
Approximating Intersections and Differences Between Linear Statistical Shape
Models Using Markov Chain Monte Carlo

Maximilian Weiherer, Finn Klein, Bernhard Egger
Department of Computer Science

Friedrich-Alexander-Universtität Erlangen-Nürnberg
maximilian.weiherer@fau.de

Abstract

To date, the comparison of Statistical Shape Models
(SSMs) is often solely performance-based, carried out by
means of simplistic metrics such as compactness, general-
ization, or specificity. Any similarities or differences be-
tween the actual shape spaces can neither be visualized
nor quantified. In this paper, we present a new method to
qualitatively compare two linear SSMs in dense correspon-
dence by computing approximate intersection spaces and
set-theoretic differences between the (hyper-ellipsoidal) al-
lowable shape domains spanned by the models. To this end,
we approximate the distribution of shapes lying in the inter-
section space using Markov chain Monte Carlo and subse-
quently apply Principal Component Analysis (PCA) to the
posterior samples, eventually yielding a new SSM of the
intersection space. We estimate differences between lin-
ear SSMs in a similar manner; here, however, the result-
ing spaces are no longer convex and we do not apply PCA
but instead use the posterior samples for visualization. We
showcase the proposed algorithm qualitatively by comput-
ing and analyzing intersection spaces and differences be-
tween publicly available face models, focusing on gender-
specific male and female as well as identity and expres-
sion models. Our quantitative evaluation based on SSMs
built from synthetic and real-world data sets provides de-
tailed evidence that the introduced method is able to recover
ground-truth intersection spaces and differences accurately.

1. Introduction

Statistical Shape Models (SSMs) are a popular class of
generative models providing a low-dimensional paramet-
ric representation of complex objects. SSMs and espe-
cially 3D Morphable Models (3DMMs) [2] are widely used
within the computer vision community and often applied to
model humans (faces, bodies, bones, and organs). Their ap-

plication ranges from face recognition [3], single-shot 3D
face [14,25,40] and body reconstruction [29], face reenact-
ment [37] and visual dubbing, to applications in the med-
ical domain [17, 31, 39], forensics, cognitive science, neu-
roscience, and psychology [12]. SSMs are typically built
by applying Principal Component Analysis (PCA) to a set
of objects in dense correspondence. As such, an SSM is
a linear model in which shapes are represented as points
in a low-dimensional, affine vector space. Although other,
non- or multi-linear models exist, PCA-based SSMs are
still most common. They are easy to interpret, convenient
to visualize, have excellent extrapolation capabilities, and
are compatible with standard computer graphics pipelines.
Hence, we consider only PCA-based models in this work.
In general, however, the presented method can be used
with all models that (i) use an affine vector space as an
approximation for the underlying (manifold) shape space,
and (ii) allow random sampling from and projecting shapes
onto that space, including PCA-based Point Distribution
Models [8] and Gaussian Process Morphable Models [31],
multi-linear [4] and wavelet-based models [6], non-linear
models based on Principal Geodesic Analysis (by applying
our method on the tangent space) [16], but also more mod-
ern approaches based on Variational Autoencoders [24].

To date, comparison of SSMs is typically solely
performance-based and carried out by applying metrics
such as compactness, generalization, and specificity [10,
36]. A qualitative and direct comparison of the actual shape
spaces spanned by two models is currently not possible; a
visualization can only be provided for the individual shape
spaces by inspecting random samples or the first principal
modes of variation. As such, any differences or similarities
between two models’ shape spaces can not be computed nor
visualized with existing metrics.

In this paper, we present a new approach to qualitatively
compare two linear SSMs that takes into account the affine
vector spaces spanned by the models. Specifically, we aim
at computing the intersection and set-theoretic difference
between the models’ (hyper-ellipsoidal) allowable shape

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6364



domains, i.e., those shapes that can either be explained by
both SSMs or only by one model but not the other. Given
the extreme difference in dimensions between the low-
dimensional shape spaces and their high-dimensional em-
bedding, we propose to use a sampling-based technique to
approximate the desired spaces. Starting with a geometric
motivation and formal definition, we formulate a probabil-
ity distribution over shapes lying in the intersection or set-
theoretic difference and use approximate inference based
on Markov chain Monte Carlo (MCMC) to generate sam-
ples from those spaces. Based on these samples, we com-
pute the mean and a basis for the intersection space using
PCA, eventually forming a new SSM that can be used for
visualization, data exploration, and analysis. Since the set-
theoretic difference of two models’ subspaces is no longer
convex, we do not apply PCA but only visualize posterior
samples. Finally, note that thanks to the probabilistic na-
ture of our method, we are not only able to inspect differ-
ences and similarities on shapes as a whole but also on a
per-vertex level, allowing us to understand which features
are present in both models and/or what is unique.

