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Abstract

Supervised learning paradigms largely benefit from the
tremendous amount of annotated data. However, the qual-
ity of the annotations often varies among labelers. Multi-
observer studies have been conducted to examine the anno-
tation variances (by labeling the same data multiple times)
to see how it affects critical applications like medical im-
age analysis. In this paper, we demonstrate how multi-
ple sets of annotations (either hand-labeled or algorithm-
generated) can be utilized together and mutually benefit
the learning of classification tasks. A scheme of learning-
to-vote is introduced to sample quality label sets for each
data entry on-the-fly during the training. Specifically, a
label-sampling module is designed to achieve refined la-
bels (weighted sum of attended ones) that benefit the model
learning the most through additional back-propagations.
We apply the learning-to-vote scheme on the classification
task of a synthetic noisy CIFAR-10 to prove the concept and
then demonstrate superior results (3-5% increase on aver-
age in multiple disease classification AUCs) on the chest
x-ray images from a hospital-scale dataset (MIMIC-CXR)
and hand-labeled dataset (OpenI) in comparison to regular
training paradigms.

1. Introduction
Supervised deep learning methods, although proven to

be effective on many tasks, rely heavily on the quality of
the data and its corresponding annotations. Some tasks en-
joy almost error-free annotation, such as handwritten num-
bers and simple natural images. However, for other appli-
cations, e.g., most medical image analysis tasks, the inher-
ent ambiguity of the task leads to unavoidable noise and
fuzziness within the annotations themselves, no matter how
experienced the expert labelers are. Meanwhile, under a
multi-labeler setting for quality control purposes, the signif-
icant intra- and inter-observer variability inject even more
uncertainties into the resulting labels. Beyond the above
challenges, for the specific task of chest X-ray image clas-
sification, due to the fact that most labels of the available

Figure 1. The diagram shows the difference in three learning
paradigms in how gradients are utilized for the training, i.e., (a)
regular gradient-based learning; (b) Meta-learning with multiple
learning targets; (c) Proposed: learning the weights of each la-
bel (ya,yb,yc) in meta-training and then computing the weighted
sum (ỹ) of labels for computing the final loss with prediction ŷ.

large-scale open datasets are automatically mined by Nat-
ural Language Processing (NLP) algorithms, there will be
yet another layer of error-prone operation on top of exist-
ing variability. Ideally, we would prefer multiple manually
and reliably labeled close-to-truth annotations, while in re-
ality, most of the data only have a single annotation from an
algorithm with relatively low accuracy.

Learning to learn from a variety of data (labels) falls
within the scope of meta-learning, which is popular in many
machine learning applications, e.g., domain adaptation/gen-
eralization [5, 6] and few-shot learning [20, 30]. Those pre-
vious meta-learner models (as illustrated in Fig. 1(b)) often
focus on learning the distribution of data (inputs of tasks)
and specifying the update strategy of learner model param-
eters. Indeed, data from different sets (distributions) will
contribute to the final learner model. On the contrary, we
do not want the model to learn from erroneous labels (from
less-experienced labelers) but learn only from “true” labels.
We utilize the learner model parameters (via a meta-training
process) to sample “true” labels for training a single learner
model (as shown in Fig. 1(c)).

To address these challenges, we propose a learning-to-
vote strategy to benefit the training from multiple labels
on the same subject. Instead of the resource-demanding
process of asking several human annotators to label the
same data, we choose to utilize annotations from differ-
ent algorithm-based labelers, which only add little over-
head beyond the single-labeler scenario. A meta-training
scheme is adopted and integrated into our proposed label-
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sampling module for learning to vote on the labels that ben-
efit the model learning the most through additional back-
propagation processes.

Our contributions in this work are three-fold: 1) We pro-
posed a training framework to compute the refined image la-
bels on-the-fly in the classification tasks. The refined labels
are voted on and sampled from multiple annotators via addi-
tional backpropagation; 2) Gradient flows toward the labels
are investigated and implemented. Indeed, the multiple sets
of labels are inputs to the training framework. Learnable
operations of the labels will require additional updates of
label-related model parameters; 3) We not only prove the
concept on CIFAR-10 but also perform experiments on two
real-world chest X-ray datasets with both image-only and
image-text classification tasks. In all datasets, the superior
performance of the proposed method is demonstrated in the
image classification tasks compared to baseline methods.

