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Abstract

This paper studies a convolutional masked image modeling
approach for boosting downstream dense prediction tasks
on pathology images. Our method is self-supervised, and
entails two strategies in sequence. Considering features
contained in the pathology images usually have a large
spatial span, e.g., glands, we insert [MASK] tokens to the
masked regions after the stem layer of the convolutional
network for encoding unmasked pixels, which facilitates
information propagation through masked regions for re-
constructing unmasked pixels. Furthermore, the pathology
images contain features that are represented in diverse
affine shapes and color spaces. We, therefore, enforce the
network to learn the affine and color invariant embed-
ding by imposing transformation constraints between the
unmasked image-encoded embedding and reconstruction
targets. Our approach is simple but effective. With ex-
tensive experiments on standard benchmark datasets, we
demonstrate superior transfer learning performance on
downstream tasks over past state-of-the-art approaches.

1. Introduction

Deep learning on computational pathology has shown
promising trends in precise and efficient diagnosis, progno-
sis, and treatment selection by using pathology images, i. e.,
whole slide images [29, 35,42, 49]. However, the perfor-
mance of the deep learning methods is hindered by limited
amounts of dense manual annotations of pathology images
that are composed of gigapixels.

To mitigate the annotation workload, this paper studies
a self-supervised pre-training framework on pathology im-
ages. Our method is a convolutional masked image mod-
eling approach, only using pathology images for training.
By transferring our pre-trained network weights into di-
verse computational pathology downstream tasks, signifi-
cant performance improvement can be achieved, compared
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Figure 1. Overall comparison of our method and state-of-the-art
self-supervised learning framework on GlaS dataset [1]] for de-
tection and instance segmentation tasks. The triangles and cycles
respectively denote the ViT-S/16 and ResNetl8 [22] backbones of
self-supervised learning methods. The mean average precision
(%) [34,47] is used as the evaluation metric. We show the top-
performing methods only, and please refer to our experiment sec-
tion (Tab. 1) for details. Best viewed in color on the screen.

with training the network from scratch.

Self-supervised learning (SSL) has extraordinarily suc-
ceeded on natural RGB images, shifting state-of-the-art ap-
proaches from adopting contrastive learning to emerging
masked image modeling (MIM). However, the MIM ap-
proaches [43] perform inferior over contrastive learning ap-
proaches [47] in pathology images (Fig. 1).

A question is naturally raised to our study, what is ob-
structing the success of MIM for SSL on pathology images?
In the following, with detailed analysis, we consider convo-
lution network backbones [22] for pre-training to assist the
victory of MIM, due to their high performance on down-
stream tasks over vision transformer (ViT) backbones [14]
(refer to Tab. 1 for evidence).

Under the framework of MIM, networks are trained to
reconstruct masked pixels from unmasked ones. Past con-
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volutional MIM approaches use sparse convolutions [9,43]
for encoding unmasked pixels into embeddings, [MASK]
tokens are then inserted into masked regions of the embed-
dings, and they are finally used to decode the masked pixels.

Therefore, compared to contrastive learning, convolu-
tional MIM suffers two limitations: i) information prop-
agation bottlenecks. Features contained in the pathology
images usually have a large spatial span (Fig. 2). Though
unmasked pixels are removed by applying sparse convo-
lutions, the information propagation among the unmasked
pixels is also hindered during encoding, which is in con-
trast to contrastive learning that allows information prop-
agation in any image region typically. In the worst case,
a pathology image is masked into isolated blocks, and the
information propagation among the blocks only happens in
BatchNorm layers and other bottom layers (when the sparse
convolution kernel size is larger than the distance among the
isolated blocks after progressive downsampling operations)
of the network; ii) lack of embedding invariance. Pathology
images contain features represented in diverse affine shapes
and color space [23, 25]. Unlike contrastive learning that
the networks are trained to learn invariant embedding from
differently represented same pathology image features, net-
works trained under the MIM framework encode feature-
variant embedding, for the pathology image reconstruction.
However, the invariant embedding is demanded by diverse
pathology downstream dense prediction tasks.

Our convolutional MIM method proposes two strate-
gies to mitigate the above limitations in sequence. Given
a pathology image and a randomly generated mask, we
first perform affine and color augmentations on the image.
Instead of using sparse convolutions for encoding the un-
masked pixels, our masking operation has two stages. We
zero out masked pixels, forward the masked images to the
stem layer of the network, and then insert [MASK] to-
kens to the stem layer output before further network encod-
ing, allowing information propagation of unmasked pixels
through masked regions for the network.

