
Rethinking Visibility in Human Pose Estimation:
Occluded Pose Reasoning via Transformers

Pengzhan Sun1, Kerui Gu1, Yunsong Wang1, Linlin Yang2, Angela Yao1

1National University of Singapore
2Communication University of China

{pengzhan, keruigu, yunsong, ayao}@comp.nus.edu.sg, lyang@cuc.edu.cn

Abstract

Occlusion is a common challenge in human pose estima-
tion. Curiously, learning from occluded keypoints hinders a
model to detect visible keypoints. We speculate that the im-
pairment is likely due to a forced correlation between key-
points and visual features of the occluders. As such, we pro-
pose a novel visibility-aware attention mechanism to elim-
inate unreliable occluding features. The explicit occlusion
handling encourages the model to reason about occluded
keypoints using evidence and contextual information from
the visible keypoints. It also mitigates the damage of unre-
liable correlations of the occluded keypoints. Our method,
when added to the strong baseline SimCC, improves by 1.3
AP and 0.7 AP with ResNet and HRNet respectively. It
also surpasses the state-of-the-art I2R-Net on CrowdPose
by 0.3 AP and 0.6 APhard. The improvements highlight that
rethinking visibility information is critical for developing
effective human pose estimation systems.

1. Introduction

Human pose estimation detects body keypoints in im-
ages and video. Deep learning methods [15, 18, 28, 34]
are highly accurate at estimating pose, though occlusion re-
mains an ongoing challenge. There are multiple sources of
occlusion from objects, other people, and parts of the body
itself. Under occlusions, there is no direct visual evidence
for predicting keypoints, making the problem ambiguous.

The default in human pose estimation is to simply ig-
nore the occlusions. Models are trained as if occluded key-
points were visible, based on speculated ground truth lo-
cations marked by annotators. Doing so forces models to
correlate the visual evidence of the occlusion itself and the
underlying keypoint. As we later show in Section 4.1, this
type of correlation is spurious; in turn, these correlations
harm models’ ability to accurately predict visible keypoints.

A common approach to addressing occlusion is data aug-
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Figure 1. Our proposed module performs visibility-aware atten-
tion modeling on the keypoint representations to make them ro-
bust to occlusions. The module can be integrated into any pose es-
timation method with individual keypoint representations, such as
heatmap-based methods [28,33] and CoordCls-based method [17].

mentation [1, 23, 27]. The training data are augmented
with simulated occlusions to encourages learned models
to be more robust to the occlusions. However, this often
requires specially designed training strategies and longer
convergence times for training. For example, [11] dou-
bles training epochs with only a 0.5 AP improvement on
MSCOCO. Additionally, the gained robustness is rather
limited. In fact, [24] demonstrates that existing data aug-
mentation methods do not significantly improve the perfor-
mance of top-down pose estimators and may even reduce
performance for bottom-up approaches.

A second line of work explicitly learns how to infer the
invisible keypoints from image context. One common way
is to use tailored architectures such as graph convolutional
networks [25] and Siamese networks [37]. However, none
of the existing works have explored the feasibility of di-
rectly using visibility labels as part of the training process.
While such labels are not readily available for all datasets,
they are provided in the commonly used MSCOCO [19].

To fill this gap, we first conduct observational studies
that differentiate between visible and invisible keypoints for
training. We compare the default mixed training with a vari-
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Figure 2. Human Keypoint Attention Map Comparison. x-axis represents keys and y-axis represents queries. Keypoints are grouped
into visible keypoints and occluded keypoints. In the middle, the attention map is derived from a transformer with default mixed (visible
and occluded) training, while the map on the right is produced by our visibility-aware transformer model. Note how our visibility-aware
transformer suppresses the interference of occluded keypoints to other keypoints while enhancing the influence of visible keypoints.

ant where we train only with visible keypoints. Unsurpris-
ingly, the default performs better on the occluded keypoints.
Less expected was that the mixed default is less accurate
than the visible-only variant, i.e., training with only visi-
ble keypoints is more accurate. This phenomenon is espe-
cially pronounced on smaller datasets such as the MSCOCO
minitrain [26] split (see Table 1 of Section 4.1).

