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Abstract
Effectively capturing intricate interactions among road

users plays a critical role in achieving safe navigation
for autonomous vehicles. While graph learning (GL) has
emerged as a promising approach to tackle this challenge,
existing GL models rely on predefined domain-specific
graph extraction rules and often fail in real-world dy-
namic scenarios. Additionally, these graph extraction rules
severely impede the capability of existing GL methods to
generalize knowledge across domains. To address this is-
sue, we propose RoadScene2Graph (RS2G), an innova-
tive autonomous scenario understanding framework with a
novel data-driven graph extraction and modeling approach
that dynamically captures the diverse relations among road
users. Our evaluations show that on average RS2G outper-
forms the state-of-the-art (SOTA) rule-based graph extrac-
tion method by 4.47% and the SOTA deep learning model
by 22.19% in subjective risk assessment. RS2G also deliv-
ers notably better performance in transferring knowledge
gained from simulations to unseen real-world scenarios.

1. Introduction
Ensuring road safety to support various driving condi-

tions has emerged as a fundamental research topic in the
domain of autonomous vehicles (AVs) [34, 44]. As human
drivers naturally reason about interactions between road
users to effectively navigate their environments [35], a num-
ber of innovative works modeling human driving experience
to enhance the safety and robustness of AVs have been pro-
posed [8, 9, 15, 25, 45]. However, it remains challenging
to understand and model the diverse relations among driv-
ing agents to achieve adequate performance for autonomous
risk assessment [16, 17]. Additionally, AVs are typically
trained and tested with simulations and synthetic data, while
real-world scenarios are often much more dynamic and un-
predictable. This necessitates a learning approach that (i)
adaptively captures and models interactions between road
users and environments, and (ii) effectively transfers knowl-
edge from training domains to real-world settings.
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Figure 1. Both rule-based and data-driven scene-graph extraction
methods start with transforming objects to nodes with a node en-
coder, where each node has an attribute vector h. The rule-based
scene-graph extraction relies on fixed rules derived from expert
knowledge; its encoded edges typically have concrete physical
meanings and the graphs are constrained by specific domains. Our
data-driven scene-graph extraction represents diverse relations be-
tween nodes with vectors, e.g. R1,R2, which better captures la-
tent features and can be more dynamic and domain-adaptive.

Many existing works leverage deep learning (DL) ap-
proaches, e.g., convolution neural networks (CNNs), to
model human driving capabilities [8,9,11]. However, these
methods often fail to account for information of high-level
semantic scenes, thus performing less well in more com-
plex or novel scenarios. Specifically, they rarely con-
sider interactions between driving agents and environmen-
tal factors, e.g., effects of traffic signals on human behav-
iors [2, 5, 11, 40]. Additionally, although existing DL-based
data-driven approaches have demonstrated enhanced capa-
bilities to generalize models across domains, i.e., improv-
ing the robustness of models, these approaches often in-
volve extraordinarily sophisticated models and massive la-
beled datasets [10, 42]. Thus, these approaches can be ex-
tremely expensive and hence impractical as AVs are real-
time systems with limited computational resources and on-
board energy storage [7, 24]. Besides, existing datasets are
typically biased toward everyday driving situations but not
diverse corner cases, often resulting in inadequate model
performance in scenarios involving higher risks [9, 16, 46].
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In contrast to CNN-based models that directly extract
visual features, graph learning (GL) has emerged as a
promising approach to explicitly capturing high-level in-
teractions between visual features [4, 23, 32]. Prior works
have shown that graph representations of driving scenarios
extracted based on domain knowledge, referred to as rule-
based scene-graphs, enables effective modeling of diverse
relations among road users and can potentially enhance au-
tonomous scenario understanding [19, 29, 36]. As demon-
strated in Figure 1, nodes of a rule-based scene-graph rep-
resent objects in a scene, e.g., lanes, vehicles, and traffic
lights, while edges represent the types of relations, e.g., near
and front left. Additionally, it has been observed that sence-
graphs can considerably improve data efficiency and trans-
fer learning at AV safety-related tasks, e.g., collision predic-
tion [26, 40]. Unfortunately, existing scene-graph extrac-
tion relies on predefined domain-specific rules, e.g., rule-
based distance relations and road topology [19, 29, 36, 40],
resulting in rigid graphical structures. These graph extrac-
tion rules often fail to provide graph representations that
are sufficiently expressive to achieve adequate performance.
The effectiveness of these rules also varies widely across
domains, severely limiting their capability to generalize to
real-world scenarios absent from the training data.

To address this issue, we propose RoadScene2Graph
(RS2G), an innovative autonomous scenario understanding
framework with a novel data-driven graph extraction and
modeling approach that dynamically captures the diverse
relations among road users. As demonstrated in Figure 1,
in contrast to rule-based graph extraction methods, RS2G
represents graph edges with vectors that reflect the prob-
ability distribution of different object relations and capture
the relations between nodes in a more granular manner. The
resulting graph representation hence becomes more expres-
sive and domain-adaptive. Specifically, we construct rela-
tions between nodes leveraging the Transformer as the edge
encoder, since it has been proven that the attention mecha-
nism of the Transformer is particularly powerful at captur-
ing dependencies within inputs [37]. We also utilize the
variational autoencoder (VAE) to further improve the ex-
pressiveness of our graph representations and provide en-
hanced autonomous scenario understanding. The main con-
tributions of our paper are listed as follows:

• We introduce RS2G, an innovative autonomous driv-
ing risk assessment framework with a novel data-driven
scene-graph extraction and modeling method. RS2G dy-
namically learns node embeddings and extracts the opti-
mal graph representation of a road scene.