2. Related Works
Meta learning: Meta learning aims to learn a generaliz-

able model by situating itself at a higher level than conven-
tional learning. This can be achieved in several ways such
as finding weights that can be easily adapted to other mod-
els [6] or domains [15] during the training process. Meta-
learning results in models that can converge quickly with a
few examples [28]. They all share a similar meta-training
process while the various goals of meta-training can divide
them into different routes as examples shown in Fig. 1. In
this work, we target weighting the importance of each label
set based on its meta-training feedback and learning to vote
for the most effective label for each data entry.

Learning from noisy labels: Learning from noisy la-
bels [16,23,42,43] has been a popular topic in deep learning
due to its prevalence in many existing datasets with intra-
and inter-observer variability, and the inherent uncertainties
of both data and task themselves. For medical imaging ap-
plications with a high degree of ambiguity, this issue is even
more significant. Recent works attempt to address this chal-
lenge via a consistency loss with a teacher model [17], loss
weighting with 2nd order derivatives [42], and for medi-
cal image specifically, an online uncertainty sample mining
strategy [39]. Please note that they all focus on noise la-
bels from a single annotator while we attempt to design a
learning-to-vote mechanism to utilize labels from different
sources together.

Multi-label classification in chest X-ray: Because of
its wide application and easy accessibility, chest X-ray is
one of the major research areas in the field of medical image
analysis. Among the pioneering works [8, 18, 26, 31, 32, 36,
40] in this area of deep learning, TieNet [37] first introduces
an end-to-end trainable CNN-RNN architecture to extract
distinctive text representations in addition to image features
for improving label quality. More recently, a graph model

label sets atelectasis consolid. edema pneumonia pneum-x
negbio u 10986 3348 13204 19029 1112
negbio p 47804 11088 27911 16122 9885
u/p ratio 0.229 0.301 0.473 1.18 0.112
chexpert u 10662 4446 13817 18915 1177
chexpert p 47629 11231 28339 16757 11046
u/p ratio 0.223 0.395 0.487 1.128 0.106

Table 1. Number of uncertainties ( u) and positives ( p) of 5 sam-
ple disease findings from two labelers (i.e., negbio and chexpert).

was incorporated to integrate prior knowledge and enhance
learning accuracy [41].

Multi-observer studies: To ensure the annotation qual-
ity, especially for medical images where high expertise is
required, it is common to have multiple sets of labels on the
same set of data [2, 27]. In a sense, each annotation can
be regarded as an estimation with uncertainty, good or bad,
for the underlying “true label”. Thus, algorithms taking this
uncertainty factor into consideration are needed in order to
make better use of such multi-observer data. [12] attempt
to learn a distribution from a set of diverse but plausible
segmentation from multiple graders. A recent work [33]
proposed to model annotators by a confusion matrix which
is jointly estimated during classification. In our work, in-
stead of human annotators with different skill levels, we
employed several “algorithmic labelers” to generate mul-
tiple annotations from the same raw data. Compared with
their human counterparts, there exists fewer limitations and
costs to increase the number of labelers, while the resulting
labels can be noisier. Hence, we choose a different strategy
of weighting module and meta-learning to benefit the model
learning process.

3. Learning From Multiple Noisy Annotations

The accuracy of NLP algorithm-based labelers has been
studied [9, 25] and verified by a small set of hand-labeled
data (based on associated report texts). The noises in anno-
tations could be traced from many sources, e.g., algorithmic
errors, incomplete information in reports, and misjudgment
from the clinicians. All of these could elevate the uncer-
tainty and impair the reliability of the published data and
associated ground-truth labels, in terms of their utilization
in modern machine learning paradigms. “Who to believe?”
becomes a fundamental question to answer, which will ulti-
mately have a significant impact on the performance of the
trained model.

MIMIC-CXR dataset [10] provides the label sets from
two independent algorithm-based annotators with positive,
negative, and uncertain cases. The availability of all these
different sourced labels enables the observation of the un-
certainty inherent to some data samples (with different val-
ues in multiple label sets). As shown in Table 1, there are
many uncertain cases in each kind of finding, while the un-
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certainty / positive ratio may vary in diseases (ranging from
0.106 to 1.18).