Based on these observations, we propose a simple and
effective module using avisibility-guided masking strategy.
The module is plug-and-play (see Figure 1) and can be in-
tegrated into any pose estimation method which uses indi-
vidual keypoint representations. Examples include the pop-
ular SimpleBaseline [33] and HRNet [28], which use ex-
plicit heatmap representations and SimCC [17], which use
latent keypoint representations. After extracting keypoint
features, we add a prediction network, called VisNet, to de-
termine each keypoint’s visibility. We then mask out oc-
cluded keypoint features and direct the resulting keypoint
features, visible and occluded, into a transformer block be-
fore rerouting back to the main pose estimation pipeline.
Masking features from the occluded keypoints, while sim-
ple, has the effect of forcing keypoints to be inferred from
visual cues of only visible keypoints. It effectively guards
against disturbances and interruptions from occluded key-
point features during attention calculations. For instance,
Figure 2 shows how, in the attention map from the default
method, the woman’s visible left shoulder is affected by
the occlusion on other keypoints, e.g., her left elbow. To
infer the woman’s occluded right shoulder, the pose esti-
mation model focuses mainly on unreliable occluded key-
points, e.g., her left ankle and right ankle. After applying
our explicit visibility masking, both visible and occluded

keypoints pay more attention to visible keypoints, which
benefits the overall keypoint accuracy.

Our proposed approach is highly effective on human
pose datasets with both moderate [19] and extensive [16]
occlusions. Summarizing our contributions:

1. We demonstrate that the default approach of including
occluded keypoints on the same basis as visible key-
points for training negatively impacts model accuracy.

2. From this observation, we propose a novel plug-and-
play module for occlusion handling. Our module uses
visibility prediction and feature masking to guide mod-
els to rely only on cues from the visible keypoints.

3. Adding our module to state-of-the-art methods im-
proves the accuracy of both visible and occluded key-
points. On SimCC [17] we improve on MSCOCO [19]
by 1.3 AP; added to I2R-Net [3] we improve by 0.6
APhard on the challenging CrowdPose dataset [16].

2. Related Work
2.1. 2D Human Pose Estimation

Human pose estimation is dominated by a top-down
paradigm in which people are first localized in a scene
with an external person detector before detecting the indi-
vidual keypoints within the person bounding box. CNN-
[17,28,30,33] and transformer- [18,20,34,35] based meth-
ods have steadily improved the overall pose accuracy. Dif-
ferent kinds of supervision signals and corresponding anal-
ysis for human pose estimation tasks have been explored.
Previous works [10,15,17,21,29,36] study different ways in
which keypoint representations can be accurately decoded
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Figure 3. Model Architecture Overview. Our proposed framework comprises three integral components: Keypoint Feature Extraction,
Masking, and Reasoning. The Visibility Prediction and Keypoint Masking module can apply current coordcls-based and heatmap-based
pose estimation methods flexibly. The VisNet, employing an MLP, serves as a discriminative tool for binary visibility classification.
The outcome of the Keypoint Reasoning with Transformers module can be seamlessly directed either to a linear coordinate classifier or,
alternatively, transformed into heatmap features, thereby facilitating keypoint localization through an argmax function.

into keypoint locations. Others [5–7, 9, 13] have shown that
predicting visible and occluded keypoints relies on differ-
ent sources of information. Attribution maps [9] show that
visible keypoints draw on localized visual cues while oc-
cluded keypoints source more global and dispersed cues. In
this work, we take a step further to observe the impact of
visibility and occlusion on human pose estimation. To our
knowledge, we are the first to quantify the negative effect
of occluded keypoint learning on visible keypoint accuracy.
Specifically, we find that learning with occluded and visible
keypoints indiscriminately reduces the accuracy of predict-
ing visible keypoints.

2.2. Occlusion Handling

Methods for occlusion handling in human pose estima-
tion can be divided into implicit and explicit methods. Im-
plicit methods try to enhance robustness against occlusion
using data augmentation. In [22], different frame crops
were used to augment the number of partially observed sam-
ples. In [11,12], different geometric patches overlaid on the
keypoints in the image as augmentation for object occlu-
sion. Augmentations against occlusion can also be applied
at a feature level; for example, [23] uses an adversarial
method to add occlusion patches on the feature map. The ef-
fectiveness of data augmentation methods depends on when
they are introduced to training [11]. If not used properly,
these methods suffer from an intrinsic drawback, which can
have a detrimental effect on the model’s performance [24].