• To the best of our knowledge, RS2G is the first graph ex-
traction method leveraging the powerful attention mech-
anism of the Transformer to capture relations and depen-
dencies among road users. Our graph extraction tech-

nique significantly enhances model performance for both
subjective risk assessment and transfer learning from sim-
ulations to real-world scenarios.

• We conduct detailed ablation studies regarding the bene-
fits of each component of RS2G and further demonstrate
the advantage of our data-driven graph extraction method
in real-world autonomous scenario understanding.

2. Related Works
2.1. Interaction Modeling for Autonomous Driving

Several recent works have demonstrated that explicitly
modeling interactions between agents in dynamic environ-
ments can improve autonomous systems’ capability to un-
derstand and reason about their environment [21, 46]. Mul-
tiple innovative learning frameworks using domain knowl-
edge to extract graph representations of driving scenarios,
i.e., scene-graphs, for AVs have also been proposed. In par-
ticular, [36] proposes a rule-based graph extraction method
encoding relationships between road users, and shows that
this graph representation enables an effective autoencoder
for inferring relationships between road users in unseen
scenarios. [19] combines rule-based scene-graph extrac-
tion and MR-GCN to provide explainable predictions of fu-
ture driver actions, and [40] shows how a rule-based scene-
graph improves risk assessment performance over CNN-
based methods. Besides, [29] uses a rule-based graph ex-
tracted from multi-modal sensor data to perform accurate
driver action prediction. Unfortunately, these methods rely
on domain knowledge and rule-based graph extraction tech-
niques, restricting them to their specialized tasks and data
domains. In other words, different tasks require defining
new rules, and each aforementioned work has a different
set of rules. In contrast, our data-driven graph extraction
approach eliminates such overhead, as we learn the graph
extraction rules directly from the data, enabling high per-
formance across tasks and data domains.

2.2. Transfer Learning for Autonomous Driving

Generalizing a trained model to unseen real-world sce-
narios without substantial performance degradation remains
a critical challenge in autonomous driving. The term
Sim2Real describes the capability of a robotic system to
transfer knowledge gained from simulation environments
to real-world applications [14]. Existing approaches ad-
dressing the transfer learning challenge can be mainly cat-
egorized as inductive transfer learning and transductive
transfer learning [30]. Inductive transfer learning involves
learning a general set of rules from the source domain,
e.g., training a supervised learning model, and applying
them to the test domain. In contrast, transductive trans-
fer learning utilizes some knowledge of the test domain
to adapt a model trained in the source domain. Our work
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focuses on the inductive case as it better aligns with typi-
cal autonomous system applications, i.e., training machine
learning (ML) models with processed or simulated data
and testing them in diverse real-world settings. Several
prior studies have leveraged inductive transfer learning to
enhance model generalization capabilities. [43] transfers
a CNN-based motion prediction model trained on pedes-
trian/vehicle trajectories to cyclist trajectories, and demon-
strates that transferring knowledge from pedestrian motion
prediction improves the performance of the cyclist motion
prediction. [20] transfers knowledge from semi-supervised
models with contrastive learning and teacher-student meth-
ods to improve trajectory prediction performance, and [27]
evaluates transfer learning from traditional camera models
to event camera models for steering angle prediction. [1]
transfers spatial-temporal features and uses salient data
augmentation for better Sim2Real transfer performance in
steering angle prediction and collision detection. More re-
cently, [40] demonstrates that graph-based scene model-
ing improves Sim2Real transfer performance compared to
CNN-based methods, while its domain-specific graph ex-
traction rules can limit the model adaptivity across domains.

3. Methodology
3.1. Problem Formulation

The problem of subjective risk assessment starts with a
sequence of sensor data pre-processed by an object detec-
tion model and converted to a set of scene-graphs. These
scene-graphs are then transformed into spatial-temporal
embeddings for the subjective risk assessment. The over-
all system can be modeled as a binary classification task.
Specifically, given that the input I is a sequence of sensor
data, e.g., camera images, of length T , a model Φ is con-
structed to generate the output Y , i.e.,

Y = Φ(I); I = {i1, i2, ..., iT } (1)

and Y =

{
0, if the driving sequence is safe
1, if the driving sequence is risky

where Y denotes the subjective risk indicator of the driving
scene and Φ represents the function mapping inputs I to Y .
An ML model is often utilized to approximate the function
defined by Φ, where the inference output is denoted as Ŷ .

Some ML methods, namely CNNs, directly operate on
sensor inputs to produce output classifications Ŷ . How-
ever, these approaches only model pixel-level features with-
out considering inter-object relations for high-level objec-
tives. On the other hand, CNN-based models typically per-
form well for low-level tasks, such as object detection, since
these tasks are less dependent on inter-object semantic re-
lations. Therefore, for each input data sample it in the se-
quence, i.e., it ∈ I, we first utilize a pre-trained CNN-based

object detection model Ω to efficiently extract the set of ob-
jects Ot and their attributes Dt. We then utilize our graph
extraction model Ψ (elaborated in section 3.2) to generate a
scene-graph Gt, i.e.,

Ot,Dt = Ω(it) and Gt = Ψ(Ot,Dt) (2)

We denote a scene-graph as Gt = (Ot,At) and model it as
a directed heterogeneous multi-graph since multiple types
of edges can exist between any two nodes. Ot denotes the
set of nodes and represents objects in a scene. The edges
of Gt are represented by the adjacency matrix At, and each
value in At represents the type of the corresponding edge
in Gt. Once all the scene-graphs are extracted for the cur-
rent scene, we analyze the collection of graphs G with our
spatial-temporal graph embedding model Φ (elaborated in
section 3.3) to classify Y by its risk. Thus, the complete
system can be modeled as

Ŷ = Φ(G) (3)

where G = {Ψ(Ω(it)) ∀t ∈ {1, 2, ..., T }}.
The architecture of our proposed RS2G is demonstrated

in Figure 2. We elaborate on each component of RS2G in
the rest of this section.