After encoding unmasked pixels to embeddings, the in-
verse affine transformations are performed to the embed-
dings, for reconstructing corresponding unmasked pixels in
the un-augmented pathology images. This is inspired by
contrastive learning that networks are trained to learn affine
and color invariant embeddings. In this way, our network
is trained to learn the same embedding for pathology image
features that are even affine transformed and represented in
different colors, benefiting potential downstream tasks.

Our contributions are summarised as follows:

e A convolutional masked image modeling framework

for self-supervised learning on pathology images;

* A masking strategy, avoiding information propagation
bottleneck during encoding unmasked pixels;

* An invariant embedding learning strategy by con-
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Figure 2. Region similarity distribution of (a)

and (b) . In the first and second rows, we respec-
tively use the large-scale IN-1K [12] and multi-source pathology
datasets [1] pre-trained ResNetl8 [], 22] for extracting spatial
features (i. e., output of the conv5 layer) of 500 randomly sam-
pled (a) pathology images [20] and (b) natural images [12], and
calculate cosine similarity between different regions. Considering
region similarity within natural images as a reference, the compar-
ison shows that regions of pathology image share high similarity
that tends to compose features of a large spatial span.

straining the network reconstruction targets.

We evaluate our method on standard pathology image
benchmark datasets. Comparing with extensive SSL ap-
proaches and recently emerged vision foundation models
(i.e., SAM [27]), we show that our method achieves state-
of-the-art performance. Refer to Fig. 1 for an overall com-
parison with state-of-the-art approaches.

2. Related Work

SSL frameworks are mainly underpinned by two main
approaches: contrastive learning and masked image model-
ing. In this section, we introduce recent SSL achievements,
and then review SSL applications in pathology images.
Contrastive learning. Learning invariant image embed-
dings is focused on contrastive learning approaches [5].
By assuming augmentation invariance of images, multiple
views of each image are generated for instance discrimina-
tion [5, 6, 8, 20, 46] or group discrimination [3, 4, 30, 47].
This pulls the embeddings of positively matched embed-
ding pairs e.g., views of the same images, while pushing
away the negatively matched embedding pair e.g., views
of different images. There are also some approaches that
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Figure 3. Overall architecture. Given a pathology slide image x, we sample two affine transformation, t1(-),t2(-) ~ T, and a color
transformation, ¢ ~ C, where T and C are respectively affine and color transformation space. We then transform the image X to x9 =
c(t1 (x)) and x* = to(x). Meanwhile, we randomly sample a mask m, where the masked regions are colored in red. We denote our
encoder network as a N-layer sequence, fi1 o fo o --- o fn(-). We first mask the image x% by a elementwise multiplication ® with m,
embed the masked image x° © m with the first/stem layer f1(-), and insert the [MASK] token (Eq. 2) to the masked regions of the
stem layer output f1(x% © m) based on the mask m before forwarding the embeddings into further encoder layers. After the encoding
stage, we collect intermediate embeddings from each encoder layer, transform each of the embeddings with t» (t;l ()), and combine the
transformed embeddings (Eq. 4 and Eq. 5) to construct a simple multi-scale feature, for reconstructing x* with a decoder d(-). We denote
the reconstruction as X*. We optimize the network by the mean squared loss L. (Eq. 7), encouraging the network to reconstruct the

corresponding masked regions to (tfl (1- m)) of X*. Best viewed in color on the screen.

only enforce embedding similarity [7, | 7]. In certain tasks,
contrastive learning has shown remarkable performance im-
provements compared to supervised pre-training [8, 14,48].
However, the instance and group discrimination settings are
biased in learning image-level embeddings, and are less ef-
fective for dense prediction tasks. Therefore, the instance
discrimination tasks are further refined into discriminating
embeddings of different regions [16,24,39,40,44], forming
dense contrastive learning. Motivated by contrastive learn-
ing, this paper studies the idea of learning invariant embed-
ding in a MIM manner.