Another line of work focuses on explicitly learning oc-
cluded keypoints. For instance, [2] uses attention modules
to identify plausible clues from visible keypoints and esti-
mate occluded keypoints. In [25], an image-guided graph
convolutional network module was proposed to estimate in-
visible keypoints. [37] used knowledge distillation to trans-
fer occlusion handling from one model branch to another of
a Siamese network. Recent work [4] encodes human prior

into the pose estimation system. However, these explicit oc-
clusion handling methods only contribute to occluded key-
points’ reasoning and do not actively mitigate the interfer-
ence of learning from occluded keypoints themselves. In
this work, we revisit the visibility information and propose
utilizing the visibility flag as guidance to erase unreliable
occluded keypoint features. This approach helps with both
visible keypoint detection and occluded keypoint reason-
ing.

3. Preliminaries

3.1. A Primer on Human Pose Estimation

2D human pose estimation, also known as human key-
point detection, targets at detecting the locations of K hu-
man keypoints, e.g., ankles, wrists, given an image input.

Keypoint Feature Encoding. State-of-the-art methods
employ a top-down pipeline and extract individual key-
point features x from the given input image. Initially, a
human-centric region I is cropped from the input image
through a bounding box and subsequently resized to dimen-
sions (H,W, 3). An encoder E , e.g., a convolutional neural
network (CNN), is subsequently deployed to extract key-
point features denoted as x, characterized by dimensions
(K,Hf ,Wf , C). Here, K represents the count of keypoints
within each human pose, while Hf , Wf and C pertain to the
height, width and channel number of the feature map corre-
sponding to each keypoint.

Heatmap-based Decoding. A common and popular
way to estimate human pose is through heatmaps. Heatmap-
based methods transform this problem to estimating K
heatmaps of size W ′ × H ′, {H1,H2, . . . ,HK}, where
each heatmap Hk indicates the location confidence of
the kth keypoint. Given the extracted keypoint features
x, heatmap-based methods firstly estimate K heatmaps
{H1,H2, . . . ,HK} and then utilize the argmax function
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Table 1. Observation study on the effect of including occluded keypoints in the training. We additionally distinguish the PCK on visible
(PCK-Visible, 89%) and occluded keypoints (PCK-Occluded, 11%).

Training Split Training Strategy AP AR PCK-All PCK-Occluded PCK-Visible

minitrain [26] all keypoints 57.5 61.7 77.7 47.2 81.9
minitrain [26] visible keypoints 60.6 64.2 79.0 44.7 83.4

train2017 all keypoints 69.3 72.6 84.0 55.2 88.0
train2017 visible keypoints 68.8 72.1 83.9 52.6 88.3

to decode heatmaps into keypoint locations, i.e. the human
pose. Formally, we have

Lpose :=

K∑
k=1

∥∥∥Ĥk −Hk

∥∥∥2 , (1)

where Ĥk is the predicted kth keypoint heatmap, and Hk is
the kth keypoint ground truth heatmap, which is generated
by applying 2D Gaussian with a standard deviation of one
pixel centered on the ground truth location.

CoordCls-based Decoding. Another recently proposed
method is coordinate classification [17], which applies in-
dividual classifiers to estimate the x-axis and y-axis coor-
dinates. The continuous coordinate values are quantized
into discrete integers as classification labels, i.e., the co-
ordinate of x-axis cx ∈ [1, Nx], the coordinate of y-axis
cy ∈ [1, Ny], where Nx and Ny are the number of bins
for horizontal and vertical axes, respectively. Given the es-
timated coordinates classification softmax probability Ox

and Oy , and the corresponding ground truth coordinates
classes Yx and Yy , the loss function for coordinate classi-
fication is based on the KL-Divergence loss [14] DKL:

Lpose := DKL(Ox, Yx) +DKL(Oy, Yy). (2)

4. Method

Mainstream methods for human pose estimation [17,
18, 28, 35] can accurately estimate common visible human
poses, but suffer from occlusion. We first conducted an ob-
servation study to quantitatively explore the impact of oc-
clusion on human pose estimation (see Sec.4.1). Based on
the findings, we propose a module to predict the visibility
of each keypoint and mask the occluded nodes in subse-
quent attention blocks (see Figure. 3). Such an approach has
two aims. First, it prevents the visual cues from occluded
keypoints from interfering with the estimation of visible
keypoints. Secondly, it encourages the occluded keypoints
to be estimated with the help of visual cues of the visible
keypoints. Our method can be integrated into any method
leveraging individual keypoint features, like heatmap-based
methods [28, 33, 35] and CoordCls-based methods [17].