Our method has several interesting applications beyond
a general data exploration use case. For instance, differ-
ences between race-specific models (e.g., between Asian
and White models) could allow for conclusions about de-
mographic bias in SSMs. In the medical domain, differ-
ences and similarities between two models built from a
healthy and pathological group will help to visualize and
identify novel phenotypes or shape-based clinical indica-
tors. Moreover, the difference between those two models
or gender-specific shape variations may be of great interest
as it could be later added to other models to increase vari-
ability, thus acting as a data augmentation strategy. Besides
medical applications, we also see opportunities in product
design. When modeling body parts, the comparison of two
SSMs from distinct populations may be helpful to improve
the design for a specific market. Finally, the difference
between face identity and expression models would also
reduce the effects of the identity-expression ambiguity in
3DMMs of faces [13], allowing for better expression neu-
tralization or transfer.

To summarize, the key contributions of this paper are:
(i) we present a new method to qualitatively compare two
SSMs by computing approximate intersection spaces and
set-theoretic differences between the low-dimensional al-
lowable shape domains spanned by the models, (ii) we pro-
vide an extensive, quantitative evaluation using models built
from synthetic data sets and SSMs which are publicly avail-
able, (iii) we analyze intersections and differences between
popular face models, including gender-specific male and fe-
male and identity and expression models, and (iv) we show
how our method can be used to approximate intersection
spaces and differences between texture models of 3DMMs.

2. Related Work
Although tackling a different problem, most related to

our work is the method proposed by Hall et al. [22]. They
present a splitting operation used to remove one linear sub-
space from another and argue that this operation is seen as
the inverse of the union operation. It is important to un-
derstand that this method yields again a linear and convex
subspace; they do not compute the set-theoretic difference
between two linear models’ shape spaces. Rather, they split
one subspace from the other, effectively keeping the inter-
section in that space. In contrast, the set-theoretic differ-
ence we are interested in excludes the intersection from this
space (this is why we end up with a non-convex space).
This allows us to investigate the true difference between two
models, i.e., those shapes that are exclusively represented in
one model, which is not possible with [22].

Performance-based metrics. The most well-known
performance-based metrics to compare SSMs are compact-
ness, generalization, and specificity [10, 36]. Those metrics
allow to measure how well a model represents a certain pop-
ulation; they enable quantitative comparison of two models
of the same population and are applied in most of the pub-
lications presenting novel SSMs. However, although con-
sidered state-of-the-art when comparing SSMs, they do not
allow for a visual inspection of similarities or differences
between actual shape spaces. Babalola et al. [1] proposed
to use the Bhattacharya distance to measure the overlap be-
tween the two distributions implied by SSMs. Although
this might be useful in practice, it merely returns a scalar-
valued distance. Another common way to compare models
is by evaluating their performance on downstream applica-
tions [5, 18, 26, 35]. This, however, does not tell anything
about what makes one model different or superior to an-
other from a probabilistic point of view. In general, none of
the existing approaches enable visualization of similarities
or differences between low-dimensional shape spaces.

Computing intersections between vector spaces. Lin-
ear algebra offers an analytic way to compute the intersec-
tion between two subspaces embedded in a common vector
space. Given bases A,B ∈ Rm×n for two subspaces, a ba-
sis of the intersection space can be calculated by computing
the null space of C = [A,−B] ∈ Rm×2n. When consider-
ing SSMs, however, we usually have m ≫ n, i.e., there is
an extreme difference in dimensions between the spanned
subspaces of the models and their embedding. In this case,
the linear system that we would need to solve when comput-
ing the null space of C is highly over-determined and may
not have a non-trivial solution in general.

A lot of classical mathematical theory [21, 23] is avail-
able to compute the orthogonal projection matrix, P , used
to project points onto the intersection of two subspaces. Nu-
merous formulas and methods have been proposed to com-
pute P , of which the alternating projection method [38] is
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probably most well known. However, this method has a
high computational complexity and gives only the projec-
tion matrix instead of a basis for the intersection space.

Another method to calculate a basis for the intersection
between two subspaces is by means of the Zassenhaus al-
gorithm [30]. More recently, Fenggang et al. [15] proposed
a closed-form algorithm to compute such a basis.