3.2. Data-Driven Scene-Graph Extraction

Our methodology for extracting a scene-graph Gt from a
set of objects Ot and their attributes Dt at a given time t is
demonstrated in Algorithm 1. In contrast to the SOTA graph
extraction method [40] using fixed rules derived from do-
main knowledge to construct graph edges, e.g., threshold-
based distance relations and compass-based directional re-
lations, we propose an innovative data-driven edge encoder
to generate domain-specialized edge types. Specifically, our
approach starts with a node encoder model Encodenode
that converts the attributes dj(dj ∈ Dt) of each object
oj(oj ∈ Ot) into a set of encoded node features hj ∈ Ht

by its entity type, e.g., car and lane, and coordinate, i.e. lo-
cation, where Ht denotes the collection of encoded node
features of all the objects at time t. We then concatenate
feature vectors of each pair of nodes and send the result-
ing vector to an edge encoder, denoted as Encodeedge in
Algorithm 1, to infer if there is an edge of a given relation
type r ∈ R , given their features hj and hk. Here R de-
notes the set of all the possible relations between nodes, and
(j, k) represents all the possible combinations of two nodes
inH, i.e., {(j, k)|∀j, k ∈ H, j ̸= k}. Each relation type has
a different set of learnable weights, and our edge encoder
is responsible for computing these weights to find different
rules for constructing each relation type. Intuitively, with
a strong ability to capture complicated non-linear mappings
and hierarchical feature interactions, a multi-layer percep-
tron (MLP) can effectively discern relations between nodes
and thereby serve as a proper edge encoder.
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Figure 2. The Architecture of Our Proposed RS2G. Given an input data sample, RS2G starts with a set of objects and their attributes
extracted by a pre-trained CNN-based model. We then utilize our data-driven scene-graph extraction to generate a set of scene-graphs of
the current scene and analyze it with our spatial-temporal embedding model. Finally, we utilize a multi-layer perceptron (MLP) to classify
the risk of the driving scenario as risky or non-risky.

Algorithm 1: Data-Driven Scene-Graph Extraction

1 Input: Objects Ot and their attributes Dt at time t.
2 Output: Scene-graph Gt at time t.
3 def Ψ(Ot,Dt):
4 Ht ← ∅, At ← 0n×n ▷ initialize outputs
5 for oj ,dj ∈ Ot,Dt do
6 hj ← Encodenode(oj ,dj) ▷ node encoding
7 Ht.append(hj)

8 C ← Ht ×Ht ▷ get all pair of nodes
9 for relation r ∈ R do

10 for edge (hj ,hk) ∈ C do
11 (At)r,j,k ← MLP(Encodeedge(r,hj ,hk))

12 Gt ← {Ht,At}
13 return Gt

3.2.1 Edge Encoder Inspired by the Transformer

To further enhance RS2G’s capability to model complex re-
lations among road users, we propose an innovative edge
encoder based on the Transformer to process the concate-
nated features. Transformer is an attention-based model
that performs particularly well in capturing dependencies
among input vectors, and naturally fits this edge predic-
tion task that aims to model relationships between nodes.
Specifically, we first calculate the transformed information
Q (query), K (key), and V (value) representations from
node features as htWQ

i ,htWK
i ,htWV

i , where ht repre-
sents the feature vector of a node at time t and WQ

i , WK
i ,

WV
i are trainable parameters for Q,K,V , respectively. We

then utilize an attention mechanism to enable each node to
understand its context and implicitly establish relationships
with other nodes in the scene. We obtain the relation repre-
sentation τ by:

τ = QKT V (4)

Finally, we apply a multi-layer perceptron (MLP) to trans-
form τ from dimension hj to the total number of potential
relations |R|. The output of our data-driven scene-graph
extraction is an n× n× |R| adjacency matrix At, where n
denotes the total number of nodes and |R| denote the num-
ber of relation types. Along with the node features Ht, this
adjacency matrixAt forms the backbone of the scene-graph
Gt, offering a more dynamic representation of scenes.

3.2.2 Scene-Graph Generalization

In the context of autonomous driving, we aim to enable our
model to comprehensively capture all the essential relations
among road users while avoiding excessively including mi-
nor details; otherwise, it can cause overfitting and compro-
mise the generalization capability of our model. Consider-
ing the powerful nature of the Transformer model in cap-
turing intricate dependencies and relations among inputs,
instead of directly using the adjacency matrix At as graph
representations, we introduce the variational autoencoder
(VAE) for regularization to enhance our model’s generaliza-
tion capabilities across various driving conditions. Specif-
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ically, we reparameterize each relation vector representing
edge types in At as

z = µ+ log(σ2)× ϵ (5)

where z represents a new relation vector transformed from
regularizing each relation vector in At; µ and σ2 indicate
the mean and variance of each relation vector in At, re-
spectively, and ϵ represents random samples from a standard
normal distribution, i.e., ϵ ∼ N (0, 1). This serves as a “bot-
tleneck” that enforces the model to capture the most salient
features of the adjacency matrix. Specifically, this reparam-
eterization technique enables a back-propagation by incor-
porating more randomness into the model, hence ensuring a
smooth gradient landscape for optimization. Moreover, we
involve the Kullback-Leibler (KL) divergence as a loss term
to train our model. It not only ensures a more meaningful
structure of the latent space that provides a more general-
ized and effective relation representation, but also enables
the model to generate more expressive adjacency matrices
to enhance graph representations of road scenes.

