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Abstract

Instance segmentation has witnessed promising ad-
vancements through deep neural network-based algorithms.
However, these models often exhibit incorrect predictions
with unwarranted confidence levels. Consequently, evalu-
ating prediction uncertainty becomes critical for informed
decision-making. Existing methods primarily focus on
quantifying uncertainty in classification or regression tasks,
lacking emphasis on instance segmentation. Our research
addresses the challenge of estimating spatial certainty as-
sociated with the location of instances with star-convex
shapes. Two distinct clustering approaches are evaluated
which compute spatial and fractional certainty per instance
employing samples by the Monte-Carlo Dropout or Deep
Ensemble technique. Our study demonstrates that combin-
ing spatial and fractional certainty scores yields improved
calibrated estimation over individual certainty scores. No-
tably, our experimental results show that the Deep En-
semble technique alongside our novel radial clustering ap-
proach proves to be an effective strategy. Our findings em-
phasize the significance of evaluating the calibration of esti-
mated certainties for model reliability and decision-making.

1. Introduction
In the past decade, deep neural networks have made sig-

nificant advancements and have become prevalent in the
field of computer vision, achieving impressive state-of-the-
art performance and even competing with human-level re-
sults in supervised learning tasks [13, 20, 26, 31]. How-
ever, these achievements are primarily observed in closed-
set conditions, where the testing data exhibits overlapping
characteristics with the training data. In contrast, a no-
ticeable decline in performance occurs in open-set condi-
tions [15, 40], where the testing data possess characteris-
tics not present in the training data. In such scenarios,
neural network models often make wrong predictions with
high confidence [1], which raises critical concerns about the

safety and reliability of deploying these models, particularly
in applications where perception errors can have severe con-
sequences [39]. To address this challenge, one promising
approach is to explore the model’s epistemic uncertainty,
which arises due to a lack of data [19]. High epistemic un-
certainty in predictions can potentially indicate open-set er-
rors [24, 25], enabling models to identify and handle such
detections appropriately.

Bayesian Neural Networks [2, 23, 28] offer a means to
estimate epistemic uncertainty. However, their practical ap-
plication is limited due to the higher computational cost
and training complexity involved. To address these chal-
lenges, Monte-Carlo Dropout was introduced by Gal et al.
in 2015 [6] as a computationally feasible approximation to
Bayesian neural networks, providing uncertainty estimates
for a model’s confidence scores.

While Monte-Carlo Dropout offers a feasible technique
for estimating uncertainty, it often requires extensive hy-
perparameter tuning to obtain well-calibrated predictive un-
certainty estimates [7]. In response, Deep Ensemble tech-
niques, a non-Bayesian solution [21], were introduced,
which yield well-calibrated predictive uncertainty estimates
with minimal hyperparameter tuning at the cost of requiring
multiple model training.

Recently, Monte-Carlo Dropout and Deep Ensemble
techniques have shown promising results in uncertainty esti-
mation for image classification and regression tasks [6, 21].
However, their application to instance segmentation, which
involves localizing and classifying multiple objects within
a scene, remains relatively underexplored.

Our research aims to bridge this gap by applying Monte-
Carlo Dropout and Deep Ensemble techniques to the spe-
cific domain of instance segmentation using the StarDist
model [35, 41]. The effectiveness of these techniques in
estimating certainty in instance segmentation was verified
through extensive experiments on three different datasets.
Specifically, our research evaluates and compares the effec-
tiveness of both Monte-Carlo Dropout and Deep Ensemble
techniques for the StarDist model. Furthermore, we inves-
tigate the effect of dropout rates and the location of the
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dropout layer within the StarDist model for Monte-Carlo
Dropout certainty estimation in instance segmentation.

By addressing these research gaps, this study enhances
the reliability and robustness of deep neural networks by
providing well-calibrated predictive certainty estimates for
instance segmentation. These advancements enable more
informed decision-making and improve the performance of
deep neural networks in practical applications of instance
segmentation with the StarDist model.