Here, we try to tackle this problem by training a multi-
label classification model while considering all the avail-
able label sets. A novel learning-to-vote training process
is introduced. For each set of labels, we perform individ-
ual back-propagation as a form of meta-training and then
compute the new image/image+text feature using the indi-
vidual updated model. Based on the new features, we learn
to vote the label set with more representative features (with
a weight) and sample the weighted summary of labels for
the final update of the model in each iteration. Fig. 2 il-
lustrates the overall architecture and learning processes for
both image and label model parameters.

3.1. Multi-label Classification Backbone

We represent each image with x and a label of classes
with a binary vector y = [y1, ..., yn, ..., yN ], yn ∈ {0, 1}.
yn = 1 indicates the presence of a corresponding disease
pattern or other findings in the image. In the multi-label
disease classification setting, the presence of each finding
is predicted separately by producing a likelihood after ap-
plying the sigmoid on each logit. For the experiments on
CIFAR (as multi-class classification), we also use the one-
hot binary vectors to represent the labels and predictions.
Therefore, the proposed framework could be utilized for
both multi-label and multi-class classification tasks.

Our proposed learning-to-vote scheme could be applied
to a large variety of pre-trained CNN architectures. With-
out loss of generality, we take the common ResNet-50 (from
Conv1 to Res5c) as our backbone network. A global aver-
age pooling (GAP) layer was applied to transform the acti-
vation from convolutional layers into a one-dimension im-
age feature F . The reason for applying a GAP layer is the
necessity to pass concatenated image and text features to a
fully-connected layer for the final classification.

We adopt the most common loss functions for the multi-
label classification prediction ŷ, i.e., binary cross entropy
(BCE) loss: LC(ŷ,y) = −1/N

∑N
i=1 yi log ŷi + (1 −

yi) log(1 − ŷi). Other more advanced losses could also be
employed, while this type of improvement is out-of-scope
in this paper. Here, we would like to demonstrate the fea-
sibility and benefit of applying our proposed meta-training
process with learning-to-vote over a vanilla model. Other
critical issues, like the unbalanced numbers of pathology
compared with “normal” classes, are not considered here
either to keep the evaluation simple and effective.

3.2. Attention on Labels

The overall training procedure is illustrated in Algo-
rithm 1. For each training iteration, we input each
data entry (x, Y ) from the training set and Y =
{y1, . . . ,ym, . . . ,yM} are M sets of image labels.

During the meta-training, we compute the BCE loss
(LC(ŷ,ym, θ)) between the prediction ŷ of current clas-
sification model θ and label set ym and then perform the
back-propagation to compute a new set of model parame-
ters (θ̂m),

θ̂m = θ − α∇θLC(ŷ,ym, θ), (1)

α is the learning rate for this meta-training process. We then
compute a set of new features {Fm,m ∈ {1, ...,M}} via
the inference of image x using each meta-model θ̂m indi-
vidually. {Fm} could be either image features (i.e., the out-
put of the GAP) or ones concatenated with text embedding
(detailed in Section 3.3). {Fm} represent the feedback of
model updates with each label set ym, i.e., the change that
each ym has brought to the model θ. Other types of feed-
back from each noisy label could also be utilized here, e.g.,
the gradients {∇θLC(ŷ,ym, θ),m ∈ {1, ...,M}}. Here,
we take {Fm} as an example to compute the weight wm for
each label set via a softmax-based prediction mechanism,

wm = Softmax(Wattn(Cat({Fm}) + battn), (2)

where Wattn and battn are learnable parameters in our
learning-to-vote module. Softmax is the activation func-
tion. Cat represents the concatenation as a stack of all fea-
tures. wm indicates the importance/correctness of label set
ym and is applied to compute the weighted average of all
label sets for each data sample. This process is similar to
a common softmax-based attention mechanism [1, 38] and
many other more complex learning-based attention mech-
anisms can also be adopted to compute the weights, e.g.,
self-attention [34].