Masked image modeling. Inspired by masked language
modeling [13], MIM trains a vision transformer [ 4] to re-
construct masked pixels from unmasked ones [19], where
the masking operations are usually performed patch-wisely.
By leveraging vision foundation models [37], the recon-
struction targets can be represented by the foundation model
embeddings, learning stronger structure and semantic in-
formation of the images. Some works also frame the re-
construction tasks into a classification problem, by predict-
ing the indices assigned to the masked patches by an im-
age tokenizer [2, 36,50]. One may note that MIM brings
irregularly masked images, imposing challenges for appli-
cations in regular convolutional networks. Therefore, past

works [43] apply sparse convolutions that treat unmasked
patches as sparse voxels, showing state-of-the-art transfer
learning performance on diverse downstream tasks. This
paper studies convolutional MIM without relying on sparse
convolutions, by proposing a new masking strategy.

Self-supervised learning in pathology images. Explo-
rations of SSL in pathology images are still rare, and can
be specified to [10,28,47], where [10] applies SImCLR [5]
in pathology images, [28] explores pathology-related aux-
iliary tasks for pre-training, e.g., magnification prediction,
and [47] proposes a region-based contrastive learning ap-
proach. In the same vein of [47], this paper studies SSL in
pathology images for dense prediction tasks, but focuses on
learning discriminative network embeddings through MIM.

3. Method

We start with introducing the background knowledge.
Then, we provide an overview of our convolutional MIM
framework, and describe each network component. Our
framework is shown in Fig. 3.

Preliminary. Convolutional MIM follows a pipeline of
learning discriminative embeddings through reconstructing
masked images (refer to [43] for details). We briefly re-
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view the main steps. An image x is augmented to x9, and
a mask m is randomly generated, where values of one and
zero of the mask respectively denote unmasked and masked
regions The masked image x4 ® m is next encoded with a
sparse convolution-based network, where ©® is an element-
wise multiplication operator. After the encoding stage, the
sparse embeddings from each network layer are collected
and densified. Specifically, for embedding from each net-
work layer, a mask [MASK] token is broadcasted to the
same spatial size of the embedding, and then inserted into
masked regions of the embedding according to the mask m.
These densified embeddings are finally forwarded to a de-
coder for reconstructing the masked pixels x4 ® (1 — m).
Two main limitations exist in the past convolutional
MIM for applying in pathology images, i.e., information
propagation bottlenecks and lack of embedding invariance,
as analyzed in Sec. 1. In this study, we attempt to mitigate
the limitations by rethinking the masking strategy and re-
construction targets.
Model overview. Given a image x, we sample two affine
transformation, ¢1(-) ~ 7T and ¢2(-) ~ 7T, and a color
transformation, ¢(-) ~ C, and augment the image by x9 =
¢(t1(x)), where T and C are space of affine and color trans-
formations. Our method has three components connected
in sequence: i) embedding encoding. With a randomly gen-
erated mask m, we use regular convolutions for encoding
masked image xq ® m, where a [MASK] token is inserted
to the intermediate network embedding outputted from the
stem layer of the network; ii) embedding decoding. Collect-
ing embeddings from each layer of the network, we perform
affine transformation ¢, (¢;" (+)), aiming to decode the un-
masked pixels of x* = t5(x), i.e., t2 ((1 —m) ®x) or
ty (1 — m) ®xX; iii) loss. We optimize our network (Fig. 3)
with mean squared error (MSE), following [19,43].
Embedding encoding. We denote our N-layer backbone
network as fj o fo 0 --- o fn(+)', where f; is the i* layer
and 1 < i < N. We forward the masked image x9 ® m to
the stem layer f,(-), for embedding the masked image,

e=fi(x?oOm), 6]

where e is the embedding from the stem layer.

Unlike the past convolutional MIM that encodes the im-
ages with sparse convolutions and inserts [MASK] tokens
to the encoded embeddings for decoding masked pixels,
we insert the [MASK] tokens to e during encoding, en-
joying information propagation across different image re-
gions, under a regular convolution network. Specifically,
we first broadcast the [MASK] tokens to [MASK]S*®™, and
the mask m is also interpolated to m**™, for having the

IThe first layer f1(-) of a convolutional network is usually known as
the stem layer. Similar to ViT [14], it can be considered for the purpose
of embedding the input, i.e., representing the input in high dimensional
feature space. For example, the first/stem layer of ResNet [22].

same spatial size of e. We then insert the [MASK]*™ to-
kens to e with m®*™, yielding z;. The process is given by

7z =e- 1,nstem + (1 _ mstem) . [MASK] stem . (2)

To further encode z;, the remaining network layers
{f:()}N, progressively forward the embeddings,

z; = fi(zi-1), Vi€ [2,---,N]. 3)

Collecting embedding z; from each layer, we have {z; }N_,,
preparing for decoding masked pixels.