2. Related Work
Uncertainty estimation in deep neural networks has been

a subject of extensive research, focusing on two types
of uncertainty: aleatoric uncertainty and epistemic uncer-
tainty [19].

Aleatoric uncertainty also known as data uncertainty,
captures the inherent noise present in the data itself. It
represents the statistical or sensory noise that cannot be
reduced even with an increase in the amount of collected
data [18]. Aleatoric uncertainty can be directly learned
using neural networks by applying a distribution over the
model’s output, enabling the model to capture varying lev-
els of uncertainty for different inputs [18].

Epistemic uncertainty also referred to as model uncer-
tainty, arises from parameter ambiguity and limited knowl-
edge about the model. It reflects the uncertainty in the
model’s predictions and requires additional techniques to
estimate. One approach is to place a prior distribution over
the model’s parameters and analyze the variability of this
distribution given the available data [2, 4, 28]. Estimat-
ing epistemic uncertainty is particularly crucial for safety-
critical systems and models trained with small datasets, as it
helps identify situations that lie beyond the model’s training
data.

Estimating epistemic uncertainty in deep neural net-
works presents challenges not encountered in traditional
machine learning algorithms [36]. The inherent inability of
deep neural networks to accurately quantify uncertainty has
led to investigations into alternative approaches. Bayesian
Neural Networks offer a means of predicting output un-
certainty [2], but their computational demands often render
them impractical [24, 38].

To address this, Gal et al. [6] proposed using dropout in
the last layers of deep learning models during test time, with
multiple forward passes, to approximate Bayesian inference
over network parameters. This dropout-based sampling ap-
proach better captures input-specific uncertainty within the
model. It has been successfully applied to tasks such as ac-
tive learning for image categorization [9], melanoma identi-
fication [11], and object recognition using LiDAR data [5].

While dropout-based sampling initially focused on deep
neural network classification tasks, Miller et al. [24] ex-
tended the concept to Single Shot Detection (SSD) for ob-

ject detection [22]. In this more complex task, each for-
ward pass generates multiple object detections that need to
be matched and merged. By clustering detections based on
spatial and semantic similarity, ambiguous detections are
rejected, leading to improved object detection performance
in both closed and open-set scenarios. Miller et al. [25] fur-
ther explored this approach, evaluating alternative strategies
for merging detections while incorporating dropout-based
sampling in object detection.

Morrison et al. [27] built upon these foundations to
address pixel-wise masked instance segmentation. They
adapted the technique proposed in [24] to perform proba-
bilistic instance segmentation. Leveraging the Mask-RCNN
network [14], they employed dropout-based sampling dur-
ing inference, following the principles established in Sri-
vastava et al. [38] and Miller et al. [24]. This methodology
resulted in a well-calibrated uncertainty estimation.

Overall, these studies highlight the significance of
dropout-based sampling techniques in capturing and quanti-
fying uncertainty in deep neural networks, spanning various
tasks ranging from classification to object detection and in-
stance segmentation.

Our study extends the work by Morrison et al. [27] to the
StarDist model, which is a novel approach to instance seg-
mentation, addressing the limitations of existing methods
like Mask-RCNN in handling crowded instances [35, 41].

The StarDist model utilizes a U-Net architecture as its
building block, which is well-suited for image segmentation
tasks and has demonstrated state-of-the-art performance in
biomedical image segmentation [34].

2.1. Revisiting StarDist

The StarDist model proposes the localization of convex-
shaped instances using star-convex polygons, yielding satis-
factory outcomes for densely populated scenarios [35]. The
fundamental component of the StarDist model is depicted
in Figure 1.