3.3. Spatial-Temporal Graph Embedding Model

As demonstrated in Figure 2, our spatial-temporal model
consists of three major components, a spatial model, a tem-
poral model, and a risk inference component. The spatial
model outputs the embeddings hGt

for each scene-graph
Gt, and the temporal model processes all input scene-graph
embeddings, i.e., {hG1

,hG2
, . . . ,hGT }, and produces the

spatial-temporal embedding Z . Then the risk inference
components output each driving clip’s risk assessment Ŷ .

3.3.1 Spatial Graph Modeling

We utilize a multi-relational graph convolutional network
(MR-GCN) [28] to compute the embeddings and capture
multiple types of relations on each scene-graph. Specif-
ically, in the message propagation phase, each MR-GCN
layer performs spatial graph convolutions [18] on each
graph Gt = {Ht,At} for all t ∈ {1, 2, . . . , T } across a
set of relation types R, where T denote the length of the
data sample. For each node v ∈ Gt, the l-th MR-GCN layer
updates the node embedding, denoted as h(l)

v , as

h(l)
v = Φ0 ·h(l−1)

v +
∑
r∈R

∑
u∈Nr(v)

1

|Nr(v)|
Φr ·h(l−1)

u , (6)

where Nr(v) denotes the set of neighbor indices to v with
relation r in the adjacency matrix At, Φr represents the set
of trainable weights for relation r in MR-GCN layer l. Since
the (l−1)-th layer can directly influence the node represen-
tations in the l-th layer, MR-GCN applies another trainable
transformation Φ0 to account for the self-connection of each
node using a special relation [33]. We initialize each node

embedding h
(0)
v ,∀v ∈ Ot by directly converting the node’s

type information to its corresponding one-hot vector.
Node embeddings typically become more refined and ab-

stract as the number of MR-GCN layers increases, while the
output of the features from earlier MR-GCN layers can be
better generalized across domains [38]. Therefore, we uti-
lize the node embeddings generated from all the MR-GCN
layers. Specifically, we calculate the embedding of node v
at the final layer, denoted as HL

v , by concatenating the fea-
tures generated from all the MR-GCN layers, i.e.,

HL
v = CONCAT({h(l)

v }|l = 0, 1, ...,L). (7)

where L denotes the total number of layers. We denote the
collection of node embeddings of scene-graph Gt after pass-
ing through L layers of MR-GCN as X prop

t .
We then utilize a graph pooling and readout operation

to condense the set of node embeddings X prop
t to a sin-

gle, unified graph embedding hGt
. Here we employ the

self-attention graph pooling operation [22]. Specifically, in
the pooling layer, nodes are pooled according to the scores
predicted from a trainable graph convolutional networks
(GCN) layer, denoted as SCORE, as

α = SCORE(X prop
t ,At) and P = topk(α), (8)

where α represents the attention coefficient output by the
graph pooling layer for each node in Gt,P represents the top
k proportion of nodes ranked according to α, and k is usu-
ally a pre-defined pooling ratio (e.g., 0.25, 0.5, 0.75) as it is
assumed that only some nodes in each scene-graph are most
relevant to the risk assessment task. This pooling layer also
helps to filter out noise and improve training convergence.
The node embeddings and edge adjacency information after
pooling by X pool

t and Apool
t are then calculated as

X pool
t = (X prop

t ⊙ tanh(α))P , (9)

Apool
t = Aprop

t (P,P). (10)

where⊙ represents an element-wise multiplication, (·)P in-
dicates the operation of extracting a subset of nodes based
onP , and (·)(P,P) denotes the construction of the adjacency
matrix between the nodes in this subset. The set of pooled
nodes is then processed by a readout layer, compressing the
node embeddingsX pool

t into a single graph embedding hGt
,

hGt = READOUT(X pool
t ) (11)

where the READOUT operation can be summation (sum-
pooling), averaging (mean-pooling), or selecting the maxi-
mum of each feature dimension over the set of node embed-
dings (max-pooling).
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3.3.2 Temporal Modeling

We employ a long short-term memory (LSTM) [13] net-
work to convert the sequence of scene-graph embeddings to
the spatial-temporal embedding Z . For each timestamp t,
the LSTM updates the hidden state pt and cell state ct as

pt, ct = LSTM(hGt
, ct−1), (12)

where hGt
is the final scene-graph embedding from times-

tamp t. After the LSTM processes all the scene-graph
embeddings, a temporal readout operation is applied to
the resulting output sequence to compute the final spatial-
temporal embedding Z as

Z = TEMPORAL READOUT(p1, p2, ..., pT ) (13)

where the TEMPORAL READOUT operation could be
the extraction of only the last hidden state pT (LSTM-last)
or could be a temporal attention layer (LSTM-attn). Here
we integrate an attention mechanism into the LSTM archi-
tecture, i.e., LSTM-attn, to boost model performance. By
adding an attention layer between successive LSTM layers,
the model can weigh the significance of each timestep in
the sequence, allowing it to focus more on the most relevant
parts of the data. Additionally, the LSTM-attn layer calcu-
lates a context vector by considering the entire hidden state
sequence {p1, p2, ..., pT } returned from the LSTM encoder
layers, and can hence effectively enhance the model’s abil-
ity to make accurate and contextually-aware predictions.