4.1. Observational Study on Occlusion

Accurately predicting visible keypoints depends on lo-
cal information surrounding the keypoints. However, the
available visual cues may not provide enough evidence for
accurate prediction of occluded keypoints. Therefore, pre-
dicting occluded keypoints requires global visual context,
such as information from nearby visible keypoints [9]. Ex-
isting studies have not analyzed the roles of keypoints with
different visibility statuses. To address this gap, we con-
ducted an experiment examining the impacts of visible and
occluded keypoints on learning.

We compare two models trained and evaluated on the
MSCOCO [19] dataset. The first predicts visible keypoints
and ignores losses resulting from occluded keypoints dur-
ing the training process. As a comparison, the second
model uses both visible and occluded keypoints for train-
ing. Similarly, we use a smaller MSCOCO [19] dataset
split, minitrain [26], to train our two models. We use
the SimpleBaseline [33] architecture with ResNet50 [8] for
this observational study.

Table 1 shows the results for models trained on the
train2017 split. The model that focuses on visible key-
points achieves 88.3% accuracy in predicting correct visible
keypoints, surpassing the PCK-visible score of the model
trained on all keypoints (including both visible and oc-
cluded keypoints) by 0.3%. Remarkably, when using only
visible keypoints, models trained on the minitrain split
exhibit not only a higher PCK-visible (83.4% compared to
81.9%), but also an improved PCK-All (79.0% compared
to 77.7%) compared with the model incorporating all key-
points.

From our investigation, we derive the following inter-
esting observations: 1) Incorporating occluded keypoints
into the learning process detrimentally impacts the accu-
racy of predicting visible keypoints; 2) This adverse im-
pact on accuracy becomes more pronounced when working
with smaller datasets, subsequently degrading overall per-
formance.

4.2. Visibility Prediction and Keypoint Masking

We utilize a Multilayer Perception (MLP) termed VisNet
V , to capture the visibility status of individual keypoints
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while introducing a minimal number of parameters (less
than 1MB) and low additional computational costs. Given
the flattened keypoint features as input, VisNet V predicts
a logit score ŷ for keypoint visibility given the input x. By
employing a sigmoid function, we transform this score into
a probability, where values nearing 0 indicate an invisible
keypoint, while values nearing 1 signify a visible keypoint.
Following the obtained logit score of each keypoint, we ap-
ply a classification threshold of 0.5 to obtain the visibility
mask, which we denote as Mi(ŷi). The visibility mask is
an 1D vector with the length of K, where i represents the
index number of the ith keypoint. Specifically, the visibility
mask has a value of either 0.01 or 1:

Mi(ŷi) =

{
1, sigmoid(V(x)) < 0.5,

0.01, sigmoid(V(x)) ≥ 0.5
. (3)

Subsequently, we mask out the corresponding features
of invisible keypoints by applying the visibility mask to the
keypoint features. We denote the resulting masked features
as x̃, which we obtain by element-wise multiplication of the
visibility mask M and keypoint features x:

x̃ = M ⊙ x. (4)

The rationale behind such visibility-based masking is
that we leverage the predicted keypoint visibility to soft-
mask the keypoint features, which provides additional clues
in the subsequent Transformer module and empowers the
model to refine the invisible keypoints with cross-keypoint
attention.

4.3. Keypoint Reasoning with Transformers

After masking out the occluded keypoint feature, we
employ a transformer network [31] to infer occluded key-
points and refine visible keypoints based on the output of
the visibility prediction and keypoint masking module. Our
keypoint reasoning algorithm takes the visibility-guided
masked feature x̃ as input, and outputs enhanced keypoint
features by visibility-aware attention.

