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Abstract

The research community has witnessed the powerful po-
tential of self-supervised Masked Image Modeling (MIM),
which enables the models capable of learning visual repre-
sentation from unlabeled data. In this paper; to incorporate
both the crucial global structural information and local de-
tails for dense prediction tasks, we alter the perspective to
the frequency domain and present a new MIM-based frame-
work named FreMIM for self-supervised pre-training to bet-
ter accomplish medical image segmentation tasks. Based
on the observations that the detailed structural information
mainly lies in the high-frequency components and the high-
level semantics are abundant in the low-frequency coun-
terparts, we further incorporate multi-stage supervision to
guide the representation learning during the pre-training
phase. Extensive experiments on three benchmark datasets
show the superior advantage of our FreMIM over previ-
ous state-of-the-art MIM methods. Compared with various
baselines trained from scratch, our FreMIM could consis-
tently bring considerable improvements to model perfor-
mance. The code will be publicly available at https :
/ 1b. com ng 3/FreMIM

ngwl93/Fre

1. Introduction

Since Masked Language Modeling (MLM) obtained
great success in the field of Natural Language Processing
(NLP) [ 18], numerous works [4,12,26,40,50,53] have trans-
ferred this idea to the vision domain, making Mask Image
Modeling (MIM) an effective pre-training strategy. One
of the most representative approaches is Masked Autoen-
coders (MAE) [26], which pre-trains the model by masking
partial regions within an image and reconstructing them.

*Equal Contribution.t Corresponding author.
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Figure 1. The comparison of key ideas between the MAE frame-
work and our proposed FreMIM. (a) MAE: randomly masks the
patch tokens and reconstructs raw pixels of the original image. (b)
Our FreMIM: randomly masks the foreground pixels and recon-
structs the Fourier spectrum of the original image.

After the pre-training, the model is fine-tuned on various
downstream tasks and achieves state-of-the-art (SOTA) per-
formance. Following-up works mainly focus on improv-
ing the accuracy and efficiency by introducing new designs,
such as ConvMAE [?3] and Siamese Image Modeling [45].

Some recent works applied MAE-based methods for
medical image analysis [27, 44, 54] and achieved promis-
ing results across various benchmark datasets with differ-
ent modalities, including computed tomography (CT) [37]
images, magnetic resonance imaging (MRI) [2&], to name
a few. Despite making methodological advancements and
structural innovations, these methods have not essentially
solved the key limitations of MAE. Although compared
with other self-supervised learning (SSL) frameworks MAE
can consistently help the model extract generally useful fea-
tures even with few training samples (as proven by [31]), to
some extent, MAE solely takes raw pixels as reconstruc-
tion targets mainly depending on local feature representa-
tion rather than fully utilizing the global information. Be-
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Figure 2. The visualization of the whole Fourier spectrum, high-
frequency components, and low-frequency counterparts respec-
tively, the high/low-frequency components of which are acquired
by applying the corresponding high/low-pass filters on the whole
Fourier spectrum. As illustrated in the second row of the figure, the
inspiration for our FreMIM comes from the observations that local
details (like texture and contours) mainly lie in the high-frequency
components while the global and smooth structural information is
rich in the low-frequency counterparts.

sides, since the model is expected to possess the ability to
extract features with multiple semantic levels at different
stages, only the output from the last stage is fed into the de-
coder for the reconstruction task, lacking the supervision
from other stages to provide multi-scale information. In
summary, previous works [4,26,49] crucially require a cer-
tain trade-off between the local details and contextual se-
mantics, which leaves room for further improvement. Fur-
thermore, due to high acquisition costs and patients’ pri-
vacy, the training samples of commonly small-scale medi-
cal datasets are relatively limited, but none of these previous
works have taken this unique characteristic of medical im-
age datasets into consideration and made tailored designs.

Therefore, in order to fully exploit the potential of MIM-
based methods for medical image segmentation under the
circumstance of limited training samples, how to acquire
the global information while preserving the detailed local
features as much as possible has become the key problem.
Considering the nature of Fourier Transform in image pro-
cessing, it might be a possible solution. As studied in lots of
previous works [5,7, 14,30,43] and shown in Fig. 2, the de-
tailed texture information mainly lies in the high-frequency
components and the low-frequency counterparts carry rich
global information. Following this observation, an intuitive
solution would be exploring the powerful potential of MIM
coupled with Fourier Transform.