The last layer in our model generates an output risk clas-
sification Ŷ from the spatial-temporal embedding Z as

Ŷ = Softmax(MLP(Z)) (14)

Since our model is implemented as a binary classifier, we
use Cross-Entropy loss to train the model. i.e.

argminCrossEntropyLoss(Y, Ŷ) (15)

4. Experimental Results
4.1. Experimental Setup

Platform: We conduct our experiments on a Linux
server with an Intel Xeon E5 CPU and an NVIDIA TITAN
Xp GPU for training and evaluating each model.

Dataset: Our evaluation utilized three different types
of datasets: (i) simulated lane change scenarios of vary-
ing risk from Carla [12], denoted as 271-carla and 1043-
carla; (ii) real-world, clear-weather safe driving in Califor-
nia Bay Area from Honda [31], denoted as 1361-honda; and
(iii) real-world crashes and dangerous road scenarios from
dash-cam footage from the Detection of Traffic Anomaly
Dataset [39], denoted as 620-dash. We use the same dataset
preparation steps as in [26]. The number of risky and non-
risky scenes in each dataset is listed in Table 1. For the

Table 1. Detailed Breakdowns of Datasets

Dataset
Non-Risky
Scenarios

Risky
Scenarios

Non-Risky:Risky
Ratio

271-carla 223 48 4.65:1
571-honda 475 99 4.80:1
620-dash 323 297 1.09:1

1043-carla 898 146 6.15:1
1361-honda 1207 154 7.84:1

subjective risk assessment of each dataset, we use 70% of
data for training and 30% of data for inference. For trans-
fer learning experiments, we train with 70% of the train-
ing dataset and evaluate with 100% of the inference dataset,
since the training and inference datasets are distinct.

Model Specification: Our proposed model consists of
three main modules: graph extraction, spatial model, and
temporal model. For graph extraction, we implement three
variants of edge encoding methods for RS2G: (i) one-
dimensional MLP, denoted as RS2G(1D MLP), employs a
node encoder of dimensions 15 × 15; given that the edge
encoder processes features from two nodes simultaneously,
its shape is 30 × 12. In particular, each node vector is of
dimension 15, and hence the concatenation of two nodes is
of dimension 30. We set 12 as the total number of rela-
tions; a trivial number of relations can impede the expres-
siveness of graph representations, while an overlarge num-
ber of relations can weaken graph representations by mak-
ing the relations redundant. (ii) For two-dimensional MLP,
denoted as RS2G(2D MLP), both the node and edge en-
coders have one extra layer, with shapes of 15×15×15 and
30×30×12, respectively. (iii) For the Transformer variant,
denoted as RS2G(Transformer), the node encoder retains
the 16× 32× 16 shape as in the 2D MLP. The Transformer
encoder itself is configured with d model (indicating the
expected number of features in the input) set to 32 and the
number of layers is set to 8. Following this encoder, there’s
an accompanying MLP with dimensions 32× 12 to finalize
the feature transformation. Our spatial and temporal model-
ing follow the same structure of MR-GCN and LSTM as the
downstream of [40] for fair comparisons. Specifically, for
modeling spatial graph features, we utilize a 2-layer MR-
GCN with self-attention graph pooling and mean readout.
We then apply a 2-layer LSTM with temporal attention as
the readout operation for our temporal model.

Baseline Models: We compare RS2G with (i) the SOTA
rule-based graph extraction and learning approach [40],
denoted as “Rule-Based” graph extraction in our experi-
ments; and (ii) the SOTA DL-based approach utilizing the
CNN+LSTM architecture [41], which we denote its graph
extraction as “None” since this method does not use graphs.

Evaluation Metrics: As we model risk assessment as a
binary classification task, we evaluate each model in terms
of Accuracy, Matthews Correlation Coefficient (MCC) [6],
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and Area Under the ROC Curve (AUC) [3]. Accuracy in
this case is the standard metric indicating the percentage of
correctly classified scenes. AUC score is a typical metric
for scoring classifiers across multiple decision boundaries;
it ranges from 0.0 to 1.0 with higher performance indicat-
ing a more robust model. MCC score is considered a more
reliable metric than accuracy for evaluating models on im-
balanced datasets. Specifically, an MCC score of −1.0 rep-
resents an always wrong classifier, 1.0 represents an always
correct classifier, and 0.0 represents a random classifier.

4.2. Subjective Risk Assessment

Table 2 demonstrates the performance of each model
variant at subjective risk assessment on both synthetic
datasets (271-carla, 1043-carla) and real-world driving
datasets (620-dash, 1361-honda). Across all datasets, all
the RS2G models (1D MLP, 2D MLP, and Transformer)
demonstrate significantly higher accuracy than the SOTA
DL-based model using no graph extractions and the SOTA
rule-based graph extraction method, indicating that our
data-driven graph extraction technique can effectively en-
hance graph representations and scenario understanding for
AVs. Specifically, RS2G (Transformer) provides on average
21.35% higher accuracy than the SOTA DL-based approach
and 4.47% higher accuracy than the SOTA rule-based graph
extraction method. Additionally, our data-driven graph ex-
traction method also provides considerably higher MCC
and AUC scores, indicating notably better capabilities in
distinguishing positive and negative samples. Furthermore,
RS2G (Transformer) notably outperforms other edge encod-
ing methods (1D MLP and 2D MLP) in most cases, proving
that the attention mechanism of the Transformer can better
capture complex relations among road users.