3. Method
After fixing notations and reviewing some basic proper-

ties of linear shape models, we first provide a formal defini-
tion of the intersection between two SSMs. We then present
the algorithm to estimate the intersection. Additionally, we
show how the same strategy can be further explored to esti-
mate the differences between two models.

3.1. Preliminaries

A linear shape model can be interpreted either by as-
suming a linear algebraic or a probabilistic point of view.
Firstly, we take the linear-algebraic approach and repre-
sent an SSM as a function of the form f : Rq −→ Rdn,
f(α) = x̄+Uα, where x̄ ∈ Rdn is the so-called mean shape
computed over a set of objects described with n points in d
dimensions (for triangular meshes, d = 3). The orthogonal
matrix U = (

√
λ1u1,

√
λ2u2, . . . ,

√
λquq) ∈ Rdn×q holds

the scaled eigenvectors of the dataset’s covariance matrix,
where λi is the i-th eigenvalue. The vector space spanned
by a linear model is the affine subspace

M := x̄+ span(U) = {x̄+ Uα | α ∈ Rq} ⊆ Rdn, (1)

where dim(M) = q. Every linear combination of the basis
vectors contained in U gives rise to a new shape.

We now describe the probabilistic perspective on lin-
ear shape models. By assuming α ∼ N (0, I), one can
verify that shapes x = f(α) are distributed according to
x ∼ N (x̄, C), where C = UUT ∈ Rdn×dn is the sample
covariance matrix. The probability of a shape is given by

p(x) = p(α) ∝ exp

(
−1

2
∥α∥22

)
. (2)

From this perspective, not every shape in M is equally
likely; the probability mass is concentrated in a q-
dimensional hyper-ellipsoid which is centered at the mean x̄
and whose principal axes correspond to the eigenvectors of
C. The eigenvalues of C are the reciprocals of the squares
of the lengths of the semi-axes. The shapes lying inside the
hyper-ellipsoid can be characterized as Q := {x ∈ M |
(x− x̄)TC−1(x− x̄) ≤ k} ⊆ Rdn with k ∈ [0, 1]. In terms
of a probabilistic interpretation, this set can be equivalently
rewritten as

Q = {x ∈ M | p(x) ≥ ξ}, (3)

where ξ ∈ [0, 1] (see supp. material for a derivation). It
contains all shapes with a probability greater than a certain
threshold. Following [7] and for a suitable ξ, shapes in Q
are considered plausible in the sense that they look similar
to the observed (training) data; hence, Q is often called the
allowable shape domain [8].

3.2. Computing Intersections

Given two aligned1 SSMs in dense correspondence, our
goal is to compute their intersection. We define the inter-
section I ⊆ Ω = M1 ∪M2 between two SSMs as the inter-
section between their allowable shape domains, i.e.,

I := Q1 ∩Q2. (4)

In this work, we consider only SSMs with non-empty
I (whether two models intersect can be checked using,
e.g., [19]). As seen from (4) and by noting that I =
(M1 ∩M2) ∩ (Q1 ∩Q2), a shape x ∈ Ω belongs to the in-
tersection if the following conditions are met: First, x can
be represented by both models, i.e., x ∈ M1 ∩M2. Assum-
ing x ∈ M1 ⊂ Ω, this is equivalent to finding an x′ ∈ M2

such that the (Euclidean) distance d(x′, x) vanishes (or vice
versa if we assume x ∈ M2). Second, x is likely in both
models, that is, p(x) ≥ ξ1 and p(x′) ≥ ξ2.

Our definition is motivated by the fact that most of the
shapes in the subspaces M1 and M2 are unlikely and do not
lead to realistic shape instances. Hence, if we defined the
intersection simply as I = M1 ∩M2, then I would contain
a lot of degenerated shapes that we want to disregard. We
therefore only consider the plausible regions of two models,
which are exactly identified by Q1 and Q2.

The problem with the definition in (4), however, is that
real-world models are usually not noise-free. As a conse-
quence, the first condition, x ∈ M1 ∩ M2, will never be
met in practice since we can not find an x′ ∈ M2 such that
d(x′, x) = 0 exactly. To account for this, we weaken the
strong definition and formulate an approximate intersection
Iϵ for ϵ > 0 as

Iϵ := (Q1 ∩ (Q2 +Bϵ(0))) ∪ (Q2 ∩ (Q1 +Bϵ(0))) , (5)

where Bϵ(0) = {y ∈ Rdn : d(0, y) < ϵ} is the ϵ-ball in
Rdn centered at 0. This allows us to also consider shapes to
be in the intersection that are almost (up to ϵ) contained in
I . We can rewrite (5) as

Iϵ = {x ∈ Q1 | ∃x′ ∈ Q2 : d(x′, x) < ϵ}
∪ {x ∈ Q2 | ∃x′ ∈ Q1 : d(x′, x) < ϵ} .