The StarDist model, akin to object detection ap-
proaches [17, 22, 32], employs a star-convex polygon
prediction for each pixel. Specifically, for every pixel
(x, y) within the scalar field of the input image size
(X,Y, channel), we predict the radial distances {rix,y}ni=1

to the object boundary. These predictions are made along a
predefined set of n radial directions with equidistant angles.
The model independently predicts whether each pixel is part
of an object, focusing on polygon proposals from pixels
with sufficiently high object probability dx,y . By consid-
ering these dense polygon candidates and their associated
object probabilities, we employ non-maximum suppression
to derive the final collection of polygons. Each polygon
represents a distinct object instance.
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Figure 1. The fundamental structure of the StarDist model in-
volves an input image with dimensions (X,Y, channel). Within
this model, a U-net is employed, featuring two output layers: Ob-
ject Probability dx,y ∈ D and Radial Distances {rix,y}ni=1 ∈ R,
both of which constitute scalar fields matching the input image
size. The process concludes with the derivation of the Final Mask
after applying non-maximum suppression to both the Object Prob-
ability (D) and Radial Distances (R).

3. Methods

In our research, the StarDist model is adapted to incorpo-
rate the Deep Ensemble [21] and Monte-Carlo Dropout [6]
techniques during inference, enabling probabilistic instance
segmentation similar to prior works of Miller et al. [24]
and Morrison et al. [27]. These sampling techniques utilize
multiple output samples obtained from F forward passes to
assess the certainty associated with the model’s predictions.

While sampling techniques can be employed for esti-
mating epistemic certainty in tasks like classification or se-
mantic segmentation by simply averaging the samples, in-
stance segmentation poses unique challenges. In instance
segmentation, accurate association and clustering of dif-
ferent detection samples are required to identify multiple
instances within an image, as depicted in Figure 2. To
account for spatial certainty, similar to the approaches in
Miller et al. [24] and Miller et al. [25], certainty estimates
are obtained by integrating instances from successive for-
ward passes, as depicted in Figure 2.

The StarDist model comprises two sets of outputs: (a)
the final mask and (b) pixel-wise object probability pre-
dictions and radial distance, each of these output sets can
be utilized individually to calculate the certainty associated
with the model’s predictions. In the subsequent sections, we
present approaches that leverage these output sets to quan-
tify the model’s certainty.

Figure 2. An illustration of image clustering based on predictions
obtained from F = 4 forward passes, with | S1 |= 3, | S2 |= 2,
| S3 |= 2, and | S4 |= 1. The aim is to group predicted instances
that correspond to the same object into distinct clusters O. In this
example, | O1 |= 4, | O2 |= 1, and | O3 |= 3, where each cluster
Om | m ∈ {1, 2, 3} represents an instance.

3.1. Pixel Approach

In the first approach for calculating certainty, we uti-
lize the final mask containing the collection of polygons
obtained after non-maximum suppression, which have the
same dimensions as the input image. Each pixel in the final
mask is assigned a positive integer value if it is within a
polygon representing an instance or zero if it belongs to the
background.

3.1.1 Clustering Technique

To estimate certainty with the final mask from the StarDist
model, we adopt a clustering technique inspired by prior
work on object detection and instance segmentation [24,25,
27].

In this approach, each forward pass of input through
the StarDist model generates a set of predicted instances
S = {P1, P2, ..., PK}, where K represents the number
of predicted instances, which may vary across different
forward passes. In the case of binary class prediction,
Pk | k ∈ {1, 2, ...,K} represents the pixel-wise mask of
the instance for a given input image. By performing F
forward passes of the input image through the model, we
obtain a set of samples S = {S1, S2, ..., SF }, where each
Sf = {P1f , P2f , ..., Pkf

} contains a set of predictions,
where kf | f ∈ {1, 2, ..., F} represents the number of pre-
dicted instances, which may vary across different forward
passes.

Based on their spatial affinity, the predictions from the
set of samples obtained through all forward passes S are
grouped into individual clusters O = {O1, O2, ..., OM}.
Ideally, each cluster Om | m ∈ {1, 2, ...,M} should rep-
resent a single instance within the image.