Overall, all the models provide lower learning qual-
ity, i.e., accuracy, MCC, and AUC, for real-world driving
datasets than synthetic datasets. In particular, for a real-
world imbalanced dataset with more crashes and risky sce-
narios, i.e., 620-dash, the CNN-based model delivers seri-
ously degraded accuracy and an MCC score worse than a
random classifier (less than 0.0). However, all the RS2G
models exhibit notably less performance degradation, indi-
cating that our data-driven graph extraction technique can
provide more effective performance in complex real-world
scenarios than SOTA DL-based approaches and SOTA GL-
based models using the rule-based graph extraction method.

4.3. Transfer Learning Evaluation

We evaluate the Sim2Real transfer learning capability
of each model, i.e., the capability of generalizing knowl-
edge gained from simulations to real-world scenarios. We
first train each model on a simulation dataset (271-carla
or 1043-carla) and then evaluate the trained model on the

Dataset
Graph

Extraction Accuracy MCC AUC

271-carla

None 73.17% 0.1887 0.8043
Rule-Based 82.93% 0.5173 0.8098

RS2G (1D MLP) 84.51% 0.2093 0.9338
RS2G (2D MLP) 86.59% 0.468 0.9578

RS2G (Transformer) 84.15% 0.402 0.9362

1043-carla

None 71.66% 0.1111 0.7173
Rule-Based 91.43% 0.7217 0.971

RS2G (1D MLP) 91.72% 0.6840 0.9643
RS2G (2D MLP) 93.31% 0.7426 0.7949

RS2G (Transformer) 97.13% 0.8823 0.9686

1361-honda

None 60.39% 0.0391 0.7110
Rule-Based 86.31% 0.2445 0.9341

RS2G (1D MLP) 87.04% 0.1626 0.9315
RS2G (2D MLP) 89.00% 0.3029 0.9383

RS2G (Transformer) 89.98% 0.404 0.9495

620-dash

None 48.92% -0.1749 0.5256
Rule-Based 67.20% 0.3428 0.6966

RS2G (1D MLP) 68.82% 0.3967 0.7403
RS2G (2D MLP) 72.04% 0.4398 0.8047

RS2G (Transformer) 68.28% 0.3635 0.7354

Table 2. Performance of Subjective Risk Assessment for different
graph extraction methods and datasets. “Rule-based” refers to the
SOTA GL-based model based on rule-based graph extraction [40],
and RS2G is our proposed approach. The downstream of these
methods consists of an MR-GCN and an LSTM model, taking
scene-graphs as input. “None” graph extraction refers to SOTA
DL-based model [41] without using graphs, where the downstream
task processes raw image data using a CNN and an LSTM model.

Dataset
Graph

Extraction Accuracy MCC AUC

271-carla
to 620-dash

None 52.58% 0.0333 0.5126
Rule-Based 48.22% 0.0238 0.4975

RS2G(2D MLP) 57.25% 0.1398 0.5669
RS2G(Transformer) 64.68% 0.2957 0.6831

1043-carla
to 620-dash

None 49.03% -0.0432 0.4999
Rule-Based 50.96% 0.0021 0.5093

RS2G(2D MLP) 60.65% 0.2089 0.6265
RS2G (Transformer) 66.29% 0.3293 0.6964

Table 3. Transfer learning comparison between different the SOTA
DL-based model [41], the SOTA GL-based model with rule-based
graph extraction, RS2G (2D MLP) and RS2G (Transformer).

real-world dataset (620-dash) consisting of considerably
more instances of crash scenarios. Simulations in synthetic
datasets only include lane-changing behaviors, while all
driving maneuvers are presented in the real-world dataset;
i.e., the visual context of the real-world dataset significantly
differs from that in simulation environments. As demon-
strated in Table 3, all the learning methods deliver degraded
performance; however, RS2G models (2D MLP, Trans-
former) achieve notably higher accuracy, MCC, and AUC
than the SOTA DL-based model and the SOTA GL-based
method using rule-based graph extraction. Specifically,
RS2G (Transformer) provides on average 14.68% higher
accuracy than the SOTA DL-based model, 15.90 higher ac-
curacy than the SOTA GL-based method using rule-based
graph extraction, and 6.54% than RS2G (2D MLP).
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It is also noteworthy that the baseline models trained on
1043-carla both deliver lower performance after transfer
than the same models trained on 271-carla, which contains
notably fewer data samples than 1043-carla. It is likely to
be caused by their overfitting to the training domain, i.e.,
the simulation environments, thus degrading their perfor-
mance in the test domain, i.e., real-world settings. In con-
trast, our data-driven RS2G, especially models utilizing the
Transformer as the relation extractor, dynamically extract
more expressive graph representations and therefore is less
likely to encounter overfitting issues, hence providing better
performance for Sim2Real transfer learning.

4.4. Ablation Study

Here we provide detailed ablation studies to further
demonstrate the benefits of Kullback-Leibler(KL) diver-
gence and results using different edge extraction thresholds.
We present (i) the impact of each component of the down-
stream for GL-based models (ii) a similarity comparison be-
tween graphs extracted by the rule-based method and our
data-driven approach in our supplementary material.

4.4.1 Analysis of Kullback-Leibler Divergence

Model Accuracy MCC AUCGraph Extraction with KL
RS2G(2MLP) ✗ 62.42% 0.2455 0.6132
RS2G(2MLP) ✓ 60.65% 0.2089 0.6265

RS2G(Transformer) ✗ 64.35% 0.2897 0.6586
RS2G(Transformer) ✓ 66.29% 0.3293 0.6964

Table 4. KL Analysis for RS2G (2D MLP) and RS2G (Trans-
former) in transfer learning from 1043-carla to 620-dash.