(6)

Of course, Iϵ → I if ϵ → 0 and I ⊂ Iϵ for every ϵ > 0.
1By aligned, we mean that Euclidean similarity transformations (rota-

tion, translation, and scaling) between the two models have been removed.
This can always be achieved by aligning the respective mean shapes using
ordinary Procrustes analysis, see, e.g., [11].
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3.3. Algorithm

Instead of explicitly constructing the set Iϵ, we aim at
estimating the distribution of points x ∈ Iϵ. Given such
distribution, we can then effectively generate samples from
the intersection, which we use to build an SSM for the in-
tersection by applying PCA. The resulting linear model can
then be utilized to visualize and study the intersection space.

The advantage of estimating the distribution of x ∈ Iϵ
instead of randomly sampling from Ω and applying hard
constraints to test whether a point x belongs to the intersec-
tion is that we do not need to explicitly set values for the
parameters (ϵ, ξ1, and ξ2) involved in (6).

In detail, we model the posterior distribution of all x ∈
Q1, given that x ∈ Iϵ (and vice versa for all x ∈ Q2):

p(x |x ∈ Iϵ) =
p(x ∈ Iϵ |x)p(x)∫
p(x ∈ Iϵ |x)p(x)dx

. (7)

We call p(x ∈ Iϵ |x) the likelihood function and denote it
by L(x;x ∈ Iϵ). The probability p(x) is computed accord-
ing to (2) by noting that x = f1(α) for α ∈ Rq1 .

The likelihood function encodes the conditions under
which x belongs to the intersection space. In the follow-
ing, we show how the two conditions as stated in Section
3.2 can be directly translated into a likelihood.

First condition. We implement the first condition, i.e.,
finding an x′ ∈ M2 such that d(x′, x) becomes small, using
the orthogonal projection of x onto M2, given by

x′ = projM2
(x) = f2(U

−1
2 (x− x̄2)︸ ︷︷ ︸
=α′∈Rq2

). (8)

The point x′ is the closest point to x contained in M2 and
hence minimizes the distance between x and x′. With that,
we define a distance likelihood LD as

LD(x;x ∈ Iϵ) ∝ exp

(
−1

2

(
d(x′, x)

σ

)2
)
, (9)

where we used

d(x′, x) =
1

n

n∑
i=1

∥x′
i − xi∥2 (10)

and assumed d(x′, x) ∼ N (0, σ2). A similar likelihood
was originally proposed in [34] and recently used by [32]
for model-based surface registration.

Second condition. For the second condition, we require
both x and x′ to be likely. This can be implemented by
taking into account the probabilities p(x) and p(x′) of x
and x′. Since the probability of x is already included in
the formulation of the posterior in (7), we only need to care
about x′. To enforce the projection x′ to be likely, too, we
define a projection likelihood LP simply as

LP (x;x ∈ Iϵ) = p(x′), (11)

where the probability of x′ = f2(α
′) is given by (2). Our

final likelihood is then a combination of the distance and
projection likelihood and formulated as

L = LDLP . (12)

The posterior distribution p(x |x ∈ Iϵ) in (7) is now fully
specified. However, it is intractable and can not be com-
puted exactly. We therefore make use of approximate infer-
ence as described in the following.

3.4. Implementation

We use Markov chain Monte Carlo (MCMC) to approx-
imate the intractable posterior distribution in (7). This is
possible since p(x |x ∈ Iϵ) ∝ L(x;x ∈ Iϵ)p(x).

To construct a Markov chain, we make use of the
Metroplis-Hastings (MH) algorithm. The MH algorithm
requires a proposal distribution conditioned on the current
state. We use the same random walk mixture proposal as
proposed in [34]. Please refer to the supp. material for
more information about the MH algorithm and our pro-
posal distribution. To explore the parameter space and to
reduce auto-correlation between samples as much as possi-
ble, we use an ensemble of Markov chains instead of only
one chain. Each chain has a different starting point which
is sampled from N (0, I). We ensured that samples are suf-
ficiently far apart to avoid individual chains exploring the
same part of the parameter space.