The values of label vectors after weighted average ȳ =∑
m wmym are in the range of [0, 1], which is rather am-

biguous for the multi-label classification model to learn. Bi-
narization will be useful to cast the value close to either 0
or 1, but it is not differentiable and will disrupt the gradi-
ent flow. Therefore, we adopt the differentiable binarization
function as first introduced in [19],

ỹ =
1

1 + e−k(ȳ−T )
, (3)

where k sets the sharpness of a 0 to 1 cliff. T is a thresh-
old to slightly adjust the value range. Finally, we update
the model once more with the attended label and a global
learning rate β for this iteration,

θ̃ ← θ − β∇LC(ŷ, ỹ, θ). (4)

Gradient Flows Towards Labels: Extra gradient flows
(highlighted in red in Fig.2) are required for training our
learning-to-vote mechanism, specifically the parameters in
Eq. 2. Most of the current learning frameworks have gra-
dient flows (highlighted in green in Fig.2) with the images
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Figure 2. Overview of the proposed learning pipeline. Learning-to-vote is added for a refined label sampling process.

in the end since the labels are usually fixed or smoothed
in advance [22]. However, the gradients in our proposed
framework not only flow to the images but also go through
towards the labels since the final labels ỹ are computed on-
the-fly with learned weights/attentions. To our best knowl-
edge, this concept of gradients towards labels is novel and
has not been investigated and implemented before. Indeed,
the inputs to the learning-to-vote module are M sets of la-
bels and the computed features {Fm}, which are detached
(without auto-computed gradients) and stacked during the
meta-training. Therefore, additional parameter updating is
required at the end of each iteration,

W̃attn ←Wattn − β∇LC(ŷ, ỹ,Wattn), (5)

b̃attn ← battn − β∇LC(ŷ, ỹ,battn). (6)

3.3. Image-text Embedding

Clinical textual material, e.g., clinical notes [24] and ra-
diology report [37], contains richer information. We include
the text report as input to the classification problem to see
if our proposed learning process will still benefit the learn-
ing and further improve the classification accuracy. There
are a variety of approaches to generate text embedding, e.g.,
Fisher vectors of word2vec [11], bidirectional LSTMs [35],
and the most recently developed BERT model [4]. To keep

the simplicity of our baseline model, we embed the text re-
port to a 768 dimension real-valued vector using the un-
cased version of BioBert features [14], followed by two
fully connected layers with 512 neurons each.

4. Datasets

CIFAR-10 [13]: We simulate 5 different types of an-
notators (with different years of experience) in a similar
manner as [33] by injecting label noises into the training
set of CIFAR-10, namely 1) hammer-spammer (HS), 2)
structured-flips (SF), 3) ordered-confusion (OC), 4) Adver-
sarial (AD), and 5) average (AVG) of previous four. Each
set of noisy labels is generated based on the defined confu-
sion matrices for each type (as shown in Fig. 3). Whether
each sample would have a noisy label is randomly selected,
while the overall noisy distribution should correspond to
each confusion matrix individually. Within all the noisy
training data, we randomly select 20% as the validation set.

MIMIC-CXR: The MIMIC Chest X-ray [10] Database
is a large publicly available dataset of chest radiographs
with labels mined from image-associated text radiology re-
ports using two different NLP-based annotation tools, i.e.,
Negbio [25] and Chexpert [9]. The uncertain findings are
marked as -1 in the original datasheet. Here, uncertainties
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Figure 3. Confusion matrices of noisy labels from 5 different types
of simulated annotators.

are set to either 0 or 1 to form 4 different label sets, i.e.,
neg u0, neg u1, che u0, and che u1. The dataset con-
tains 377,110 radiographs and labels from the 227,827 free-
text radiology reports. Totally, 14 disease findings are listed
(N = 14). In our experiments, only the frontal view images
with associated reports are adopted. We utilize the official
patient split for the training.

MIMIC-CXR 1K hand-labeled Test: Following the
same labeling protocol proposed by [3], we randomly se-
lected 1000 images and associated textual reports from the
official testing split of MIMIC-CXR and one of our staff
(trained by a board-certified radiologist) hand-labeled the
1000 images by assigning the 14 labels manually to each
image based on the reports, which will be released publicly.
We believe it will also benefit the research in chest x-ray
disease classification.

OpenI hand-labeled Test: OpenI [3] is a public dataset
of chest X-rays collected from multiple institutes by Indi-
ana University. In total, we fetch 3,851 unique radiology
reports and 7,784 associated frontal/lateral images. To keep
the consistency with MIMIC-CXR dataset, we use the same
14 categories of findings as mentioned above. In the experi-
ments, only 3,643 unique front-view images and associated
reports are utilized for the evaluation.