Embedding decoding. To learn invariant features, we
perform an inverse affine transformation ¢ (-) on the col-
lected embeddings {z;} ,, for aligning the embeddings
with the un-augmented version of x9, i.e., x. We then fur-
ther augment the inverse transformed embedding with ¢o(+),
for reconstructing unmasked pixels of x, i.e., ta(x). The
overall transformation process is given by

A=t (17 () . Vie[l N @

Note that the network is encouraged to learn color invari-
ant embedding by encouraging to reconstruct corresponding
masked pixels of x¥ from unmasked pixels of x9.

To reconstruct the masked pixels, we first unify the em-
beddings {z5}N_; to the same spatial size by using N con-
volution layers {Conv;(-)}N_,, and combine the outputs to

construct a simple multi-scale embedding z™°,

N
z™¢ = Z Conv; (z¥) . 3)
i=1

With 2™, a decoder d(-) is used for reconstructing x*. We
denote the reconstruction as XX that is given by

K = d(z™°) . (6)

Loss. Our network is optimized with MSE loss for pulling
the reconstruction of masked pixels close to the target image
xK = t5(x). The loss is given by

Loe= | =)0t (7 A—m)|*, @

where ||-|| is the Frobenius norm that reduces the loss from
a matrix to a scalar.

4. Experiment
4.1. Experimental Setup

Pre-training dataset. We use the NCT-CRC-HE-100K-
NONORM (NCT) dataset [26] for pre-training. The dataset
contains 1 x 10° pathology image tiles extracted from hema-
toxylin & eosin (H&E) stained whole slide images (WSIs)
of human colorectal cancer and normal tissue. They are
recorded at 0.5 microns per pixel, and each pathology im-
age tile is composed of 224 x 224 pixels. We follow the
train-test splits of [47], and use the train split for network
pre-training.
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Table 1. Comparison of object detection and instance segmentation of our method and state-of-the-art approaches on the GlaS dataset [1] ]
and CRAG dataset [18]. We use AP®®, AP35, AP™", and AP as evaluation metrics [34]. AP®® and AP™* respectively measure the mean
average bounding box and segmentation precision, while AP5 and APYF are the precision at 75% intersection over union (IoU).

GlaS dataset CRAG dataset
Method  Backbone Detection Segmentation Detection Segmentation
AP® AP% AP™F APFY AP® AP% AP APFY

Training from scratch, i. e., random weight initilizations.

Supervised pre-training, i. e., the backbone weights are transferred from supervised pre-training on the NCT dataset.

Contrastive learning, i. e., the backbone weights are transferred from contrastive learning.

SimCLR  ResNetl8 50.6 56.8 53.9 62.9 48.1 52.0 47.8 53.7
BYOL ResNet18 50.2 56.9 54.4 63.9 49.3 54.1 48.7 54.6
MoCo-vl  ResNetl8 49.8 55.1 53.1 61.7 47.2 51.9 479 53.0
MoCo-v2  ResNetl8 55.2 63.6 58.3 68.3 51.8 57.6 52.1 58.7
DenseCL  ResNet18 56.0 64.8 58.8 68.7 52.5 58.2 529 60.0
ConCL ResNet18 58.6 68.1 61.0 71.3 55.1 614 54.5 62.6
MIM, i. e., the backbone weights are transferred from masked image modeling.

SparK ResNet18 56.0 65.8 57.4 67.6 534 59.7 53.0 59.6
MAE ViT-S/16 57.2 65.3 59.4 68.8 56.0 61.9 55.8 61.8
BeitV2 ViT-S/16 57.1 65.3 59.7 68.1 56.1 63.2 55.8 62.3
EVA ViT-S/16 57.5 66.2 60.2 69.9 55.2 62.6 55.6 62.0
Ours ResNet18 60.8 71.1 61.7 72.1 57.1 64.4 56.4 64.3