We present the effects of KL divergence on RS2G (2D
MLP) and RS2G (Transformer) in Sim2Real transfer learn-
ing in Table 4. In particular, when the KL divergence is
not involved in the model, RS2G (Transformer) outperforms
RS2G (2D MLP) by 1.93%. However, after incorporating
KL divergence into the model, the performance of RS2G
(2D MLP) slightly drops whereas the performance of RS2G
(Transformer) noticeably improves. We summarize the po-
tential reason as follows: The scene-graphs generated from
MLP tend to be simpler due to the simple MLP architec-
ture which limits the model to capture sequential or rela-
tional intricacies in data. Thus, when KL regularization is
introduced, it places an extra constraint on a graph that is al-
ready simple, pushing the model towards even more conser-
vative graph representations. Consequently, the expressive-
ness of graphs becomes very limited, leading to less effec-
tive representations of intricate tasks or diverse conditions
by RS2G (2D MLP). On the other hand, for RS2G (Trans-
former), given the power of the attention mechanism of the
Transformer, its generated scene-graphs can be very com-
prehensive, sometimes at the risk of being overly complex.

Incorporating KL divergence into the Transformer does not
simply constrain the model; instead, it refines the Trans-
former attention, ensuring that the model captures the most
representative relation of the adjacency matrix. Thus, com-
bining the Transformer with KL divergence produces more
balanced and expressive scene-graphs, and leads to higher
accuracy, MCC, and AUC scores.

4.4.2 Graph Structure Comparison

We compare the structural differences between rule-based
graphs and the data-driven graphs extracted by RS2G. In
particular, We evaluate how the methods differ regarding
graph sparsity and edge distribution, and correlate these
metrics with risk assessment accuracy. We also identify
how RS2G’s edge extraction threshold (γ) affects the spar-
sity of generated graphs and the model’s overall perfor-
mance. Specifically, the threshold γ indicates the sigmoid
score that Encodeedge must overcome to add a given edge
to the graph varying from 0 to 1, i.e., higher γ results in
sparser graphs. Our results using Transformer graph extrac-
tion with different γ are shown in Table 5. Transformer
extraction with various thresholds exhibits higher accuracy
than rule-based graph extraction, and the best performance
is achieved with γ = 0.25. Using γ = 0.5 and γ = 0.75
lowers the performance, possibly due to overfitting. On the
other hand, using γ = 0.75 can reach a better performance
than γ = 0.5 may due to some seeming irrelevant nodes
could actually provide useful information for the model.

Graph Ext. Acc. Avg. Deg. Avg. Edges σ Edges
Rule-Based 95.86% 3.84 16.50 10.51

RS2G (γ = 0.25) 97.13% 37.11 298.98 264.36
RS2G (γ = 0.5) 94.59% 23.98 193.21 171.22

RS2G (γ = 0.75) 95.54% 10.88 87.68 78.00

Table 5. Comparison of graph structure metrics between rule-
based graph extraction [40] and RS2G (Transformer). γ represents
the edge extraction decision threshold.

5. Conclusion
In this paper, we propose RS2G, a novel road scene un-

derstanding framework based on a innovative data-driven
graph extraction and modeling approach, dynamically cap-
turing complex relations among road users. RS2G learns
to specialize relations with data-driven vectors, thereby
providing more expressive graph representations of road
scenes. We also leverage the powerful attention mecha-
nism of the Transformer and the variational autoencoder
to further enhance RS2G’s capability to model relations
and transfer knowledge from training domains to real-world
scenarios. Our evaluation shows that RS2G significantly
outperforms the SOTA DL-based model and the SOTA rule-
based graph extraction method in both subjective risk as-
sessment and Sim2Real transfer learning.
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[14] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Camilo
Gamboa, Melissa Mozifian, Florian Golemo, Chris Atkeson,

Dieter Fox, Ken Goldberg, John Leonard, et al. Sim2real
in robotics and automation: Applications and challenges.
IEEE transactions on automation science and engineering,
18(2):398–400, 2021.

[15] Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima,
Xizhou Zhu, Siqi Chai, Senyao Du, Tianwei Lin, Wenhai
Wang, et al. Planning-oriented autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17853–17862, 2023.

[16] Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao,
Dingfu Zhou, Peng Wang, Yuanqing Lin, and Ruigang Yang.
The apolloscape dataset for autonomous driving. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition workshops, pages 954–960, 2018.

[17] Jiman Kim and Chanjong Park. End-to-end ego lane esti-
mation based on sequential transfer learning for self-driving
cars. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition workshops, pages 30–38, 2017.

[18] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

[19] Pawit Kochakarn, Daniele De Martini, Daniel Omeiza, and
Lars Kunze. Explainable action prediction through
self-supervision on scene graphs. arXiv preprint
arXiv:2302.03477, 2023.

[20] Nick Lamm, Shashank Jaiprakash, Malavika Srikanth,
and Iddo Drori. Vehicle trajectory prediction by trans-
fer learning of semi-supervised models. arXiv preprint
arXiv:2007.06781, 2020.

[21] Pat Langley, Ben Meadows, Mohan Sridharan, and Dongkyu
Choi. Explainable agency for intelligent autonomous sys-
tems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31, pages 4762–4763, 2017.

[22] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention
graph pooling. arXiv preprint arXiv:1904.08082, 2019.