To perform the clustering of instances, we employ the
Basic Sequential Algorithmic Scheme (BSAS) [25], where
predictions Pkf

are sequentially assigned to clusters Om

if their mask Intersection-over-Union (IoU)1 exceeds a

1See Supplementary Material for Intersection-over-Union (IoU) cal-
culation.
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Figure 3. An illustration of the process of visualizing the uncer-
tainty in the Pixel Approach. (a) Input Image, (b) Clustered in-
stance (Om), (c) Mean calculated for each pixel, (d) Standard de-
viation calculated for each pixel, and (e) Red polygons illustrate
the median cluster prediction Pm, and the region between the two
yellow polygons indicates the uncertainty of the instance.

threshold value θIoU . If the IoU between a prediction and
every prediction in an existing cluster is above the threshold
θIoU , the prediction is added to that cluster. If no existing
cluster matches the prediction, a new cluster is created. The
IoU threshold θIoU is subject to optimization. However we
fix θIoU = 0.5 [27]. The clustering algorithm in the Pixel
Approach is given in the Supplementary Material.

3.1.2 Visualization of Prediction and Uncertainty

To visualize the median cluster prediction Pm for cluster
Om, we calculate the median across all pixels (xo, yo) |
o = {1, 2, ..., | Om |}. The pixel value of the median clus-
ter prediction Pm is set to integer if it corresponds to an
instance and zero otherwise. In Figure 3, the red polygons
illustrate the median cluster prediction Pm.

To visualize uncertainty, we determine the mean and the
standard deviation values across all pixels (xo, yo) | o =
{1, 2, ..., | Om |} within cluster Om. A pixel with a low
standard deviation signifies low uncertainty that it belongs
to the instance while increasing standard deviation values
reflect increasing uncertainty. In Figure 3, the contour of
the standard deviation values is represented by the yellow
line, conveying its associated uncertainty level. Pixels en-
closed by the inner yellow polygons indicate a low degree of
uncertainty in belonging to a specific instance, while those
outside the outer yellow polygons indicate a low degree of
uncertainty in not belonging to a specific instance in ques-
tion. The region between the two yellow polygons indicates
the uncertainty of a specific instance.

3.2. Radial Approach

In this approach for calculating certainty, we leverage
the output structure of the StarDist model, consisting of
pixel-wise object probability predictions and radial dis-

Figure 4. An illustration of the process of visualizing the un-
certainty in the Pixel Approach. (a) Input Image, (b) Clustered
instance (Om) for polygon center (xm, ym), (c) Median calcu-
lated across all the radial distances, (d) 2.5th and 97.5th percentile
across all the radial distances, and (e) Red polygons illustrate the
median cluster prediction Pm, the inner yellow polygons are in-
dicated by the 2.5th percentile of the radial distances, while the
outer yellow polygons are indicated by the 97.5th percentile of
the radial distances.

tance, which are obtained before non-maximum suppres-
sion. We will be using the term DenseOutput (G =
{D,R}) to refer to the scalar field of object probabilities
(dx,y ∈ D) and radial distances ({rnx,y}ni=1 ∈ R) for im-
proved clarity and conciseness.

The clustering approach of instance masks based on IoU
from the Pixel Approach is replaced by identifying the cen-
ters of the instances from the sample mean of the set of
DenseOutput, and clustering instances whose object prob-
ability (dx,y ∈ D) is above a predefined threshold value
(θd).

3.2.1 Clustering Technique

In this approach, each forward pass of an input through the
StarDist model generates the DenseOutput G = {D,R}.
By performing F forward passes of the input image through
the model, we obtain a set of DenseOutput samples
G = {G1, G2, ..., GF }, where Gf = {Df , Rf} | f ∈
{1, 2, ..., F}.

To perform the clustering of instances, we identify the
center for each instance by taking the mean of the set
G to parameterize it into a single DenseOutput µG =
{µD, µR}, where µD and µR represent the mean object
probability and mean radial distance across the samples G.
Non-maximum suppression is applied to µG to obtain the
set of polygon centers with the highest object probability,
C = {(x1, y1), (x2, y2), ..., (xM , yM )}.