3.5. Computing Differences

Keeping in mind the definition of the approximate in-
tersection space, we define the set-theoretic difference be-
tween two SSMs as

D12 := Q1 \ (M2 +Bϵ(0)) . (13)

The set D12 contains all x ∈ Q1 that can not be represented
in M2 (or vice versa for D21). We can rewrite (13) into

D12 = {x ∈ Q1 | ∀x∗ ∈ M2 : d(x∗, x) ≥ ϵ}. (14)

From a computational perspective, this formulation is rather
unpleasant due to the universal quantifier involved. Note,
however, that the point x′ = projM2

(x) minimizes the dis-
tance from x to M2 and thus, if d(x′, x) ≥ ϵ, then the same
holds for all x∗ ∈ M2. With this, we can rephrase (14) as

D12 = {x ∈ Q1 | d(x′, x) ≥ ϵ}. (15)

The condition of whether x belongs to the difference can
now be easily checked by means of the projection operator.

To estimate the distribution of points lying in D12 (or
D21), we only have to make two small changes to the al-
gorithm presented throughout the previous sections. From
the definition of the difference in (15) we observe that the
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First model Second model Intersection Difference Difference

Figure 1. Schematic illustration of how we generate training data for star models including ground-truth intersections and differences. For
the first model, we vary the first and third point of the star in [θj − a, θj + b], where j ∈ {0, 2}. For the second model, we vary the first
and the fourth point in [θj − c, θj + a], where j ∈ {0, 3}. The ground-truth intersection contains stars where the first point varies from
[θ0 − a, θ0 + a], whereas the ground-truth difference of the first and the second model contains stars where the first point ranges from
(θ0 + a, θ0 + b] and the third between [θ2 − a, θ2 + b]. The ground-truth difference of the second and the first model includes stars where
the first point varies from [θ0 − c, θ0 − a) and the fourth from [θ3 − c, θ3 + a].

only condition a point x ∈ Q1 has to fulfill in order to lie in
D12 is that the distance to its projection onto M2 becomes
large. This can be implemented by inverting the distance
likelihood in (9) as

L̄D(x;x ∈ Iϵ) ∝ 1− LD(x;x ∈ Iϵ). (16)

Secondly, since we no longer require the projection to be
likely, we remove the projection likelihood from (12).

After those minor modifications, our algorithm is ready
to be used to approximate the distribution of shapes lying in
the difference between two models. However, the space in
which the shapes of the difference between two SSMs lie is
no longer convex as the shapes lying in the intersection have
been removed. As such, it does not make any sense to apply
PCA to the MCMC samples as the resulting linearized space
would simply interpolate the intersection. Instead, we only
visualize random samples drawn from our Markov chain in
order to inspect the difference.

4. Experiments and Results
We conducted several quantitative and qualitative exper-

iments to validate our method.

4.1. Quantitative Analysis

Our quantitative evaluation is based on two data sets
from which we generate ground-truth intersection spaces.
The first is a synthetic data set based on a five-pointed
star. Due to the rather simplistic geometry, this data set
is well suited for an initial analysis and serves as a proof-
of-concept. The second is a real data set derived from a
real-world SSM and, consequently, shares a lot of desired
properties such as high dimensionality.

We employ the Grassmann distance as a natural distance
between two affine subspaces to compare ground-truth in-
tersections with the spaces recovered by our method. The
Grassmann distance is defined as the Euclidean norm of the

affine principal angles between two subspaces and can be
easily computed by applying Singular Value Decomposition
to the Stiefel coordinates of the two spaces, see, e.g. [28].
Please refer to the supp. material for more information.

Constructing ground-truth differences is far more com-
plex due to their topological structure. As such, the quality
of the differences recovered by our method can only be eval-
uated on the star models since, due to their synthetic con-
struction, we are able to generate samples from the ground-
truth difference (i.e., samples for which we definitely know
they are lying in the difference). This is not the case for
real-world SSMs because the ground-truth difference space
for real-world models is unknown.

4.1.1 Synthetic Data Set

For the synthetic data set, we use a five-pointed star as a
simple geometric object to generate training data by system-
atically varying its points, see Figure 1. Each point of the
star can be written as (r cos θi, r sin θi) with radius r and
angle θi, i = 0, . . . , 4. For the first model, we vary the first
and third point in range [θj − a, θj + b], where j ∈ {0, 2}.
For the second model, we vary the first and fourth point
in range [θj − c, θj + a], where j ∈ {0, 3}. The ground-
truth intersection model contains stars where the first point
ranges from [θ0−a, θ0+a]. The ground-truth difference of
the first and the second model contains stars where the first
point ranges from (θ0 + a, θ0 + b] and the third between
[θ2 − a, θ2 + b]. The ground-truth difference of the second
and the first model includes stars where the first point varies
from [θ0 − c, θ0 − a) and the fourth from [θ3 − c, θ3 + a].