5. Experiments:
The following methods, in addition to the proposed

method (Ours), are included in the comparison:
ResNet-50 [7] (R50, MV): We take the classifier based

on ResNet-50 as a baseline. It adopts an ImageNet pre-
trained ResNet-50 (from Conv1 to Res5c) as the backbone,
followed by a GAP layer and a fully-connect layer for the
final classification. Optionally, BioBert-embedded text fea-
tures will be concatenated with the output of GAP before
the classification. MV stands for a classifier trained with
labels produced by majority voting among multiple annota-
tions with ResNet-50 as the backbone. If the majority is not

Algorithm 1 Meta-training with learning-to-vote module
1: Randomly initialize θ
2: for each data entry (x, Y ) do
3: Inference with x, θ to predict ŷ
4: for m ∈ {1 : M} do
5: Update parameters: θ̂m = θ − α∇θLc(ŷ,ym, θ)
6: Compute features Fm using the newly updated θ̂m

7: Stack and concatenate the features: Cat({Fm})
8: Compute voting weights wm for each feature Fm (Eq. 2)
9: Sample the new label ȳ =

∑
m wmym

10: Perform differentiable binarization ȳ→ ỹ
11: Update the final image model θ̃ ← θ − β∇LC(ŷ, ỹ, θ)
12: Manually update learning-to-vote module (Wattn,battn)

achieved, we randomly select one from the available sets.
CM [33]: This state-of-the-art method multiplies a con-

fusion matrix with the probability that the model produces
for each class, which assumes that the learned confusion
matrix can correct the missed labeled data and return the
probability for the truth. We carefully implement it accord-
ing to the code snapshot provided by the authors.

NG [41]: This method utilizes the prior knowledge of
the disease relations as a form of the knowledge graph. By
injecting such prior knowledge and employing a graph con-
volutional network, it learns the underlying information for
the final classification and report generation task. It is worth
noting that the results we report are produced by a model
that is both trained and evaluated on the OpenI.

TieNet [37]: It focuses more on how to learn the im-
age and text embedding together using a CNN+RNN frame-
work. Its LSTM-based text embedding is relatively more
complicated but also more representative through learning.
We directly adopt the text embedding from a pre-trained
BioBERT model (without finetuning) for the comparison,
which is less customized.
Evaluation Metric: Receiver Operating Characteris-
tic (ROC) curve is the standard metric to evaluate
the performance of multi-label classifications. Here,
Area Under the Curve (AUC) values are computed for
all the experiments on MIMIC-CXR and OpenI. We
compute the multi-class classification accuracy (using
sklearn.metrics.accuracy score) for all the experiments on
CIFAR-10.
Implementation Details: For pre-processing, we resize
the image to 256×256 (while keeping the size of 32×32
for CIFAR-10) and normalize the image intensities to [0,
1]. No data augmentation is employed in experiments. As
mentioned above, we set the learning rate for the meta-
training phase as α = 0.2 and the global learning rate as
β = 1e − 4. The best model for all hyper-parameters is
determined via validation. We test k ∈ {10, 20, ..., 100}
and T ∈ {0.1, 0.2, ..., 0.9} in the differentiable binarization
module and find k = 50 and T = 0.5 provide the best re-
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CIFAR-10 HS SF OC AD
Noise-Level 30% 40% 50% 100%
Accuracy-Label 0.816 0.602 0.600 0.001
Accuracy-pred 0.808 0.438 0.555 0.025

AVG MV CM Ours
Noise-Level 45% - - -
Accuracy-Label 0.510 0.597 - 0.704
Accuracy-pred 0.521 0.611 0.643 0.705

Table 2. Averaged accuracy of refined labels (in training) and pre-
dictions (in testing), evaluated using clean labels on CIFAR-10.

CIFAR-10 HS SF OC AD AVG
Averaged wm (noise) 0.189 0.189 0.188 0.191 0.193
Averaged wm (clean) 0.209 0.209 0.212 0 0.205

Table 3. Averaged weights on noisy and clean labels.

sults. A uniform batch size B = 32 and Adam optimizer is
utilized for training all the compared models, using a single
NVIDIA Titan-X Pascal.