Without bells and whistles, we utilize naive transformer
blocks in our model framework. Each block contains a
multi-head self-attention module and a multi-layer percep-
tion module. The self-attention head can be formulated as:

SA (x̃) = softmax

(
x̃WQ (x̃WK)

T

√
dh

)
(x̃WV ) , (5)

where WQ,WK ,WV ∈ Rd×d are linear projection layers,
d is the dimension of each keypoint token, and dh is set to
d. The multi-head self-attention module combines h self-
attention heads, and can be formulated as:

MSA(x̃) = [SA1(x̃);SA2(x̃); . . . ;SAh(x̃)]WP , (6)

where dh is set to d/h, WP ∈ R(h·dh)×d is linear projec-
tion layer. We utilize the residual learning strategy in our
transformer block implementation, and layer normalization
is used before every module.

4.4. Loss Function

To supervise the binary classification of visible and invis-
ible keypoints, we compute Lvis using the standard cross-
entropy loss between the predicted Ŷ and true labels Y :

Lvis := CE(Ŷ , Y ). (7)

The overall loss for the multi-task learning framework is
denoted as

L = Lpose + λLvis, (8)

where λ is the loss weight for the visibility loss function and
modulates the proportion of these two tasks.

5. Experiment

5.1. Implementation Details

In our observational study, we adapt training strate-
gies based on dataset scales. For the MSCOCO [19] full
split, both models start from a common 90th-epoch check-
point and train for 50 epochs, with one model using vis-
ible keypoints and the other using all keypoints. On the
minitrain [26] split, both models share a 50th-epoch
checkpoint and continue training for 50 epochs using visi-
ble keypoints and all keypoints. For human pose estimation
on MSCOCO, we train ResNet50 [8] for 140 epochs with
learning rate reductions at the 90th and 120th epochs, and
HRNet-W32 [28] for 210 epochs with rate reductions at the
170th and 200th epochs. In CrowdPose [16] Multi-Person
Pose Estimation, we train TransPose-H [35] for 240 epochs,
with a multistep optimization and learning rate decline ev-
ery 50 epochs. We detach the gradient from the VisNet
branch so that it does not affect the training of the feature
extractor, and set λ to 1.

5.2. MSCOCO Keypoint Detection

Dataset. The MSCOCO dataset is a large and chal-
lenging 2D human pose estimation dataset, containing over
200,000 images and 250,000 person instances labeled with
17 keypoints, which includes both location and visibil-
ity annotations. We trained our models on the MSCOCO
train2017 set, which consists of 57,000 images and 150,000
person instances, and evaluated them on the val2017 set,
which includes 5,000 images. The minitrain split used
in our observational study shares the same object instance
statistics as the full training set. It contains 15,000 images
and 34,916 person instances, which is around 1/4 of the hu-
man instances in the train2017 set.
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Table 2. Performance comparisons on the MSCOCO validation set.

Method Scheme Backbone AP AP50 AP75 APM APL AR

SimCC [17] CoordCls ResNet50 72.3 91.4 79.2 69.5 76.5 75.5
Ours CoordCls ResNet50 73.6 92.5 80.4 70.9 78.4 76.9

SimCC [17] CoordCls HRNet-W32 77.2 93.5 83.5 74.3 82.0 80.1
Ours CoordCls HRNet-W32 77.9 93.5 84.6 75.2 82.4 80.7

Table 3. Performance comparisons of visible and occluded keypoints on the MSCOCO validation set.

Method Keypoints Evaluation AP AP50 AP75 APM APL AR

SimCC [17] Visible Keypoints 77.0 93.4 84.3 74.9 80.7 80.3
Ours Visible Keypoints 78.7 93.7 86.7 76.6 81.9 81.8

SimCC [17] Occluded Keypoints 65.0 78.9 65.8 64.7 70.4 72.4
Ours Occluded Keypoints 65.5 79.2 67.2 65.9 70.5 73.0

SimCC [17] Overall Keypoints 72.3 91.4 79.2 69.5 76.5 75.5
Ours Overall Keypoints 73.6 92.5 80.4 70.9 78.4 76.9

Evaluation metric. We followed the standard evalua-
tion metrics of average precision and recall scores used in
previous papers [17, 28, 33] based on the Object Keypoint
Similarity (OKS):