We tested our method on six different values for a, b, c
as shown in Table 1. An ensemble of 15 chains was used,
where each chain was sampled 2,500 times. 1,000 samples
were considered as burn-in. Out of all samples, 5,000 sam-
ples were evenly chosen to build an SSM for the intersection
space. For the distance likelihood, we set σ = 0.003 for all

6368



Training data Intersection (Grassmann distances, dG ↓) Difference (Reconstruction errors, dR ↑)

Q1 Q2 I D12 D21 dG(Î , I) dG(Q1, I) dG(Q2, I) dG(Q1, Q2) dR(D̂12, I) dR(D̂21, I) dR(D12, I) dR(D21, I)

[−5, 40] [−20, 5] [−5, 5] (5, 40] [−20,−5) 0.0260± 0.0086 1.5634 1.5634 2.1211 0.2235± 0.1132 0.1148± 0.0534 0.1781± 0.2243 0.0911± 0.1122
[−5, 20] [−20, 5] [−5, 5] (5, 20] [−20,−5) 0.0370± 0.0110 1.5583 1.5583 2.1211 0.1165± 0.0556 0.1171± 0.0542 0.0911± 0.1122 0.0911± 0.1122
[−10, 40] [−20, 10] [−10, 10] (10, 40] [−20,−10) 0.0140± 0.0052 1.5471 1.5506 2.1211 0.2081± 0.1097 0.1150± 0.0540 0.1867± 0.2110 0.1073± 0.1081
[−10, 20] [−20, 10] [−10, 10] (10, 20] [−20,−10) 0.0323± 0.0094 1.5506 1.5506 2.1211 0.1107± 0.0510 0.1143± 0.0534 0.1126± 0.1080 0.1073± 0.1081
[−20, 60] [−30, 20] [−20, 20] (20, 60] [−30,−20) 0.0053± 0.0022 1.5240 1.5440 2.1211 0.2692± 0.1571 0.1509± 0.0809 0.2834± 0.3170 0.1861± 0.1569
[−40, 80] [−50, 40] [−40, 40] (40, 80] [−50,−40) 0.0018± 0.0004 1.4863 1.5375 2.1211 0.3257± 0.1994 0.2243± 0.1293 0.4200± 0.3993 0.3501± 0.2531

Table 1. Quantitative results for the star models based on different training sets, averaged over five runs. The comparison of the estimated
intersection space, Î , and the ground-truth intersection I is based on the Grassmann distance, denoted as dG. We also report various
baseline distances to give an intuition for the range of the distances. To evaluate whether or not posterior samples from the computed
differences, D̂12 and D̂21, are indeed from the true difference, we calculate reconstruction errors dR by projecting estimated samples and
samples from the ground-truth differences D12 and D21 into the ground-truth intersection model I . Note that the intervals for the training
data arise from setting different values for the parameters a, b, and c.

experiments (see supp. material for an ablation on σ).
We use the Grassmann distance as described above to

measure how well our method can recover the ground-truth
intersection space. To evaluate the quality of the computed
differences, we exploit the fact that we have samples from
the ground-truth difference model (clearly, we do not have
a parametrization of these models, but only a few samples
thereof). To this end, we quantify whether or not samples
from the difference generated by our method have as high
a distance from their reconstruction in the ground-truth in-
tersection space as the samples from the ground-truth dif-
ference (note that a sample belongs to the difference if
it can not be represented in the intersection). We, there-
fore, project the MCMC samples of the difference into the
ground-truth intersection model and calculate the average
reconstruction error, see supp. material for further details.
We do the same for the samples from the ground-truth dif-
ference. Similar reconstruction errors then indicate that all
samples generated by our method are indeed valid samples
from the true difference space.

Overall, the proposed method is able to recover the
ground-truth intersection space for all six models very well,
see Table 1. We measure an average Grassmann distance of
0.0194 between ground-truth intersections and the intersec-
tion spaces recovered by our method. We observe a similar
result for the estimated differences in terms of reconstruc-
tion errors. Figure 2 provides additional visualization of the
distribution of posterior samples.