Pre-training architecture. We use ResNetl18 as the net-
work backbone, and is compared with state-of-the-art ap-
proaches that either uses ResNet18 [22] or ViT-S/16 [14]
backbones. Note that SSL in pathology images is an emerg-
ing area, and the state-of-the-art methods from the natural
image domain are benchmarked by [47] or us. Refer to [47]
for optimization details of contrastive learning approaches,
and we use batch size 256 for benmarking MIM methods.
Baseline. We compare with four method groups: i) train-
ing from scratch. Random weight initialization is used for
training on downstream tasks; ii) supervised pre-training.
We initialize the backbone weights with pre-training on
the NCT dataset for tissue classification [26, 47]; iii) con-
trastive learning. The backbone weights are initialized by
using SimCLR [5], BYOL [17], MoCo-vl [20], MoCo-
v2 [6], DenseCL [44], or ConCL [47]; iv) MIM. SparK [43],
MAE [19], Beitv2 [36], or EVA [15] pre-trained backbone
weights are transferred to downstream tasks.

Downstream task & dataset. Following [47], we explore
object detection and instance segmentation of glands, and
use the pathology images challenge (GlaS) dataset [4 1] and
Colorectal adenocarcinoma gland (CRAG) dataset [ 18].
Downstream task architecture. We use Mask RCNN
[21] with a backbone network and a feature pyramid net-
work (FPN) head [32] as the detector, and following [47],
the fully convolutional network (FCN) head from [21] is

used for segmentation. For our method and other convolu-
tional state-of-the-art approaches [0, 17,20,22,43,44,47],
the Mask RCNN backbone network is set to ResNet18. For
the approaches with a ViT backbone [14, 15, 19, 36], ViT-
Det [31] is used to construct a feature pyramid from the iso-
metric features of the ViT backbone for the Mask RCNN.
Implementation detail. mmselfsup [ 1] and Detectron2
[45] codebases are used for pre-training each method and
fine-tuning them on the downstream datasets. The average
results of 5 independent experiments are reported. In pre-
training, we follow [47] for data augmentations, and use
mask patch size 32 x 32 [43]. Our method is trained from
scratch with an SGD optimizer for 800 epochs. The learn-
ing rate is set to 3 X 1072, and is scheduled with a cosine
annealing strategy [47]. The weight decay and momentum
of the optimizer are respectively 1 x 10™% and 9 x 10~1. We
use batch size 256. A single decoder layer from [19] with
hidden dimension 256 is used as our decoder. Our fine-
tuning pipelines follow [47] and [31].

4.2. Experimental Result

We use the family of mean average precision (mAP)
metric for evaluations, following COCO-style [34,47], i.e.,
APP’/AP™* and AP52/7F (the higher the better) for the de-
tection/segmentation task.

The comparisons with state-of-the-art approaches on the
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Figure 4. The object detection and instance segmentation performance of our method with respect to different masking ratios on the GlaS
dataset [41] and CRAG dataset [15], corresponding to the first and second rows. We present (a) AP, (b) AP, (c) AP™F and (d) APSY
from the first to last columns repscetively. Overall, the masking ratio 70% finds the best performance. Best viewed in color on the screen.

GlaS dataset [41] and CRAG dataset [18] are given in
Tab. 1. Per the comparisons, our findings are as follows:
i) the groups of ‘training from scratch’ and ‘supervised
pre-training’ obtain similar performance, suggesting that
there is barely beneficial knowledge from the tissue clas-
sification tasks to the downstream tasks of dense prediction,
i.e., object detection and instance segmentation. This fur-
ther demonstrates the demands of learning discriminate fea-
tures for the dense prediction tasks in a self-supervised pre-
training manner; ii) ConCL and EVA tend to achieve the
second-best performance, with a ResNetl8 and ViT-S/16
backbone. Though ViT-S/16 almost doubles the number
of parameters in ResNet18, their performance stays similar.
With the observation, we are motivated to explore the con-
volutional backbone-based self-supervised learning frame-
work; iii) the past convolutional MIM approach, Spark, is
less competitive, compared to the dense contrastive learn-
ing approaches [44,47]. As analyzed in Sec. 1, features
of pathology images usually have a large span, and the
sparse convolution used by SparK prevents the network
from modeling such features, potentially incurring domain
shifts between model pre-training and downstream tasks
fine-tuning; iv) our method consistently finds the best per-
formance across all evaluation metrics on the two down-
stream task datasets.