The combination of the polygon center (xm, ym) |
m ∈ {1, 2, ...,M} and the radial distances at the corre-
sponding polygon centers {{rnxm,ym

}ni=1}f ∈ Rf | f ∈
{1, 2, ..., F} a set of predictions instance are generated S =
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{P1, P2, ..., PM} for each forward pass. By performing F
forward passes of the input image through the model, we
obtain a set of samples S = {S1, S2, ..., SF }, where each
Sf = {P1f , P2f , ..., PMf

} contains a set of predictions,
where Mf | f ∈ {1, 2, ..., F} represents the number of
predicted instances, which in this case is fixed at M across
different forward passes.

The predictions from the set of samples obtained through
all forward pass S are grouped into individual clusters
O = {O1, O2, ..., OM}. Ideally, each cluster Om | m ∈
{1, 2, ...,M} should represent a single object within the im-
age with (xm, ym) | m ∈ {1, 2, ...,M} as individual poly-
gon center.

The predictions Pmf
are sequentially assigned to the

cluster Om if the object probability {dxm,ym}f exceeds a
threshold value θd. The object probability threshold θd is
subject to optimization. However, for consistency with the
Pixel Approach 3.1, we set θd = 0.5. The clustering algo-
rithm in the Radial Approach is given in the Supplementary
Material.

3.2.2 Visualization of Prediction and Uncertainty

To visualize the median cluster prediction Pm for cluster
Om, we calculate the median across all the radial distances
{{rnxm,ym

}ni=1}o | o = {1, 2, ..., | Om |}. In Figure 4, the
red polygons illustrate the median cluster prediction Pm.

We visualize uncertainty, by determining the 2.5th

and 97.5th percentile across all the radial distances
{{rnxm,ym

}ni=1}o | o = {1, 2, ..., | Om |}. In Figure 4, the
inner yellow polygons are indicated by the 2.5th percentile
of the radial distances, while the outer yellow polygons are
indicated by the 97.5th percentile of the radial distances for
the specific instance. The region between the two yellow
polygons indicates the spatial uncertainty of a specific in-
stance.

3.3. Certainty Quantification

Once all predictions P·f are grouped into clusters O, we
can quantify the certainty of our model’s predictions using
two scores for each cluster Om | m ∈ {1, 2, ...,M}:

(i) Spatial Certainty: This score informs us about the
model’s confidence in the location of each instance. The
spatial certainty for each cluster Om is computed by averag-
ing the intersection-over-union (IoU ) between the median
cluster prediction Pm and the prediction Pj of each of the
| Om | predictions within the cluster Om. The spatial cer-
tainty ranges from 0 to 1, where 1 indicates high certainty
and 0 indicates low certainty.

cspl(Om) =
1

| Om |

|0m|∑
j=1

IoU(Pj , Pm) (1)

(ii) Fractional Certainty: This score represents the
model’s confidence in detecting an instance across multi-
ple forward passes. As not every forward pass may detect
all instances, the fractional certainty for each cluster Om is
computed as the fraction of forward passes in which the in-
stance is detected. Similarly, the fractional certainty ranges
from 0 to 1, where 1 indicates the instance was predicted
in all forward passes and 0 indicates the instance was not
detected in any forward pass.

cfrac(Om) =
| Om |
N

(2)

(iii) Hybrid Certainty: It has been observed by Morri-
son et al. [27] that combining the two certainty scores re-
sults in well-calibrated certainty estimates compared to us-
ing them separately.

chyb(Om) = cspl(Om) · cfrac(Om) (3)

3.4. Evaluating Certainty

Calibration serves as a valuable metric to evaluate the es-
timated certainty of the model. Model calibration refers to
the accuracy and precision of the certainty score in indicat-
ing when the model is likely to make errors. Calibration is
crucial for interpretability and building trust in users who
are consuming model prediction. A well-calibrated model
provides reliable certainty scores that align with its predic-
tive expected accuracy [12].