[23] Chengxi Li, Yue Meng, Stanley H Chan, and Yi-Ting
Chen. Learning 3d-aware egocentric spatial-temporal inter-
action via graph convolutional networks. 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 8418–8424, 2020.

[24] Peixuan Li, Shun Su, and Huaici Zhao. Rts3d: Real-
time stereo 3d detection from 4d feature-consistency embed-
ding space for autonomous driving. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages
1930–1939, 2021.

[25] Xiwen Liang, Minzhe Niu, Jianhua Han, Hang Xu, Chun-
jing Xu, and Xiaodan Liang. Visual exemplar driven task-
prompting for unified perception in autonomous driving. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9611–9621, 2023.

[26] Arnav Vaibhav Malawade, Shih-Yuan Yu, Brandon Hsu,
Deepan Muthirayan, Pramod P Khargonekar, and Moham-
mad Abdullah Al Faruque. Spatiotemporal scene-graph em-
bedding for autonomous vehicle collision prediction. IEEE
Internet of Things Journal, 9(12):9379–9388, 2022.

[27] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego,
Narciso Garcı́a, and Davide Scaramuzza. Event-based vision

7501



meets deep learning on steering prediction for self-driving
cars. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5419–5427, 2018.

[28] Sravan Mylavarapu, Mahtab Sandhu, Priyesh Vijayan,
K Madhava Krishna, Balaraman Ravindran, and Anoop
Namboodiri. Towards accurate vehicle behaviour classifi-
cation with multi-relational graph convolutional networks.
arXiv preprint arXiv:2002.00786, 2020.

[29] Sravan Mylavarapu, Mahtab Sandhu, Priyesh Vijayan,
K Madhava Krishna, Balaraman Ravindran, and Anoop
Namboodiri. Understanding dynamic scenes using graph
convolution networks. In 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages
8279–8286. IEEE, 2020.

[30] Shuteng Niu, Yongxin Liu, Jian Wang, and Houbing Song. A
decade survey of transfer learning (2010–2020). IEEE Trans-
actions on Artificial Intelligence, 1(2):151–166, 2020.

[31] Vasili Ramanishka, Yi-Ting Chen, Teruhisa Misu, and Kate
Saenko. Toward driving scene understanding: A dataset for
learning driver behavior and causal reasoning. Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7699–7707, 2018.

[32] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and
Marco Pavone. Trajectron++: Dynamically-feasible trajec-
tory forecasting with heterogeneous data. In European Con-
ference on Computer Vision, pages 683–700. Springer, 2020.

[33] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne
Van Den Berg, Ivan Titov, and Max Welling. Modeling re-
lational data with graph convolutional networks. European
Semantic Web Conference, pages 593–607, 2018.

[34] Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and
Yu Liu. Safety-enhanced autonomous driving using inter-
pretable sensor fusion transformer. In Conference on Robot
Learning, pages 726–737. PMLR, 2023.

[35] Mark Strickland, Georgios Fainekos, and Heni Ben Amor.
Deep predictive models for collision risk assessment in au-
tonomous driving. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 4685–4692.
IEEE, 2018.

[36] Yafu Tian, Alexander Carballo, Ruifeng Li, and Kazuya
Takeda. Road scene graph: A semantic graph-based scene
representation dataset for intelligent vehicles. arXiv preprint
arXiv:2011.13588, 2020.

[37] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

[39] Yu Yao, Xizi Wang, Mingze Xu, Zelin Pu, Ella Atkins, and
David Crandall. When, where, and what? a new dataset
for anomaly detection in driving videos. arXiv preprint
arXiv:2004.03044, 2020.

[40] Shih-Yuan Yu, Arnav Vaibhav Malawade, Deepan Muthi-
rayan, Pramod P Khargonekar, and Mohammad Abdullah
Al Faruque. Scene-graph augmented data-driven risk assess-
ment of autonomous vehicle decisions. IEEE Transactions
on Intelligent Transportation Systems, 2021.

[41] Ekim Yurtsever, Yongkang Liu, Jacob Lambert, Chiyomi
Miyajima, Eijiro Takeuchi, Kazuya Takeda, and John HL
Hansen. Risky action recognition in lane change video clips
using deep spatiotemporal networks with segmentation mask
transfer. 2019 IEEE Intelligent Transportation Systems Con-
ference (ITSC), pages 3100–3107, 2019.

[42] Cheng Zhang, Kun Zhang, and Yingzhen Li. A causal view
on robustness of neural networks. Advances in Neural Infor-
mation Processing Systems, 33:289–301, 2020.

[43] Ethan Zhang, Sion Pizzi, and Neda Masoud. A learning-
based method for predicting heterogeneous traffic agent tra-
jectories: implications for transfer learning. In 2021 IEEE
International Intelligent Transportation Systems Conference
(ITSC), pages 1853–1858. IEEE, 2021.

[44] Qingzhao Zhang, Shengtuo Hu, Jiachen Sun, Qi Alfred
Chen, and Z Morley Mao. On adversarial robustness of tra-
jectory prediction for autonomous vehicles. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15159–15168, 2022.

[45] Zijian Zhu, Yichi Zhang, Hai Chen, Yinpeng Dong, Shu
Zhao, Wenbo Ding, Jiachen Zhong, and Shibao Zheng. Un-
derstanding the robustness of 3d object detection with bird’s-
eye-view representations in autonomous driving. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 21600–21610, 2023.

[46] Shlomo Zilberstein. Building strong semi-autonomous sys-
tems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 29, 2015.

7502