4.3. Ablation Study

We ablate our network components and optimization
strategy for both pre-training and fine-tuning.
Masking ratio. We study the masking ratio for pre-
training our framework. The masking ratio is varied from
10% to 90% with a step size of 10%, and the results are
given in Fig. 4. Setting the masking ratio as 70% tends to

Table 2. Ablation study of model components.

GlaS Dataset CRAG Dataset

Method
AP® AP% AP® APZ:
Emb. masking 59.9 70.0 56.6 64.0
Emb. invariance 58.7 68.6 56.5 63.6
Ours 60.8 71.1 57.1 64.4

find the overall best performance. This finding is consis-
tent with [19] that a high masking ratio is hypothesized to
learn discriminative features for downstream tasks. It is also
worth noting that our method outperforms the past convo-
lutional MIM approaches [43] even with other sub-optimal
masking ratios, suggesting robustness of our approach.
Model component. We study our self-supervised learn-
ing components. We consider three baselines: i) SparK
[43]. This state-of-the-art method can be considered as a
baseline for our convolutional MIM framework; ii) Emb.
masking. We use our embedding masking strategy for pre-
training; iii) Emb. invariance. Our strategy of learning in-
variant embedding is used in pre-training. Our component
consistently improves the downstream task performance.
Compared to the second-best baseline, ‘Emb. masking’,
we have 0.9/1.1 and 0.5/0.4 higher AP**/AP% on the GlaS
dataset [41] and CRAG dataset [ | 8] respectively.
Fine-tuning schedule. We study the fine-tuning sched-
ules for transferring our pre-trained backbone weights on
the downstream tasks (Tab. 3). We follow the same set-
ting as [47], where the standard fine-tuning schedule is set
as ‘1x’. In other settings, the digit before ‘x’ indicates a
multiplier for scaling the optimization iterations in the stan-

7803



Table 3. Performance of our method on the detection and instance segmentation downstream tasks under different fine-tuning schedules.
The standard fine-tuning schedule [17] is defined as 1 X, and is scaled to 0.5%,2X, 3, and 5x schedules.

GlaS dataset CRAG dataset
Schedule Detection Segmentation Detection Segmentation
AP® AP AP™E APZE AP®® AP AP™E APZEE
0.5%x 60.0 70.3 60.7 71.0 57.5 65.0 56.7 65.2
1x 60.8 71.1 61.7 72.1 57.1 64.4 56.4 64.3
2% 61.0 71.2 61.8 722 57.6 65.2 56.5 65.4
3x 60.9 71.3 62.1 72.6 57.7 64.9 56.5 65.2
5% 61.1 70.9 61.9 72.3 57.7 65.1 56.7 65.5
[ RetinaNet 3 C4 = DC5 1 FPN Table 4. Ablation study of pre-training epochs.
Pre-training GlaS Dataset CRAG Dataset
@) AP (b) AP% Epoch bb bb bb bb
e T AP AP AP APY
= 60 | 1ol il 200 58.5 65.4 56.3 63.4
B | 1 400 59.7 69.1 56.8 63.7
g 68 + 1 800 60.8 71.1 57.1 64.4
< 58 1 1600 60.8 71.2 574 64.6
© 56l I:l 1 64| 1
T o Pre-training epoch. We respectively pre-train our meth-
— s T 65 ods for 200, 400, 800, and 1600 epochs to study the re-
- ] lations between pre-training epochs and downstream task
T 55 | | 637 1 performance. The results are given in Tab. 4. Consistently,
£ 61 | 1 the downstream task performance benefits from increments
g 53 | 1 of the pre-training epochs. However, by pre-training our
< 591 1 method for 800 epochs, computation costs and downstream
% 51 | |—| ] 1 o571 l:l — il task performance are balanced on both datasets.