3.4.1 Calibration Diagram

A calibration diagram visualizes the expected sample ac-
curacy as a function of the certainty score. To create the
diagram, predictions are divided into B interval bins of size
1/B. The expected accuracy and average certainty score
within each bin are computed. If a model is perfectly cali-
brated, the expected accuracy and certainty score should be
equal for each bin [3, 29]. This is visualized in Figure 5,
which compares the three certainty quantification scores for
the StarDist model with the Radial Approach and Monte-
Carlo Dropout drate = 0.8, with F = 20.

3.4.2 Calibration Error

Scalar calibration summaries are practical for evaluating
calibration diagrams. The commonly used metrics are the
Pearson correlation coefficient, the Expected Calibration
Error, and the Maximum Calibration Error, which can be
derived from the calibration diagrams.

Pearson Correlation Coefficient (Pearson’s R) mea-
sures the linear correlation between two sets of data. In
this context, it quantifies the correlation between the iden-
tity function and the bin scores. The coefficient ranges from
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(a) (b) (c)

Figure 5. Calibration diagrams depicting the estimation of certainty scores for the Bubble dataset are presented, employing a bin interval of
B = 10. Panels (a), (b), and (c) show spatial certainty (cspl), fractional certainty (cfrac), and hybrid certainty (chyb) scores, respectively.
These scores are calculated using the Radial Approach and Monte-Carlo Dropout with a dropout rate of drate = 0.8, and F = 20 forward
passes. Notably, the hybrid certainty scores (chyb) demonstrate superior calibration compared to individual certainty scores across three
calibration error metrics: Pearson Correlation Coefficient (R), Expected Calibration Error (ECE), and Maximum Calibration Error (MCE).

-1 to 1, with 0 indicating no correlation, negative values in-
dicating negative correlation, and positive values indicating
positive correlation [33].

Expected Calibration Error (ECE) approximates the
expected difference between the certainty score and ex-
pected accuracy. It involves dividing predictions into evenly
spaced bins (similar to Calibration Diagram Figure 5) and
averaging the accuracy difference within each bin. Ex-
pected Calibration Error provides a measure of miscalibra-
tion, with a perfectly calibrated model having an Expected
Calibration Error of zero [30].

Maximum Calibration Error (MCE) summarizes mis-
calibration by measuring the maximum difference between
the certainty score and expected accuracy. This metric
is useful in high-risk applications where minimizing the
worst-case difference is crucial. Maximum Calibration Er-
ror is defined as the maximum absolute difference across all
bins. Like Expected Calibration Error, a perfectly calibrated
model will have a Maximum Calibration Error of zero [30].

4. Experiments and Results
4.1. Datasets

Bubble: The Dataset consists of spherical, ellipsoidal,
and wobbling bubbles, which are typically encountered in
air-water bubbly flows [16]. The dataset includes 414 man-
ually annotated images of dimensions 256× 512× 1, along
with corresponding ground truth masks.

DSB2018: Manually annotated real microscopy images
of cell nuclei from the 2018 Data Science Bowl [10]. The
dataset includes 670 manually annotated images of dimen-
sions 256×256×3, along with corresponding ground truth
masks.

GlaS: Annotated gland segmentation images of Hema-

(a) Bubble Image (b) DSB2018 Image (c) GlaS Image

(d) Bubble True Mask (e) DSB2018 True Mask (f) GlaS True Mask

Figure 6. Panels (a) to (c) depict the input image for each dataset.
Panels (d) to (f) represent the true mask for each dataset.

toxylin and Eosin stained slides [37].The dataset includes
165 manually annotated images of dimensions 522×775×
3, along with corresponding ground truth masks.

The Figures 6 present examples of input images along
with their corresponding true masks for each dataset. The
training set comprises 80% of the images, while the remain-
ing 20% is allocated for validation. We trained our model
on the training set and evaluated the estimated certainty on
the validation set.