5.1. Classification Results on CIFAR-10

To prove the concept, we employ CIFAR-10 with 5 types
of added noises in the labels to illustrate that the proposed
learning-to-vote scheme can be beneficial for the model
training using multiple noise label sets. Table 2 illustrates
the multi-class classification accuracy on the CIFAR-10
data set. Noise levels are computed in (1-Accuracy) us-
ing corresponding confusion matrices. In general, better-
quality labels and data lead to better-trained models. Noise
introduced by structured flips confuses the model training
more than other types. Here, HS represents a more experi-
enced set of annotators, and models trained with it obtained
high accuracy. AVG represents the results of learning from a
label set with a simple average of the noise level (defined by
the confusion matrices) of all annotators. Our predictions
achieve over 17%, 9%, and 6% performance improvements
over AVG, MV(majority voting over multiple annotations),
and the previous state-of-the-art CM.

Additionally, we record the accuracy of the refined (via
weighted average) label set when achieving the best model
shown as Accuracy-label. The accuracy of labels (noisy
ones and ours, evaluated using clean labels of CIFAR-10
training) is highly correlated with the testing accuracy. In
the same run, we also compute the averages of weights on
both noise labels and clean labels (considering the label sets
are only partially degraded) for all 5 “labelers”. Table 3
shows the weights on clean labels are overall higher than
the ones on noisy labels. This difference results in a more
accurate label set than the ones via simple average and ma-
jority voting and further leads to a better-trained model.

In addition, we investigate how the label noise level,

number of annotators, and annotations with serious errors
will affect the model performance.

How Will Different Noise Levels of Labels Affect?
Here, we include all 5 sets of stimulated labels, i.e., HS,
SF, OC, AD, and AVG. 4 sets(HS, SF, OC, and AVG) are
adjusted with the same noise levels (ranging from 10% to
80%). AD will remain the same for all levels since its noise
level can not be tuned. We compare the classification pre-
diction accuracy of 4 models, i.e., R50, that are trained us-
ing AVG and labels from majority voting (VM), CM, and
our proposed method (Ours). Both CM and Ours are us-
ing all 5 label sets for the training. As shown in Figure 4,
the classification performance drops along with the increase
of noise level in labels, while Ours can constantly achieve
better or similar results as others. Particularly, Ours out-
performs MV and CM with large margins (over 10%) for
noise-level 40% to 60%.

How Will Number of Available Annotation Sets Af-
fect? In this experiment, we try to vary the number of avail-
able label sets (2, 3, 4, and 5 different types of annotators)
used for training the proposed model (Ours), MV, and CM
at different noise level (at 10%, 30%, and 50%). We start
with the training model using 2 quite different label sets
(#2), i.e., HS and AD. Then we add OC, SF, and AVG one
at a time to see how the increasing number of the label sets
could affect the final classification performance. HS rep-
resents a relatively experienced annotator, and AD can be
seen as a ‘bad’ annotator with serious systematic errors. As
shown in Figure 5, a surge in the accuracy can be observed
after including more than 2 annotators. Considering that the
adversarial annotator AD (with noise-level 100%) is among
the initial two, all three methods can learn better immedi-
ately after a third one (as a confirmation) jumps in. We can
also observe that our method performs much better when
high noise levels are presented (50% in this case).

How Will Annotations With Serious Errors Can Af-
fect? As shown in previous experiments, AD can influence
performance significantly when only a small number of la-
bel sets are employed. Here, we want to investigate how
it will function if more sets of annotations are included.
Figure 6 shows the performance gap when three compared
methods are trained either with all available (5 in total) an-
notation sets or with AD left out (4 sets in total). Both
MV and CM will have remarkable accuracy decrease (5% to
10%) for noise level from 40% to 70%. In comparison, our
proposed method is much more robust in such scenarios.

5.2. Classification Results on Chest X-Ray Images

Classification Using Image Only: Table 4(a) shows the
evaluation results for all the compared methods using only
the images as the input on MIMIC-CXR 1K hand-labeled
Test and OpenI hand-labeled Test. In the left part of Ta-
ble 4, we show the accuracies of 4 sets of NLP-mined la-
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Figure 4. Classification accuracy using different label sets and methods over a range of noise levels.

Figure 5. Classification accuracy using a different number of label sets at noise-level 10%, 30%, and 50%.