Figure 5. Ablation of the detector backbone on the GlaS dataset
(the first row) and the CRAG dataset (the second row). We use (a)
AP® and (b) APYS as the evaluation metrics. We explore the four

well-known detectors: [33], (dubbed C4)
[38], (dubbed DCS5) [38], and (dubbed
FPN) [32,38]. Best viewed in color on the screen.

dard fine-tuning schedule. Our approach can converge with
0.5x%, 1x, or 2x schedules. Unlike ConCL [47] that bene-
fits most with the 5x schedule (indicated by its Tab. 3), our
approach converges faster, showing that our model learns
more dense prediction knowledge during pre-training.
Detector architecture. We study the impact of the detec-
tor architecture for transferring our pre-trained backbone
network in the downstream tasks. The comparisons are
given in Fig. 5. We consider four well-known detecor archi-
tectures, RetinaNet [33], RetinaNet [33], RCNN-C4 [38],
RCNN-DCS5 [38], and RCNN-FPN [32, 38]. The RCNN-
FPN architecture significantly outperforms other detector
architectures on the downstream tasks. Even with the least
performed RCNN-DC5 detector, we remain to find 56.9
AP and 56.9 AP% on the GlaS dataset [ | ], which outper-
forms most of the state-of-the-art approaches from Tab. 1.

Model scalability. We scale our backbone network to
ResNet34 and ResNet 50 in Tab. 5, and pre-train them with
the same settings. We find that the best performance on the
GlaS dataset [41] and CRAG dataset [18] is achieved by
using the ResNet34 and ResNet50 backbone respectively.
One may note that the ResNet50 backbone has a perfor-
mance decrease on the GlaS dataset [41]. This can be ex-
plained that we use the same fine-tuning pipelines for all
scales of model architectures [47]. A large model always
requires stronger regularization than a small model when
fine-tuning on the same dataset [19,47]. In this paper, we
focus on the study of network pre-training, and do not fur-
ther investigate the fine-tuning pipelines.

5. Discussion

Detection and segmentation visualization. We visual-
ize the detected bounding box and segmented masks of our
method and the two most competitive methods from Tab. 1,
i.e., ConCL [47] and EVA [15], in Fig. 6. The results show
that our method can capture objects better on both the de-
tection and segmentation tasks, benefiting from our effec-
tively pre-training strategies. For example, in the first row,
our method accurately detects the five glands, while ConCL
and EVA results in 2 and 3 false positive detection.
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(a) Image (b) Ground truth

(c) ConCL [47]

() EVA[15] (e) Ours

Figure 6. Detection and instance segmentation examples of state-of-the-art approaches and our method. (a) is pathology images. (b)
is ground truth bounding boxes and instance segmentation masks. (c) and (d) are predictions of ConCL [47] and EVA []5], the most
performing past approaches in our tasks. (e) is predicted by our method. Best viewed in color on the screen.

Table 5. Ablation study of model scalability.

GlaS Dataset CRAG Dataset

Backbone
APY AP APY AP
ResNet18 60.8 71.1 57.1 64.4
ResNet34 61.5 72.2 58.0 65.3
ResNet50 60.5 69.8 58.3 66.1

Comparison with SAM. We compare with the recently
released foundation model in our task, i.e., SAM [27] that
is trained with a ViT-H backbone on billions of instance
masks. Three types of prompts for SAM are explored: i)
Automatic. We use the official automatic point prompts
generator from SAM for instance segmentation. Bounding
box predictions are inferred from the segmentation mask;
ii) GT point. We supply the center point of each ground
truth bounding box to SAM; iii) GT bbox. The ground truth
bounding box is used to prompt SAM for the instance seg-
mentation task. The ‘GT bbox’ setting can be considered
as the upper-bound performance of SAM. Consistently, our
method finds a better performance than SAM.

6. Conclusion and Broader Impact

In this paper, we study a self-supervised convolutional
MIM framework for facilitating dense prediction tasks
on pathology images. Observing that the pathology im-

Table 6. Comparison with foundation model of instance segmen-
tation, SAM [27]. The -’ symbol denotes unavailability.

SAM Prompt GlaS Dataset CRAG Dataset
APbb APmk APbb APmk}
Automatic 1.9 1.6 4.4 4.1
GT point - 11.7 - 21.0
GT bbox - 58.2 - 57.2
Ours 60.8 61.7 57.1 64.4

ages contain features of large spatial span, different affine
shapes, and diverse color, our key insights are using
[MASK] tokens after the stem layer of the work for boost-
ing information propagation through masked regions during
the encoding stage, and encouraging the network to learn in-
variant embedding through constraining the reconstruction
targets during the decoding stage. With extensive exper-
iments, our method demonstrates state-of-the-art transfer
learning performance on standard benchmark datasets.
Broader impact. Our method can be potentially applied
to assist in modern health care. We hope this paper will
draw more attention to SSL on pathology images.
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