OKS =

∑
i exp

(
−d2i /2s

2k2i
)
δ (vi > 0)∑

i δ (vi > 0)
,

where di is the Euclidean distance between the estimated
keypoint and the ground truth keypoint, s is the scale of
the cropped person instance, ki is a constant that controls
falloff, vi is the visibility identity, and δ is an indicator
function. The visibility identity v can take on three values:
v = 0 indicates that the keypoint is unavailable, typically
because it is located outside the image; v = 1 indicates
that the keypoint is occluded, but its specific position can
be inferred; v = 2 indicates that the keypoint is clearly vis-
ible. To discern the performance enhancements specifically
achieved on visible and occluded keypoints, we adapt the
indicator function as follows: For evaluating visible key-
points, we employ δ (vi = 2), while for assessing occluded
keypoints, we use δ (vi = 1).

Results. We evaluated our method on the MSCOCO
validation set and compared it with the baseline method
SimCC [17]. Table 2 shows that our method achieves a con-
siderable improvement over the strong SimCC model across
both ResNet50 and HRNet-W32 backbones for 1.3 AP and
0.7 AP, respectively. Our method achieved a significant
improvement over previous strong baselines on MSCOCO,
a dataset with a low occlusion proportion (occluded key-
points versus visible keypoints is 11.3% versus 88.7%). Our
method explicitly mitigates the detriments of occluded key-

points at the stage of attention modeling and therefore im-
proves the overall performance by a large margin.

We extend our experiments to distinguish the perfor-
mance gain for both visible and occluded keypoints within
the MSCOCO dataset [19]. Table 3 showcases that our ap-
proach yields a noteworthy improvement of 1.7 AP for visi-
ble keypoints and 0.5 AP for occluded keypoints, facilitated
by the precise prediction of visibility information, which at-
tains an accuracy rate of 89%1.

5.3. CrowdPose Keypoint Detection

Dataset. The CrowdPose dataset contains 20K images
and 80K persons labeled with 14 keypoints. We trained the
model on the 10K images in the train split and evaluated
its performance on the 2K images in the validation split.
This dataset is even more challenging than MSCOCO, as
the proportion of occluded keypoints is much higher.

Evaluation metric. We follow the definition of Crowd
Index and difficulty levels in CrowdPose [16]. In the ith
person’s bounding box, the Crowd Index is defined as

Crowd Index =
1

n

n∑
i=1

N b
i

Na
i

,

where Na
i represents the number of keypoints belonging to

the ith person, while N b
i represents keypoints number be-

longing to other persons. N b
i /Na

i is the crowd ratio of the

1In contrast to keypoint detection evaluation, which excludes unavail-
able keypoints (those with a visibility flag of v = 0), visibility classifica-
tion categorizes unavailable human keypoints as occluded. Consequently,
in this scenario, the data distribution on MSCOCO for training visibility
prediction comprises 57.2% visible and 42.8% occluded keypoints.
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Table 4. Comparison with previous SOTA methods on CrowdPose dataset.

Strategy AP AP50 AP75 APE APM APH

SBL [33] 60.8 81.4 65.7 71.4 61.2 51.2
HRNet [28] 71.3 91.1 77.5 80.5 71.4 62.5

JC-SPPE [16] 66.0 84.2 71.5 75.5 66.3 57.4
OPEC-Net [25] 70.6 86.8 75.6 - - -

CID [32] 72.3 90.8 77.9 78.7 73.0 64.8
I2R-Net [3] 76.3 93.5 82.2 83.2 77.0 67.4

I2R-Net [3] + Ours 76.6 93.6 82.3 83.4 77.3 68.0

Table 5. Ablation study of Keypoint Reasoning module and Keypoint Masking strategy utilized in our method.

Backbone Keypoint Reasoning Keypoint Masking AP AP50 AP75 APM APL AR

ResNet50 72.2 91.4 79.2 69.6 76.5 75.6
ResNet50 ✓ 72.3 91.4 79.2 69.5 76.5 75.5
ResNet50 ✓ ✓ 73.6 92.5 80.4 70.9 78.4 76.9

ith human instance. n is the total number of people in the
image. Crowd Index is divided into three levels: easy (0-
0.1), medium (0.1-0.8), and hard (0.81-1). Besides stan-
dard evaluation metrics of AP and AR scores, we also report
APeasy , APmedium, and APhard.