Figure 6. Classification accuracy using all available label sets with
and without AD at different noise levels.

bels against hand-labeled groundtruth. An average of 15%
to 20% noise level are observed. neg u1, neg u0, cheu1,
and che u0 are derived from the original NLP-mined la-
bels (via either Negbio or Chexpert labelers) by setting
the uncertainty to either 1 or 0. The binarization of un-
certainty divides NLP labels to have quite different accu-
racies (∼6% gap) on the MIMIC-CXR 1K hand-labeled
Test set. For MIMIC-CXR 1K hand-labeled Test data, we
show the AUCs of all the finding categories from R50,
R50 MV, CM and Ours, while additional results from NG
and TieNet are presented for OpenI hand-labeled Test set.
The AUCs for Ours are constantly higher (∼3% on average)
than the compared approaches on both datasets. By consid-
ering the relatively low noise level presented in the MIMIC-
CXR dataset, the reported improvements are consistent with

the ones from experiments on CIFAR-10. OpenI dataset
has been utilized here for the evaluation purpose only, and
our method (without training on OpenI) is able to achieve
∼4.5% increase in the averaged AUC, which is also greater
than what MV and CM method achieves. Note that the
absolute accuracies are overall higher for the one reported
on OpenI dataset. It may indicate the domain gap between
MIMIC-CXR and OpenI datasets. Although both NG and
TieNet partially utilized the report textual information in
their image classification framework, Ours still is able to
obtain equivalent or better results in most of the detailed
disease categories. As mentioned above, those disease cat-
egories with a larger amount of uncertainties provide more
information and therefore benefit more from the proposed
meta-training process, e.g., Atelectasis and Devices.

Classification Using Both Chest Image and Report: The
text report contains richer information about the disease
diagnosis. We observe an increase in all AUCs. In this
case, our proposed meta-training with the learning-to-vote
scheme also helps to boost the classification performance
with a significant margin shown in Table 4. Ours actually
achieves higher or similar accuracy in comparison to the
NLP annotators while a model trained with NLP mined la-
bels usually can not reach the same level of accuracy as the
labels themselves, e.g., R50 is trained with neg u1.

6. Discussion and Conclusion

The proposed label sampling module converts the hard
labels (0 or 1) to soft labels (a value between 0 and 1),
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(a) MIMIC-CXR 1K hand-labeled Test
AUC Noisy NLP labeler (GT for training) Image-only Image & Report Text
Disease neg u1 neg u0 che u1 che u0 R50 R50 MV CM Ours R50 R50 MV CM Ours
Atelectasis 0.914 0.832 0.908 0.829 0.737 0.743 0.758 0.768 0.962 0.945 0.958 0.963
Cardiomegaly 0.821 0.805 0.822 0.814 0.787 0.769 0.79 0.805 0.865 0.86 0.871 0.862
Consolidation 0.892 0.772 0.875 0.777 0.684 0.657 0.658 0.694 0.802 0.776 0.796 0.869
Edema 0.955 0.901 0.948 0.903 0.807 0.774 0.804 0.804 0.877 0.871 0.88 0.912
E-cardio 0.847 0.759 0.847 0.759 0.592 0.644 0.681 0.629 0.744 0.703 0.745 0.769
Fracture 0.733 0.689 0.747 0.718 0.651 0.743 0.595 0.628 0.671 0.769 0.746 0.769
Lesion 0.777 0.727 0.777 0.719 0.714 0.679 0.69 0.727 0.76 0.71 0.739 0.759
Opacity 0.877 0.861 0.871 0.863 0.662 0.631 0.648 0.685 0.877 0.874 0.89 0.885
No-finding 0.845 0.845 0.815 0.815 0.722 0.72 0.74 0.769 0.909 0.897 0.906 0.909
Effusion 0.941 0.906 0.94 0.913 0.828 0.843 0.856 0.848 0.923 0.91 0.925 0.931
Pleural-other 0.906 0.825 0.906 0.825 0.754 0.782 0.714 0.802 0.803 0.803 0.749 0.844
Pneumonia 0.957 0.685 0.955 0.694 0.731 0.713 0.749 0.753 0.872 0.875 0.878 0.908
Pneumothorax 0.874 0.831 0.917 0.86 0.797 0.795 0.805 0.81 0.852 0.86 0.788 0.89
Devices 0.838 0.837 0.836 0.837 0.793 0.829 0.827 0.843 0.872 0.876 0.86 0.885
Average 0.868 0.805 0.868 0.809 0.732 0.737 0.736 0.755 0.842 0.837 0.837 0.868