4.2. Training and Inference

Training: The StarDist model is employed, featuring
three convolutional blocks for down/upsampling. Each
block consists of two convolutional layers with 32 · 2z
(z = 0, 1, 2) filters of size 3 × 3 and ReLU activation.
Following the final upsampling feature layer, an additional
convolutional layer with 128 channels and ReLU activa-
tion, suggested by Schmidt et al. [35], is incorporated. A
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n = 16 channel convolutional layer is used to compute the
star-convex polygon distance in the StarDist model. The
models are trained for 400 epochs.

For the Deep Ensemble technique to estimate certainty,
multiple StarDist models are trained using the entire train-
ing dataset, with each model randomly initialized.

In contrast, for the Monte-Carlo Dropout technique to es-
timate certainty, a single StarDist model is trained with the
entire training dataset, supplemented by dropout layers after
the last upsampling feature map of the StarDist model. Ad-
ditionally, in the Monte-Carlo Dropout technique, the im-
pact of the dropout rate on the model’s certainty is investi-
gated. The model’s certainty is evaluated for dropout rates,
drate ∈ {0.1, 0.5, 0.8}. 2

Inference: For the Deep Ensemble technique, the val-
idation dataset is used for each of the F StarDist models,
and the two approaches (Pixel Approach 3.1 and the Radial
Approach 3.2) are utilized to cluster and estimate model’s
certainty. Similarly, in the Monte-Carlo Dropout technique,
the validation dataset is processed through a single StarDist
model F times to estimate the model’s certainty.

4.3. Quality of Certainty Score

The calibration diagrams in Figure 5 with bin size
B = 10, show the calibration quality of the different cer-
tainty scores using the Radial Approach with Monte-Carlo
Dropout technique (drate = 0.8, F = 20) on the valida-
tion set for the Bubble dataset. The diagrams compare hy-
brid certainty score (chyb), spatial certainty score (cspl), and
fractional certainty score (cfrac).

We observe that the hybrid certainty score chyb exhibits
better calibration as the certainty score closely approxi-
mates the expected accuracy (i.e. the bins align to the iden-
tity function). The hybrid certainty score considers both
spatial similarities and the frequency of instance detections,
making it well-suited for more robust comparisons. These
comprehensive considerations of factors position the hybrid
certainty score as a valuable metric for further comparative
analyses.

We observe a consistent pattern on the DSB2018 and
GlaS datasets, as illustrated in Figure 1. and Figure 2. of
the Supplementary Material.

4.4. Effects of Forward Passes on Certainties Qual-
ity

The influence of the number of forward passes F on the
calibration of the hybrid certainty (chyb) was also assessed
and the results are visualized in Figure 7. The calibration er-
rors, measured by Pearson’s R, Expected Calibration Error
(ECE), and Maximum Calibration Error (MCE), are plotted
against F .

2See Supplementary Material for the choice of the three dropout rates.

We observe a convergence of errors as the number of for-
ward passes increases, which aligns with the principles of
the Central Limit Theorem. Additionally, gradually small
changes are observed in the error trends after around 20 to
30 forward passes for the Monte-Carlo Dropout technique
and 10 models for the Deep Ensemble technique. Further-
more, distinct convergence behaviors are observed for each
dropout rate.

We observe consistent behavior when employing both
the Pixel Approach and the Radial Approach on both the
DSB2018 and GlaS datasets, as depicted in Figure 3. and
Figure 4. of the Supplementary Material.

5. Discussion
In this work, we introduced and evaluated two ap-

proaches to augment instance segmentation predictions by
the StarDist model with certainty estimates. The Pixel Ap-
proach adapts the work of Morrison et al. [27] to estimate
the model’s certainty by clustering similar instances based
on the IoU score. However, the clustering algorithm used
does not scale well as the data increases due to the quadratic
complexity. To address this, the Radial Approach imple-
ments a more efficient clustering algorithm leveraging the
unique output structure of the StarDist model, scaling the
clustering algorithm linearly with the data.