To this end, aiming at the joint modeling of both local
and global features during SSL pre-training, we propose a
new MIM-based framework conducted in the Fourier do-
main, namely FreMIM, which to our knowledge is the first
work to explore the potential of MIM with Fourier Trans-

form for 2D medical image segmentation. Specifically, our
FreMIM first masks out a portion of randomly selected
image pixels and then predicts the corresponding missing
frequency spectrum of the input image in the Fourier do-
main. Since medical images of the same organ essentially
correspond to similar features, we conduct difficult cross-
domain reconstruction tasks to avoid learning with shortcuts
and achieve strong representation capability. Meanwhile,
inspired by previous findings [47] that the detailed struc-
tural information mainly lies in the high-frequency com-
ponents and the high-level semantics are abundant in the
low-frequency counterparts, the proposed bilateral aggrega-
tion decoder is leveraged to sequentially apply the Fourier
Transform on the original image and employ low/high-pass
filters on the converted Fourier spectrum to get the expected
reconstruction target. Such a multi-stage supervision ap-
proach could better guide the model pre-training, resulting
in better representations for segmentation. Besides, we pro-
pose an effective foreground masking strategy as the alter-
native to the original random masking, which is proven to be
more suitable for textures and details modeling for medical
image segmentation. In summary, the main contributions of
this work are summarized as follows:

e We present the first study on exploring the powerful po-
tential of masked image modeling with frequency do-
main for medical image segmentation tasks. The pro-
posed FreMIM is a generic self-supervised pre-training
framework that can be integrated with different model ar-
chitectures (i.e. both CNNs and Transformers).

e By designing a multi-stage supervision scheme cou-
pled with a well-designed bilateral aggregation decoder,
we propose a new cross-domain masking-reconstruction
framework for masked image modeling paradigm.

e A simple yet effective masking strategy among fore-
ground pixels is proposed as a better alternative to the
original random masking pixels strategy, providing more
precise and informative masks for the following self-
supervised representation learning.

e Without introducing any extra training samples, exten-
sive experiments on three benchmark datasets and three
representative 2D baselines validate the effectiveness of
the proposed FreMIM, outperforming other previous al-
ternative self-supervised state-of-the-art approaches.

2. Related Work
2.1. Masked Image Modeling

As a powerful self-supervised learning paradigm, MIM
has attracted increasing community interest recently. By
reconstructing the masked portion of images, models could
learn informative feature representations that are favorable
for various visual downstream tasks.

On Natural Images. Previous works of reconstruction tar-
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gets could be divided into three categories, including dis-
crete tokens [4, 40], feature maps [49, 53], and raw image
pixels [26, 50]. For example, BEiT [4] and BEiTV2 [40]
added a classifier to predict masked visual tokens, and it is
supervised by the encoded image patches from offline tok-
enizer. Inspired by the self-distillation paradigm in DINO
[9],iBOT [53] adopted a teacher-student framework to per-
form MIM. The teacher network serves as an online to-
kenizer to learn visual semantics from all image patches,
while the student network only processes visible patches.
Moreover, MaskFeat [49] first explored features as predic-
tion targets. Besides, SimMIM [50] discarded the tokenizer
and patch classification, simply employing RGB values of
raw pixels as predicted targets. Without feeding masked to-
kens into the encoder, MAE [26] designed a simple decoder
to reconstruct image patches, leading to a considerable re-
duction of computation complexity during pre-training.

On Medical Images. At the same time, various works
[24, 27,44, 51,52, 54] have explored the effectiveness of
MIM pre-training on various medical benchmark datasets.
Zhou et al. [54] applied MAE pre-training paradigm for
medical image segmentation and significantly improved the
results. Huang et al. [27] proposed a manually settled at-
tentive reconstruction loss that pays more attention to the
informative regions. Tang et al. [44] explored the hierar-
chical structure for full extraction of image features and
constructed a self-supervised pre-training framework with
three proxy tasks. However, the random masking strat-
egy of patches utilized previously is rough and may result
in computation waste on the useless background. Consid-
ering that informative foreground and useless background
are discriminated in medical images, we design a mask-
ing strategy among foreground pixels to obtain more effec-
tive masks, assisting models in better representation learn-
ing. Moreover, our method could cast off the reliance of
the pre-training paradigm on specific model structures and
consistently boost model performance, which is different
from previous works (e.g. Swin Transformer and CNN-
based models can not be directly integrated with MAE).

2.2. Fourier Transform

Recently, a series of research [29,41,55] have performed
Fourier Transform on images and leveraged the frequency
information to improve model performance and efficiency.
For example, [4!] utilized Fast Fourier Transform (FFT)
as the alternative to self-attention modules in the origi-
nal Transformer, successfully acquiring global information
with low computation costs. [29] designed a novel focal fre-
quency loss for Fourier spectrum supervision to improve
popular image generative model performance.

Inspired by these previous researches [5, 7, |4, 30, 43],
we randomly mask the original image and reconstruct the
Fourier spectrum in the frequency domain to help the model

learn more generalized global representation in a cross-
domain masking-reconstruction manner. In addition, multi-
stage supervision coupled with leveraged specific character-
istics of FFT (i.e. high-pass and low-pass frequency compo-
nents) is also proposed to better guide the model represen-
tation learning among different stages.