4.1.2 Real Data Set

The simple geometry and ground-truth intersection spaces
of the star models enabled an intuitive analysis of the pro-
posed method. The geometry of real-world SSMs, however,
is oftentimes far more complex. We conduct experiments on
those models to further validate the proposed approach.

Given an SSM with a set of basis vectors, we generate
two individual models and a ground-truth intersection by
randomly splitting the set of basis vectors into three disjoint
subsets, S1, S2, and SI . The first two sets, S1 and S2, con-

Intersection Difference Difference

Figure 2. Visualization of (a random subset of) MCMC samples
generated to compute the estimated intersection Î and differences
D̂12 and D̂21 between two star models. The included polar fre-
quency histogram visualizes the distribution of posterior samples;
it indicates that most of the samples are indeed from the true pos-
terior distribution (i.e., they are within the bounds shown in red).

Training data Intersection (Grassmann distances, dG ↓)

dim(Q1) dim(Q2) dim(I) dG(Î , I) dG(Q1, I) dG(Q2, I) dG(Q1, Q2)

3 3 1 0.0032± 0.0010 1.5517 1.5532 2.1854
6 6 2 0.0645± 0.0455 2.1641 2.1855 3.0835
9 9 3 0.0877± 0.0178 2.6375 2.6901 3.7747

12 12 4 0.1683± 0.0106 3.1004 3.0849 4.3563
15 15 5 0.1939± 0.0433 3.4606 3.4467 4.8682

Table 2. Quantitative results for the estimated intersection spaces
of the real-world data set. We tested five different configurations
of individual model dimensions, dim(Q1) and dim(Q2), and the
dimension of the ground-truth intersection space, dim(I). Results
were averaged over three different random splits per configuration.

tain the unique basis vectors for the first and second model,
and the last set, SI , holds the basis vectors of the ground-
truth intersection. The two models’ bases are then given by
S1 ∪ I and S2 ∪ I , respectively. Since we can not generate
samples from the ground-truth difference, we present eval-
uations only for the computation of intersection spaces.

We used the first 15 basis vectors of the BFM 2019 [18]
for this experiment. Moreover, an ensemble of 25 chains
was used. Each chain was sampled 5,000 times with a burn-
in phase of 2,000 samples. To build the intersection model,
again 5,000 samples were evenly chosen out of all samples.
We empirically set σ = 0.3 for all models.

Table 2 presents the results for five different random
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Male Female Intersection Male without female Female without male

Figure 3. Random samples from the male and female model of the LYHM data set (1st and 2nd block) as well as samples drawn from the
computed intersection model (3rd block) and the respective differences (male without female, and female without male, 4th and 5th block).
We observe stronger male and female dominance in the differences and neutral gender in the intersection.

splits. As shown, the proposed method is able to recover
all ground-truth intersection spaces quite well with an aver-
age Grassmann distance of 0.1035. However, we observe
increasing distances as the dimension of the intersection
increases. This is most likely because MCMC does not
properly sample the entire space, and may be alleviated by
choosing larger proposals or running more Markov chains.
Indeed, by doubling the number of chains, the Grassmann
distance decreases by more than 10%.

4.2. Qualitative Results

To showcase our method on real-world SSMs, we com-
pute and analyze intersections and differences between (i) a
gender-specific male and female model, and (ii) an identity
and expression model. Due to the missing ground-truth in-
tersection spaces and differences, we can only provide qual-
itative results. However, to underline that our method does
not simply produce the union of two models, or even worse,
just reproduces one model, we do report Grassmann dis-
tances to the union and to individual models. The union of
two models is computed by applying PCA to a set of ran-
dom samples from both models.

Male and female models. Both models were built us-
ing 600 faces from the LYHM database [9]. We used a
face mask to only include the frontal region of the face and
truncated both models to include the first 50 basis vectors.
Each model has 5,764 vertices. As such, both SSMs span
a 50-dimensional affine subspace which is embedded in a
17,292-dimensional vector space.

Exemplary results can be found in Figure 3. As seen,
random faces sampled from the intersection model do not
show a strong preference towards male or female, and most
of the time tend to look more neutral compared to faces
drawn from the individual male or female models. Further-
more, while random faces from the difference between male
and female show extremely masculine traits, samples from
the difference between female and male look rather femi-

nine. We report a Grassmann distance of about 1.8 from the
intersection to the union of male and female, and a distance
of 3.2 and 2.8 to individual male and female subspaces.
Computing the intersection model took about 110 minutes
on a single core; differences half the time.