Both Deep Ensemble and Monte-Carlo Dropout tech-
niques yield well-calibrated hybrid certainty estimates, sur-
passing the spatial and fractional certainty scores individu-
ally. The calibration errors decrease for F = 10 models in
the Deep Ensemble technique, aligning with the findings of
Lakshminarayanan et al. [21] in classification and regres-
sion tasks.

The results presented in Figure 7 further support Lak-
shminarayanan et al.’s [21] claim that the Deep Ensem-
ble technique requires minimal hyperparameter tuning to
achieve well-calibrated certainty estimates. They also vali-
date Gal et al.’s [7] assertion that the Monte-Carlo Dropout
technique’s certainty estimates are not calibrated and that
the dropout rate must be adjusted to match the model’s cer-
tainty.

The elevated calibration errors observed in Figure 2.
and Figure 4. of the Supplementary Material for the GlaS
dataset are due to the dataset’s incompatibility with the
StarDist model. This leads to higher certainty scores for
incorrect predictions, highlighting the critical importance
of assessing the calibration of estimated certainties. Such
evaluations are pivotal for ensuring model reliability and in-
formed decision-making.

The randomness of the calibration error in Figure 6. Fig-
ure 7. and Figure 8. of the Supplementary Material suggests
no discernible relationship between the dropout layer’s lo-
cation and its effect on model calibration. Consequently, a
search over the locations is necessary for achieving a well-
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(a) Pearson’s R (b) Expected Calibration Error (c) Maximum Calibration Error

(d) Pearson’s R (e) Expected Calibration Error (f) Maximum Calibration Error

Figure 7. Plot showing calibration errors as a function of the number of forward passes for the Monte-Carlo Dropout and Deep Ensemble
techniques (calibration errors as a function of the number of models in the case of Deep Ensemble). Panels (a) to (c) depict certainty
estimates using the Pixel Approach, while panels (d) to (f) represent certainty estimates using the Radial Approach. Notably, the Deep
Ensemble technique exhibits faster convergence of calibration errors compared to the Monte-Carlo Dropout technique. Additionally,
distinctive convergence patterns are observed for each dropout rate.

calibrated model.
In conclusion, the most efficient combination for esti-

mating certainty in instance segmentation tasks by StarDist
model entails using Deep Ensemble and the Radial Ap-
proach, employing F = 10 models. This configuration
yields well-calibrated results with minimal tuning require-
ments and an efficient clustering algorithm.

Several possibilities for future expansion of our work ex-
ist. One intriguing avenue is exploring the connection be-
tween this work and active learning. The obtained certainty
information could facilitate the creation of a new dataset
containing unknown objects. Ground truth labels for this
dataset could be acquired from users, allowing the model’s
capabilities to continuously adapt to its operating environ-
ment through ongoing training.

Additionally, explore the inter-annotator variability as a
means to juxtapose the uncertainty inherent in human judg-
ments with the models’ epistemic uncertainty. This com-
parison will shed light on how well the models’ uncertainty
estimates align with the diversity of human perceptions and
annotations, offering deeper insights into the model’s ca-
pacity to capture uncertainties akin to those observed in hu-
man decision-making.

Furthermore, implementing the Concrete Dropout [8]
variant for instance segmentation tasks could be beneficial.

This principled extension of dropout enables the tuning of
dropout rates, leading to better-calibrated uncertainty esti-
mates in large models while avoiding the coarse and com-
putationally expensive search over dropout rates [7].

6. Summary

This study addresses certainty estimation in instance seg-
mentation using deep neural networks. While deep neural
networks often produce overly confident incorrect predic-
tions, accurate certainty assessment is crucial for informed
decisions. Unlike existing methods mainly focused on clas-
sification and regression tasks, we pioneer spatial certainty
estimation for instances with star-convex shapes.

This study introduces the Radial Approach, a novel clus-
tering method, which combined with Deep Ensemble based
certainty sampling provides efficient and well-calibrated
certainty estimates.

This research reiterates the significance of calibration for
accurate certainty assessment. Calibrating certainty esti-
mates is vital for reliable decision-making and model trust-
worthiness.
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