3. Methodology
3.1. Preliminary: Fourier Transform

Since Discrete Fourier Transform (DFT) plays a vital
role in our proposed method, we first give a brief review
of the 2D DFT that serves as an indispensable technique for
traditional signal analysis. Given a 2D signal F € RW>*H
its corresponding 2D-DFT can be defined as:

1

) =3
h=0

where F'(h, w) represents the signal located at (h, w) in F,
while the v and v are indices of horizontal and vertical spa-
tial frequencies in the Fourier spectrum. Correspondingly,
the 2D Inverse DFT (2D-IDFT) is formulated as:

W-—1 ) N
3" F(hw)e 2 () (1)
w=0

Flhow) = — ISha 2m (47 + %) 2
( 7w)_WuZ:%Uz::()f(u,v)e . 2
Both DFT and IDFT can be accelerated with their fast
version, FFT algorithm [38]. For medical images with var-
ious modalities, the Fourier Transform is operated on each
channel independently. Besides, as already shown in pre-
vious works [5, 7, 14, 30,43], the detailed structural texture
information of an image mainly lies in the high-frequency
part of the Fourier spectrum while the global information is
rich in the low-frequency counterpart. Fig. 2 presents the
visualization of this intriguing characteristic.

3.2. The Proposed FreMIM

Overall Architecture. An overview of the proposed SSL
framework namely FreMIM is presented in Fig. 3. Given
an input medical image slice X € RE*H*W yith a spa-
tial resolution of H x W and C' channels (# of modali-
ties), the proposed foreground masking strategy is first em-
ployed on the original image to generate the masked im-
age. Then, the generic encoder (i.e. according to various
pre-training requirements, both CNNs and Transformers
encoder can be easily integrated into our framework)
takes the masked image as input, capturing the masked vi-
sual features through the hierarchical structure. After that,
the encoded feature representations at different stages are
jointly fed into our well-designed bilateral aggregation de-
coder, gradually producing the reconstructed Fourier spec-
trum with both low-level detail information and high-level
semantic representation. By sequentially applying Fourier
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Figure 3. The overall architecture of our proposed FreMIM. At first, the input medical image is corrupted by the foreground masking
strategy and then fed into the encoder, which consists of several stages with a hierarchical structure. The captured feature maps at dif-
ferent stages (i.e. S1, S2, ... Syn) are fused by a bilateral aggregation decoder to generate the aggregated high-level and low-level feature
representations (i.e. Anign and Ajoy). For the fused feature of each semantic level, an FMB is applied respectively to learn its recessive
information in the frequency domain, resulting in the acquired P, and Phigp. Finally, the low-pass and high-pass Fourier spectra are
both adopted as the reconstruction target to better guide the model to capture local details and global information.

Transform on the original image and employing low/high-
pass filters on the converted Fourier spectrum to acquire the
expected reconstruction target, the reconstruction loss is ap-
plied to the similarity between the reconstructed spectrum
and the expected low/high-pass spectrum target, realizing
the helpful multi-stage supervision scheme with both low-
and high-level representations in an end-to-end manner.

Masking Strategy. As experimentally illustrated in sev-
eral previous works [4, 23, 26, 40, 45, 50], random mask-
ing strategy is not only simple but also effective for MIM-
based self-supervised learning paradigm on large-scale nat-
ural images. However, different from natural images, the
distribution of foreground and background pixels in medi-
cal images is extremely unbalanced. So randomly select-
ing spatial positions of a medical image would inevitably
cause the generated mask to mostly cover background pix-
els and too many foreground pixels of the objects are re-
served, counting against the model’s reconstruction ability.
To this end, we propose a simple yet effective foreground
masking strategy to address this uneven distribution issue.

Specifically, given a binary mask M € {0, 1}7*W ini-
tialized with zeros, its value at each spatial position is deter-
mined by whether the corresponding pixel value belongs to
the foreground or not. If a pixel belongs to the foreground
area, it will be filtered as one of the candidates to be masked
during self-supervised pre-training. Since a medical image
commonly consists of diverse channels, each one emphasiz-
ing a different foreground area, we take their overlapping
parts as the final masked regions. The overall foreground
masking strategy can be defined as:

0, Pp(z,y)=0
R B i TS
M =M, N MyN Ms...N M, 4
Xp=M0oX, ®)

where © is the Hadamard product, P, (z,y) represents the
specific pixel value of the corresponding position (z,y),
M, denotes the generated mask of the specific image
modality M,,. M and X », respectively indicate the final
mask of the original image and the masked image that will
be fed into the model for the following reconstruction task.
Generic Encoder. As for the selection of encoder in our
framework, FreMIM is not restricted to any specific kind
of structure thanks to our pixel-wise foreground mask-
ing strategy. Dislike some previous MIM-based methods
can only be incorporated with various Vision Transform-
ers (e.g. Due to the random masking strategy of embedded
image patches, MAE is only applicable for ViT [19] with-
out the consideration of CNNs or hierarchical Transformer
architecture), our FreMIM is a generic and flexible frame-
work, which means both CNN-based and Transformer-
based models can be easily integrated with our FreMIM for
effective self-supervised pre-training. Taking the aforemen-
tioned masked image as input, the network encoder gradu-
ally encodes the masked image slice with the hierarchical
structure, producing the feature representations with diverse
levels (i.e. from low-level detail information to high-level
semantics). In this paper, three previous SOTA methods for
medical image segmentation, i.e. the representatives of the
CNN-Transformer hybrid architectures and Vision Trans-
formers, are selected as the backbones to validate the effec-
tiveness of our method (more details are in Sec. 4).

Multi-stage Supervision Scheme. Both low-level details
and high-level global semantics are crucial, especially for
medical image segmentation. The expectation of an effec-
tive SSL paradigm is to guide the visual backbone to learn
the required representations with different levels through
the hierarchical structure. Following this intuition, we pro-
pose to design a multi-stage supervision scheme to fully su-
pervise the representation learning of hierarchical stages.
As emphasized in Sec. 1, high-level and low-level in-
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formation of an image is distributed in different frequency
bands of the Fourier spectrum. So we propose to separately
take advantage of the low-pass and high-pass Fourier spec-
trum as the supervision signal (i.e. reconstruction target).
One of the most intuitive ways is to utilize the identical
high-pass Fourier spectrum to directly supervise multiple
low-level stages and vice versa for low-pass counterparts.
However, there are mainly two drawbacks for this intuitive
manner. On the one hand, this manner is kind of unreason-
able and it violates the original intention of model learning
at various low-level stages cause the feature representations
learned at different low-level stages should be naturally dif-
ferent instead of the same. On the other hand, such a super-
vision method is too direct and simple, and does not make
full use of the correlation between the captured multi-stage
features by the hierarchical structure to help the model bet-
ter perform the MIM pretext task.

With regard to this, a well-designed bilateral aggrega-
tion decoder is proposed to better solve the reconstruction
task in the frequency domain, further helping the encoder to
learn a more generalized and more meaningful feature rep-
resentation. Specifically, inside the proposed bilateral ag-
gregation decoder, the encoded features at different stages
are converged to the lowest stage (i.e. with maximum spatial
resolution) and the highest stage (i.e. with minimum spatial
resolution) in a bottom-up and top-down manner, respec-
tively. In other words, the BAD separately aggregates the
feature maps of different stages into the lowest and highest
resolution. Specifically, for ViT, the feature maps of lay-
ers 4th, 8th, and 12th are upsampled by 8, 4, and 2 times
respectively to be fed to the BAD, following the deconvolu-
tion module in UNETR. To be clear, the captured features of
each adjacent stage will be fed into the convolutional block
to achieve the strict alignment of both spatial resolution and
channel dimension, which can be expressed as:

OW = Cat(

Al = Cat( &Sk) CCtatC 552 Dc% }f 5 3

where Ay;gn, and Alow separately denote the bilaterally ag-
gregated high-level and low-level feature representations,
C, Dc and Cat indicate the convolutional block, deconvo-
lution block, and concatenation operation respectively, S;
denotes the feature maps output by the stage i.

Then, the aggregated feature representations at the low-
est stage and highest stage will be mapped to the frequency
domain through the introduced frequency mapping block
(as illustrated in Fig. 3), which are followed by the low-
pass and high-pass filters to get the corresponding high-pass
and low-pass prediction spectrum for the employed recon-
struction loss. Specifically, the frequency mapping block
(FMB) consists of a 2D-DFT, a Frequency Domain Percep-
tron (FDP), and a 2D-IDFT, which can be calculated as:

Piow = IDFT(W © DFT(Ajo) + b), (8)

Phigh = IDFT(W O] DFT(Ahigh) + b)7 9

where DF'T and IDF'T represent the Fast Fourier Trans-
form and Inverse Fast Fourier Transform. W and b are both
learnable parameters, ©® is the Hadamard product. In this
way, a powerful SSL framework for cross-domain recon-
struction is built with the benefit of the Fourier Transform’s
unique characteristics. Although such a cross-domain re-
construction task is more difficult than intra-domain recon-
struction, it can also assist the model in learning more ro-
bust feature representation, which is fully demonstrated in
the following experimental section.