Results. We evaluate our method on a more crowded
and challenging scene, as shown in Table 4. The current
state-of-the-art method, I2R-Net, builds connections for
each body part of the human from both inter-human and
intra-human levels. After integrating our method into I2R-
Net with TransPose-H backbone, we enhanced inter-human
modeling by empowering visibility awareness, explicitly
guiding occluded keypoint learning from visible contextual
information, and avoiding the detrimental effect of unreli-
able occluder appearance information on visible keypoint
features. This leads to a 0.3 AP improvement. Furthermore,
our method can significantly improve the metric APhard by
0.6 with the help of our explicit visibility-awareness reason-
ing transformer block. This shows that under severe occlu-
sion levels, visibility information can be of great help and
points to a promising way to further explore how to solve
the occlusion problem.

5.4. Ablation Study

Effectiveness of visibility-guided masking strategy.
We conducted an ablation study to demonstrate the contri-
bution of the visibility-guided masking strategy to the fi-
nal result. Table 5 shows that solely leveraging the trans-
former block to model mutual-keypoint dependency brings
only trivial improvement. The main performance gain
comes from our proposed visibility-guided masking strat-
egy. Compared to solely using the transformer block, our

visibility-guided masking strategy brings a noticeable 1.3
AP improvement.

Influence of the visibility accuracy. We also investi-
gated how the accuracy of our predicted visibility flag af-
fects model performance, as shown in Table 6. As expected,
our method’s performance is lower compared to the one us-
ing the ground truth visibility flag for training and inference.
However, we can see that there is only a small gap on the AP
metric, showing that our method does not rely on ground
truth visibility identity during inference. The accuracy of
our predicted visibility identity is around 89%, which also
supports this as a feasible and promising way of utilizing
visibility information for handling human pose estimation.

5.5. Qualitative Results

In the study, we compare the qualitative results of
SimCC method with and without our visibility-guided
masking strategy. The findings are presented in Figure 4.
Our strategy performs better in situations where the scene
is crowded and there is significant occlusion. For instance,
in the picture present in the second column, the knee and an-
kle nodes of the two players overlap. The baseline method
fails to detect the occluded human body keypoint correctly,
while our visibility-guided method can correct this error.

6. Limitation and Future Work
Failure cases. We show failure cases with severe oc-

clusion and rare pose in Figure 5. As shown in the right
picture, the pose of a person lying down is rarely seen in the
dataset. Additionally, many keypoints, e.g., knees, hips, are
occluded by the ankle keypoints. In such scenarios, visible
keypoints are often insufficient for our model to effectively

5909



Table 6. Ablation study of different masking strategies.

Strategy Visibility Accuracy AP AP50 AP75 APM APL AR

Ground Truth 100% 73.7 92.6 80.4 71.2 77.9 76.6
Visibility Prediction 89% 73.6 92.5 80.4 70.9 78.4 76.9

Figure 4. Qualitative results of naive transformer (first row) and our visibility-aware transformer (second row) for keypoints reasoning. We
use red squares to highlight our improved prediction qualities when faced with strong occlusion.

Figure 5. Failure cases with severe occlusion scenario and rare
poses.

reason about the occluded ones.
Future work. Visibility information is a promising so-

lution for handling occlusion problems. However, not all
2D pose estimation datasets provide a ground truth visibil-
ity flag for training. For future work, we will explore the
semi-supervised learning setting of visibility information.
We believe that the transferability of VisNet will help the
community better utilize visibility information. Addition-

ally, we intend to extend our method to the hand pose esti-
mation task that also suffers occlusion problems.

7. Conclusion

In this paper, we quantitatively observe for the first time
that occluded keypoint points interfere with the prediction
of visible keypoint points. Inspired by this observation, we
propose a visibility-aware framework that explicitly models
the keypoint visibility information that was previously over-
looked by mainstream methods. We empower the model to
learn the visibility attributes of keypoints, and consequently
devise a Transformer block to mine the cross-keypoint at-
tention. Our method can be easily plugged into existing
state-of-the-art human pose estimators and lead to clear per-
formance improvements on both MSCOCO and CrowdPose
datasets, verifying the effectiveness of our method for fur-
ther enhancing the keypoint detection.
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