(b) OpenI hand-labeled Test
AUC Image-only Image & Report Text
Disease R50 R50 MV NG TieNet CM Ours R50 R50 MV CM Ours
Atelectasis 0.781 0.802 0.833 0.774 0.81 0.826 0.901 0.934 0.909 0.925
Cardiomegaly 0.859 0.842 0.913 0.847 0.881 0.879 0.915 0.928 0.928 0.949
Consolidation 0.829 0.872 - - 0.842 0.906 0.914 0.924 0.891 0.907
Edema 0.895 0.87 0.931 0.879 0.924 0.885 0.903 0.937 0.915 0.939
E-cardio 0.795 0.673 - - 0.758 0.725 0.581 0.595 0.714 0.598
Fracture 0.513 0.612 0.671 - 0.596 0.632 0.705 0.669 0.683 0.739
Lesion 0.585 0.603 0.643 0.658 0.58 0.643 0.615 0.636 0.607 0.649
Opacity 0.742 0.735 0.803 - 0.738 0.775 0.849 0.858 0.854 0.877
No-finding 0.754 0.743 - 0.747 0.739 0.775 0.79 0.809 0.82 0.867
Effusion 0.912 0.926 0.942 0.899 0.932 0.942 0.944 0.954 0.948 0.943
Pleural-other 0.648 0.678 - - 0.676 0.705 0.723 0.743 0.778 0.739
Pneumonia 0.781 0.784 0.863 0.731 0.823 0.871 0.812 0.877 0.834 0.889
Pneumothorax 0.793 0.805 0.843 0.709 0.882 0.833 0.879 0.84 0.879 0.853
Devices 0.628 0.662 0.805 - 0.655 0.729 0.796 0.786 0.787 0.821
Average 0.751 0.757 - - 0.774 0.795 0.809 0.820 0.824 0.835

Table 4. Classification results (AUCs) for 14 findings in Chest X-Rays from the models trained on MIMIC-CXR and tested on MIMIC-
CXR 1K hand-labeled Test (a) and OpenI hand-labeled Test (b) data. neg u1, neg u0, che u1, and che u0 are derived from the original
NLP mined labels by setting the uncertainty to either 1 or 0. Here shows their accuracy against hand-labeled groundtruth (GT), which
actually indicates the up-bound performance of a model trained using that label set as GT. E-cardio: enlarged-cardiomediastinum.

and it also reduces the overfit towards erroneous labels,
which is similar to the idea of label smoothing [22]. Un-
like hard label smoothing, we assigned the new label on-
the-fly (based on the network feedback) instead of instantly
replacing 0 and 1 with 0 + ϵ and 1 − ϵ. Such a set-
ting effectively handles partial label errors in multi-label
classification. Indeed, label smoothing is a form of loss-
correction [21], and we study that computed label weights
can also be employed to re-weight the losses computed
using label sets from different annotators. The computed
loss LC(ŷ, ỹ) = LC(ŷ,

∑M
m=1 wmym) is equivalent to a

weighted summation of losses computed with each set of
label ym, i.e., LC(ŷ, ỹ) =

∑M
m=1 wmLC(ŷ,ym), where

ŷ is the model prediction, ỹ =
∑M

m=1 wmym is the sam-
pled label, and LC(ŷ,y) is the binary cross-entropy loss.
Please find the detailed proof in the supplementary material.
It shares a similar insight with [29] while Ren et al. [29]

re-weighted the losses based on the variation of input im-
ages. Similar to the above theorem, we can prove that re-
weighting the losses is equivalent to the weighted sample
of network predictions (maybe with different data samples
as input). Accordingly, the noise in data (on both images
and labels) can be measured and corrected by weighting the
losses. It also leads to a broader research topic of model-
ing the distribution of losses, e.g., modeling the losses with
Gaussian mixture models [16].

In summary, we introduced a novel learning framework
(the learning-to-vote module and gradients towards label
data) for handling data with multiple noisy label sets. The
variability that the multiple labels bring could, in fact, ben-
efit the learning of a more accurate and robust model. The
proposed method provides an accurate and robust means for
the challenges of learning large-scale data with algorithm-
generated labels wherever the annotation remains a burden,
e.g., medical image analysis.
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