3.3. Pre-training Strategy

Frequency Loss. To alleviate the weight imbalance be-
tween different frequency band spectrums and facilitate the
reconstruction of difficult frequency bands, we adopt fo-
cal frequency loss [29] as the loss function Lyeq to imple-
ment gradient updating of weights for both low and high-
frequency mapping, which is defined as:

H-1W-1

Lireq = W Z Z w,v) ® y(f(u,v), f(u,v))% (10)

u=0 v=0

where f(u,v) is the predicted 2D-DFT of spatial frequency
coordinate (u,v) while f(u,v) denotes its corresponding
Ground Truth value. ~(f, f) calculates the squared Eu-
clidean distance between actual and predicted values as
their frequency distance. And w is the spectrum weight ma-
trix of a given location, which suppresses weights of easy
frequencies. The calculation formulas are as follows:

w(u,v) = (f(u,v), f(u,0))", (11)
W ) = (R - R
where [ is a scaling factor for flexibility (6=1 by default) .

+(Z-1)2, (12)

Overall Loss. During pre-training, our FreMIM learns
representation by solving content gestalt from both high-
pass and low-pass frequency:

ﬁ = [:freq(FH(Plow)a

Fpu(T)) (13)
+a£freq(FL (Phigh); F

L(T)),

where Fy and F, represent high-pass and low-pass fre-
quency filter respectively. T indicates the original images.
As shown in Fig. 3, Py, is obtained by highest-stage and
Prign is the opposite. « is the weight of high-level semantic
information branches (« = 3 by default).

4. Experiments and Results

In this section, focusing on solely exploiting the given
training samples (i.e. the pre-training data only includes the
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Table 1. Comparison with previous self-supervised learning frameworks.

3

-> represents training from scratch. Without introducing any

extra samples, our FreMIM can consistently boost the model performance by a large margin compared with randomly initialized baselines.

Dice Score (%) 1

Baseline Backbone Pre-train Method BT WT TC Average
TransBTSV2 [32] CNN-Transformer - 77.11 90.32 82.90 83.44
TransBTSV2 [$7] CNN-Transformer FreMIM 79.65 (+2.54) 90.80 (+0.48) 83.33 (+0.43) 84.59 (+1.15)
UNETR [25] ViT-B/16 [20] - 75.28 88.42 76.33 80.01
UNETR [25] ViT-B/16 [20] MAE [26] 75.18 (-0.10) 88.95 (+0.53) 78.47 (+2.14) 80.87 (+0.86)
UNETR [25] ViT-B/16 [20] DINO [Y] 75.22 (-0.06) 88.33 (-0.09) 75.89 (-0.44) 79.81 (-0.20)
UNETR [7] ViT-B/16 [20] FreMIM 76.50 (+1.22) 88.86 (+0.44) 78.82 (+2.49) 81.39 (+1.38)
Swin UNETR [44] Swin-B [34] - 76.68 89.89 79.98 82.18
Swin UNETR [44] Swin-B [34] SimMIM [50] 77.59 (+0.91) 90.47 (+0.58) 80.34 (+0.36) 82.80 (+0.62)
Swin UNETR [44] Swin-B [34] Swin UNETR [44] | 77.85 (+1.17) 89.63 (-0.26) 78.65 (-1.33) 82.04 (-0.14)
Swin UNETR [/4] Swin-B [4] FreMIM 78.38 (+1.70) 90.06 (+0.17) 81.05 (+1.07) 83.16 (+0.98)

specific downstream datasets without introducing any extra
data) for 2D medical image segmentation (e.g. solely BraT$
2019 is used for pre-training when evaluating brain tumor
segmentation), extensive experiments on three benchmark
datasets are conducted to fully verify the effectiveness of
FreMIM. Note that the numbers between parenthesis repre-
sent the gains with respect to specific baselines trained from
scratch, while the red and blue color denote accuracy in-
crease and decrease respectively. To save space, the visual
comparisons in terms of segmentation and reconstruction
results are presented in supplementary material.

4.1. Experimental Setup

Data and Evaluation Metrics. Our proposed method is
evaluated on three benchmark datasets (i.e. BraTS 2019
[2,3,35], ISIC 2018 [16,46] and ACDC 2017 [6]) for med-
ical segmentation. Due to space limit, more detailed elabo-
rations are presented in the supplementary material.

Implementation Details. The specific implementation
details can be found in the supplementary material.

