monocular MTAN [34], multi-view
CasMVSNet [8], and our model. Both CasMVSNet and
our model are trained and tested using only M = 3 views.
While from Table 2 the improvement of our method is ob-
vious compared to monocular methods, there is still a ques-
tion of how much we really improve over the baseline MVS
in terms of depth prediction (i.e. is 9.0 Ours vs 10.0 Cas-

Method Modality mIoU ↑
UNet (ResNet-34) RGB 50.9
UNet (ResNet-50) RGB 34.5
SAM (frozen) + conv decoder RGB 27.2
SAM (frozen) + our decoder RGB 47.2
SAM (tuned) + our decoder RGB 59.0
Our full model RGB 62.5

SAM (frozen) + our dec. (GT depth) RGB-D 52.4
SAM (tuned) + our dec. (GT depth) RGB-D 63.4

Table 4. 2D semantic segmentation ablations. Conventional
methods such as UNet overfit easily when only using ImageNet-
pretrained backbones. SAM pretrained features are much more
robust, but produce poor performance when decoded using con-
volutional layers. Using a transformer-based decoder improves
the quality considerably, especially with encoder feature tuning.
Our full model uses the depth predicted from the MVS branch and
comes close to matching the performance of the RGBD version
that uses ground truth depth maps as a decoder prompt.

Method Abs (cm) ↓ Rel (%) ↓ mIoU ↑
CasMVSNet 10.0 6.0 NA
MVS + SAM features 9.3 5.5 NA
Semantic SAM (frozen) NA NA 47.2
Semantic SAM (tuned) NA NA 59.0
Ours, no SAM→MVS 10.0 6.1 60.0
Ours, full 9.0 5.6 62.5

Table 5. Model ablations. CasMVSNet is the baseline depth pre-
diction approach. MVS + SAM features is our model without the
segmentation head (i.e. semantic features help depth prediction).
Semantic SAM is our semantic decoder on top of the SAM en-
coder with no depth prediction and no depth prompting. ”Ours,
no SAM→MVS” cuts the SAM to MVS feature connection, i.e.
depth prediction is performed without SAM features, while still
running segmentation with the depth prompt.

MVSNet in Table 1 a considerable difference or not). As we
already stated above, due to the fact that the ground truth is
imprecise, the lower bound for such metrics as the abso-
lute depth error are nonzero and unknown. Comparing our
method to the baseline MVS visually we notice that it per-
forms consistently better across the dataset, with a consider-
able difference in some cases. In the first column the effect
on flat matte structures, such as walls, is pronounced, where
semantic cues may help to recover the known MVS failures.
In the last column, an unconventional view and the glossy
floor surface make it hard to infer the depth from geometric
patterns. Semantic meaning identifies the objects as table
and chair legs, making it easier to determine boundaries.
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scene0076 00 scene0390 00 scene0449 00 scene0465 00(1) scene0465 00(2) scene0465 00(3)

Target view

MTAN [34]

CasMVSNet [17]

Ours

GT depth

Table 6. Depth estimation results on ScanNet. Existing MVS techniques, MTAN and CasMVSNet, perform poorly on textureless flat
surfaces like walls (scene0076 00, scene0449 00) and tables (scene0390 00,scene0465 00(2)) and on thin structures with strong occlu-
sions like legs of tables (scene0390 00,cene0465 00(2)) and clutter on kitchen counter top (scene0465 00(1)). In contrast, our proposed
technique produces significantly better performance on these regions by leveraging semantic understanding of the scene. Both CasMVSNet
and Ours are trained using M = 3 views on the MVS2D [54] split.

4.7. Segmentation

Table 4 offers a study of our SAM-based semantic seg-
mentation. We first establish a benchmark with UNet-type
encoder-decoder architectures using ResNet as a backbone.
We notice that deeper models overfit on ScanNet since the
data variety is limited. In particular, the ResNet-34 based
method outperforms the deeper ResNet-50 version. The
SAM-pretrained transformer proves to be much more ro-
bust. However, a simple convolutional decoder delivers
poor performance (27.2 mIoU). The transformer-based de-
coder described in Section 3.3 significantly improves the
mIoU to 47.2 even with the frozen encoder, while additional
feature tuning reaches the quality of 59.0 mIoU. In our full
model that jointly predicts depth and segmentation maps,
the predicted depth is used as a dense prompt to the decoder,
for which the performance of 62.5 mIoU is reported in the
table. The methods marked as RGB-D in Table 4 use the
ground truth depth as the input. Our multi-view RGB model
gets close to matching the corresponding RGB-D setting.

4.8. Ablation studies

Table 5 summarizes the effects of individual components
of our framework. CasMVSNet sets the absolute depth er-
ror baseline of 10.0 without the use of any semantic infor-

mation; our Semantic SAM is trained in isolation (with no
MVS branch and no depth prompt) setting the segmentation
baseline at 47.2 mIoU and 59.0 with encoder tuning. MVS
+ SAM features represent our model without the semantic
head, improving the depth prediction. Our full model shows
an improvement in both depth prediction (9.0 absolute er-
ror) and semantic segmentation (62.5 mIoU).

5. Conclusion
In this work, we introduced a novel approach to joint

depth and segmentation estimation in the multi-view set-
ting, the first to our knowledge. We show that jointly es-
timating depth and segmentation is better than separately
predicting them in multiview settings in Table 1 and 3 re-
spectively. This discovery in itself is not new and has been
previously explored for multi-task learning in single-view
monocular depth and segmentation estimation. However,
we show that multi-task learning in multiview is signifi-
cantly better than single-view approaches in Table 2, high-
lighting the importance of this work to extend multi-task
learning from single-view to multi-view. Multi-view-based
3D scene understanding approaches that require only 3-5
images are significantly more practical in many robotics ap-
plications compared to approaches that require a full-dense
3D scan of the room.
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