Identity and expression models. Face identity and ex-
pression are usually modeled separately in 3DMMs. As
recently demonstrated in [13], however, the subspaces
spanned by the identity and expression model are far from
being orthogonal and thus, face identities and expressions
are not independent of each other. As a consequence, it is
not possible to alter a specific face identity without leav-
ing its expression completely unchanged (and vice versa).
Although only hardly visible with the human eye, this ef-
fect has implications on downstream applications such as
expression transfer and inverse rendering [13].

We use our method to further study this ambiguity, also
known as the identity-expression ambiguity, and analyze the
intersection as well as differences between the identity and
expression models of the BFM 2019 [18]. We again trun-
cated both SSMs to the first 50 basis vectors. Each model
has 1,746 vertices, leading to a 5,238-dimensional vector
space in which the models’ subspaces are embedded.

Results are shown in Figures 4 and 5. While there is no
ground-truth for this task, the observations match our intu-
ition, e.g., shape variations of the nose do not arise in the
expression model but solely in the identity model, and ef-
fects based on muscle movement dominate in the identity
model. To still add a quantitative element, we measured the
Grassmann distances between the intersection and original
identity and expression models and report a distance of 5.36
to identity, and 5.09 to the BFM expression model. Those
distances being close to each other show that the intersec-
tion model somehow lies between the identity and expres-
sion model. The Grassmann distance to the union is 3.48.
It took about 30 minutes to compute the intersection model.
Again, computing differences required half the time.
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IntersectionIdentity Expression Identity without expression Expression without identity

Figure 4. Random samples from the original identity and expression models of the BFM 2019 (1st and 2nd block) as well as samples of
the computed intersection model (3rd block). Also shown are samples from the difference between identity and expression models (4th
and 5th block). We observe less expression variation in samples drawn from the difference of identity and expression (identity without
expression, 4th block) and less identity variation in the difference of expression and identity (expression without identity, 5th block).

Identity Expression Intersection Id. w\o expr. Expr. w\o id.

Figure 5. Per-vertex level visualization of similarities and differ-
ences between the BFM 2019 [18] identity and expression mod-
els. Depicted is the per-vertex variance of the original identity
and expression models as well as the posterior variance for the
computed intersection model and differences (red areas show high
variance, blue areas low). The intersection visualizes the source of
the identity-expression ambiguity, differences highlight features
represented either by identity (nose) or expression (opening of
mouth, raising cheeks and eyebrows).

For both tasks (male vs. female and identity vs. expres-
sion), we observed very similar results for the FLAME [27]
model. Please refer to the supp. material.

4.3. Extension to Color

Since texture in 3DMMs is modeled similarly to
shape [2], our method can be used to also compute intersec-
tions and differences between texture models without any
algorithmic changes. Results for male and female 3DMMs
described above can be found in the supp. material.

5. Limitations

Although the presented method yields appealing results,
our approach in its current form is not without limitations.
First, with increasing dimension of the intersection space
more Markov chains are needed to explore the parameter
space; this phenomenon is known as the curse of dimen-
sionality. It naturally increases the run time of our method.
We plan to tackle this issue by parallelizing Markov chains

and by using more effective MCMC samplers such as the
Metropolis-adjusted Langevin algorithm [20].

Second, if SSMs are not in dense correspondence, we re-
quire some form of optimization in the projection operation,
i.e., (8) needs to be adapted. Clearly, while the projection
can be computed in closed-form if models are in correspon-
dence, we require registration if they are not in correspon-
dence. This can be efficiently carried out prior to the appli-
cation of our method using techniques proposed in [33].

Lastly, although our method and the chosen parameters
might not be trivial to evaluate on real-world models, the re-
sult can always be well validated empirically by estimating
ϵ from the MCMC samples, see supp. material.

6. Conclusion
In this paper, we have introduced a new method to com-

pare SSMs by computing approximate intersection spaces
and set-theoretic differences between the low-dimensional
allowable shape domains spanned by two models in dense
correspondence. We showed how MCMC can be leveraged
to approximate the distribution of shapes lying inside those
spaces, and, based on posterior samples, compute a new
SSM for the intersection. Building upon this algorithm, we
further demonstrated that our method can be easily adapted
to also compute set-theoretic differences. Confirmed by
quantitative and qualitative evaluation on synthetic data and
real-world face models, the proposed method is able to re-
cover ground-truth intersection spaces and differences accu-
rately. Moreover, qualitative results obtained on real-world
SSMs match our intuition. In future work, we plan to study
how our approach is (or may be) correlated to performance-
based metrics, such as the Bhattacharya distance.
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