4.2. Results and Analysis

Comparison with Previous SSL. Frameworks. Based
on five-fold cross-validation on the BraTS 2019 training
set, we perform a fair comparison between our proposed
FreMIM and previous self-supervised learning methods
on various baselines including TransBTSV2 [32], UNETR
[25], and Swin UNETR [44], demonstrating the effective-
ness and generalization capability of our FreMIM. For com-
prehensive comparisons, we select multiple self-supervised
learning methods (i.e. MAE [26], SimMIM [50], DINO [9]
and Swin UNETR [44]), among which MAE and SimMIM
have achieved promising results on natural images, DINO is
a representative contrastive learning method, and Swin UN-
ETR is a representative of the previous efforts on SSL meth-
ods for medical image analysis. To be clear, since some of
these previous methods are limited to backbone structures
(e.g. MAE cannot be adapted to Swin Transformer back-
bone due to the token-dropping operation), for other meth-

ods we kept their original backbone as in their papers to
achieve a fair comparison, which implicitly demonstrates
our method’s superior versatility to various backbones.

As presented in Table 1, our FreMIM shows great supe-
riority over all three baselines. Compared to training from
scratch, the Average Dice scores on three baselines are si-
multaneously increased by 1.14%, 1.38%, and 0.98% re-
spectively after pre-training with our framework. In com-
parison with MAE on UNETR and SimMIM on Swin UN-
ETR, our FreMIM greatly improves model performance
with the benefit of exploiting MIM in the frequency domain
for global representation learning. Since contrastive learn-
ing methods mainly focus on learning high-level semantics
by instance discrimination task, neglecting the fine-grained
representation learning results in poor results for UNETR
with DINO pre-training. In contrast, FreMIM takes ad-
vantage of the smooth structure information of organs and
detailed contours and textures as supervision signals, bet-
ter guiding the model’s high-level and low-level representa-
tion learning. Additionally, the Swin UNETR pre-training
method achieves inferior performance. We believe the rea-
sonable explanation for this phenomenon is that the Swin
UNETR pre-training method heavily relies on the number
of training samples to acquire useful prior knowledge (i.e.
it can not help models to capture the helpful representations
as expected under the circumstance of limited pre-training
samples). On the contrary, without introducing any extra
samples, our FreMIM can greatly boost model performance
compared with random initialization, suggesting the effec-
tiveness and data-efficient characteristic of our method. In
summary, our FreMIM with the advantages of the frequency
domain is a generic and powerful MIM-based framework,
which could bring consistent improvement in model perfor-
mance without introducing extra data.

Evaluation on Brain Tumor Segmentation. Compara-
tive experiments are also conducted on the BraTS 2019 val-
idation set. As shown in Table 2 (a), our FreMIM achieves
superior performance than previous methods with the com-
petitive Dice scores of 79.74%, 90.23%, and 81.25% on ET,
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Table 2. Performance comparisons on BraTS 2019, ISIC 2018 and
ACDC 2017 datasets. Here TransBTSV2 denotes the 2D version
of the original model to fit our proposed SSL framework.

(a) BraTsS 2019
Dice Score (%) T Hausdorff Dist. (mm) |
Method ET WT TC | ET __WT  TC
3D U-Net [15] 70.86 87.38 72.48 | 5.062 9.432 8.719
V-Net [36] 73.89 88.73 76.56 | 6.131 6.256 8.705
Attention U-Net [39] | 75.96 88.81 77.20 | 5.202 7.756 8.258
Chenetal. [13] 74.16 90.26 79.25 | 4575 4378 7.954
Lietal. [33] 77.10 88.60 81.30 | 6.033 6.232 7.409
Frey et al. [27] 78.70 89.60 80.00 | 6.005 8.171 8.241
TransBTS [48] 78.36 88.89 81.41 | 5908 7.599 7.584
TransUNet [ 10] 78.17 89.48 7891 | 4832 6.667 7.365
Swin-UNet [¢] 78.49 89.38 78.75| 6.925 7.505 9.260
TransBTSV2 [32] 78.63 90.09 80.23 | 3.729 6.194 7.725
TransBTSV2 79.74 90.23 81.25 | 3.209 5.875 6.934
+FreMIM +1.11 +0.14 +1.02 | -0.520 -0.319 -0.791
(b) ISIC 2018
Method JI Dice  Accuracy Recall Precision
U-Net [47] 81.69 88.81 95.68 88.58 91.31
U-Net++ [56] 81.87 88.93 95.68 89.10 90.98
AttU-Net [39] 81.99 89.03 95.77 88.98 91.26
DeepLabv3+[11] | 82.32 89.26 95.87 89.74 90.87
CPF-Net [21] 82.92 89.63 96.02 90.62 90.71
BCDU-Net [ 1] 80.84 88.33 95.48 89.12 89.68
Ms RED [17] 83.45 89.99 96.19 90.49 91.47
TransBTSV2 [22] | 81.96  92.56 95.88 90.21 90.78
TransBTSV2 83.53 93.39 96.44 90.18 92.61
+FreMIM +1.57 +0.83 +0.56 -0.03 +1.83
(c) ACDC 2017
Method RV Myo LV Average
U-Net [42] 86.91 87.17 90.65 88.25
AttU-Net [39] 86.78 86.93 91.84 88.52
Swin-UNet [£] 86.62 88.72 92.44 89.26
TransUNet [ 10] 87.04 88.51 92.85 89.47
TransBTSV2 [37] 86.80 87.76 91.87 88.81
TransBTSV2 [ 7] 87.12 88.87 92.69 89.56
+FreMIM +0.32 +1.11 +0.82 +0.75

WT, and TC respectively. In addition, it is notable that our
method realizes a considerable decrease of Hausdorff dis-
tance on TC, reaching 6.934mm. Without introducing any
extra training samples, the proposed FreMIM can greatly
boost model performance and outperform other previous
SOTA approaches. The considerable improvements made
by FreMIM are powerful evidence of the effectiveness of
using our method on MRI benchmarks.

Evaluation on Skin Lesion Segmentation. We also ver-
ified the generality of FreMIM on RGB images dataset
namely ISIC 2018 compared with the other seven well-
performed algorithms. It could be seen from Table 2 (b)
that, with the informative feature representations obtained
from pre-training stages, our method could reach great
performance on ISIC 2018 the five-fold cross-validation.
Specifically, compared with previous SOTA methods, our
results are higher on both JI, Dice, Accuracy, and Precision
metrics. It is worth noting that our method promotes 1.57 %
and 1.83% on Dice score and Precision compared to train-
ing from scratch, demonstrating that FreMIM also presents

Table 3. Ablation study on the reconstruction target and supervi-
sion scheme.

Dice Score (%) T
ET WT TC Average

- - 77.11 90.32 82.90 83.44
high-pass - 77.82 90.60 83.60 84.01(+0.57)
- low-pass 77.44 90.12 82.89 83.48(+0.04)

original image original image | 79.33 90.23 81.95 83.83(+0.39)
all frequency all frequency 79.12 90.80 82.58 84.17(+0.73)
low-pass high-pass 79.01 90.41 83.00 84.14(+0.70)
high-pass low-pass 79.65 90.80 83.33 84.59(+1.15)

low-level target high-level target

strong capability on skin lesion segmentation.

Evaluation on Cardiac Segmentation. To evaluate the
generalization ability of our proposed FreMIM, we also
conduct experiments of cardiac segmentation on MRI scans
utilizing the ACDC 2017 dataset [0]. Since the official
evaluation is supported by the online evaluation platform,
the five-fold cross-validation is performed on ACDC 2017
training set. The quantitative results on ACDC 2017 train-
ing set are presented in Table 2 (c). By guiding the baseline
to better capture both the crucial high-level semantics and
local detailed information, it is obvious that with boosted
model performance in comparison with the baseline, our
framework once again achieves comparable or even higher
Dice scores than previous SOTA methods.

4.3. Ablation Studies

We conduct extensive experiments to prove the effective-
ness of our FreMIM and validate its design rationale based
on 5-fold cross-validation on BraTS 2019 training set, while
TransBTSV2 [37] is selected as baseline for ablation study.

Reconstruction Target and Supervision Scheme.
Firstly, we explore the effect of different types of re-
construction targets and verify the effectiveness of our
introduced multi-stage supervision scheme. The quantita-
tive results are presented in Table 3. In comparison with
random initialization in the first row, introducing either
high-pass Fourier spectrum or low-pass counterpart as the
reconstruction target at the corresponding low-level or high-
level stage both lead to better segmentation performance
to some extent. On the basis of this kind of single-level
supervision manner, we further explore the effectiveness
of a multi-level supervision scheme. As can be clearly
seen in Table 3 below the dividing line, simultaneously
taking advantage of high-pass and low-pass frequency
components, that carry abundant local details and global
structural information, results in the best segmentation
accuracy with the highest Average Dice Score of 84.59%,
fully demonstrating the powerful potential and rationale de-
sign of our FreMIM. No matter whether the reconstruction
target is adjusted to the original image, the whole Fourier
spectrum, or exchanged low/high-level target, it will all
lead to a considerable decrease in model performance,
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which once again proves the strong theoretical rationale of
exploiting FFT with the proposed FreMIM.
Table 4. Ablation study on the masking strategy.

Dice Score (%) 1

Masking strategy }

ET WT TC Average
baseline 77.11 90.32 82.90 83.44
random mask 79.07 90.64 83.19 84.30(+0.86)
block wise mask 79.03 90.00 82.11 83.71(+0.27)

foreground mask 79.65 90.80 83.33 84.59(+1.15)

Masking Strategy. Then we investigate the influence of
different masking strategies to prove the effectiveness of
the proposed foreground masking strategy. Table 4 shows
the performance comparison of our FreMIM with different
masking strategies. It can be seen in Table 4 that the orig-
inal random masking leads to an accuracy increase 10.86%
on the Average Dice score, which is really promising. How-
ever, by replacing vanilla random masking with our simple
yet powerful foreground masking strategy, the model per-
formance on segmentation tasks can be further boosted by
a considerable margin, which shows the great superiority of
selecting masked pixel candidates solely among foreground
over conventional masking strategy.
Table 5. Ablation study on the masking ratio.

. . Dice Score (%) 1
Masking Ratio ET WT TC Average
baseline 77.11 90.32 82.90 83.44
0.75 78.99 9042 83.03 84.15(+0.71)
0.50 79.19 90.80 83.18 84.39(+0.95)
0.25 79.65 90.80 83.33  84.59(+1.15)
0.15 79.37 90.23 82.88 84.16(+0.72)
0.15, 0.20, 0.25 7899  90.63 83.33 84.32(+0.88)
0.25, 0.50, 0.75 79.23 90.62 82.88 84.24(+0.80)

Masking Ratio. After investigating the influence of vari-
ous masking strategies, we further conduct experiments to
seek the optimal masking ratio for our current framework.
As presented in Table 5, our FreMIM with a masking ra-
tio of 0.25 achieves the best model performance. Once
the masking ratio is either too low or too high, the recon-
struction task in the frequency domain would be too easy
or too hard, which may hinder the model from expected
representation learning during self-supervised pre-training.
Besides, trying to take a step further, we also attempt to
introduce a novel dynamic masking strategy (i.e. the mask-
ing ratio gradually increases from the lowest to the highest
during pre-training) for better guidance of the expected fea-
ture representation learning, which endows the SSL with
easiest-to-hardest reconstruction level. However, none of
these attempts bring further accuracy improvements. Thus,
the static masking strategy with a masking ratio of 0.25 is
selected as our default setting.

Choice of 2 Other Hyper-parameters. Besides, we ad-
ditionally conduct ablation studies on the loss weight o and
the boundary definition (i.e. frequency threshold) between

high/low frequency, in Table 6 and Table 7, where PB de-
notes the specific value of frequency passband, showing the
efficacy of our choice for these 2 hyper-parameters.

Table 6. Ablation study on loss Table 7. Ablation study on
weight o during pre-training. high-/low-frequency boundary.

o Dice Score (%) 1 Dice Score (%) T

ET WT TC Average ET WT TC Average

0.5]79.34 90.11 82.16 83.87 5 17946 9031 82.69 84.15
1 |77.67 90.48 81.61 83.25 10 | 79.65 90.80 83.33 84.59
3 179.65 90.80 83.33 84.59 20 |79.20 90.53 82.31 84.01
5 |78.93 90.64 8298 84.18 50|78.94 90.33 82.23 83.83

Table 8. Ablation study on the number of samples for self-
supervised pre-training.

Training samples Dice Score (%) 1

ET WT TC Average
baseline 77.11 9032 82.90 83.44
0.3%(i.e. 1 sample) | 79.05 90.60 82.51  84.05(+0.61)
10% 79.06  90.41 8343  84.30(+0.86)
100% 79.65 90.80 83.33  84.59(+1.15)

Number of Pre-training Samples. Specifically, we fur-
ther investigate the effect of different percentages of train-
ing samples used for our proposed FreMIM. The quantita-
tive results are presented in Table 8. It is clear in Table 8
that the model performance is consistently improved with
more and more employed training samples for the proposed
FreMIM. Besides, it is also surprising that by solely intro-
ducing 1 sample for pre-training our FreMIM can boost the
model performance by a large margin (i.e. T 0.61% on Av-
erage Dice score) compared with the randomly initialized
baseline, demonstrating that our method is a data-efficient
self-supervised learning paradigm.

5. Conclusion

In this paper, we presented the first study on exploring
the powerful potential of MIM with frequency domain on
pre-training deep learning models for medical image seg-
mentation tasks. We focus on 2D medical image segmen-
tation and proposed a new framework FreMIM taking ad-
vantage of both the rich global information and local details
in the Fourier spectrum. Deviating from the conventional
paradigm as previous MIM methods, realizing reconstruc-
tion in the frequency domain empowers the framework with
stronger representation learning capability. Besides, by
fully exploiting the specific characteristics contained in dif-
ferent frequency bands, the multi-stage supervision scheme
can greatly boost the segmentation performance. Compre-
hensive experiments on three benchmark datasets quanti-
tatively and qualitatively validated the effectiveness of our
FreMIM, significantly improved the segmentation perfor-
mance of baselines trained from scratch and showed supe-
riority over state-of-the-art self-supervised approaches.
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