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Abstract

Automatic detection of facial Action Units (AUs) allows
for objective facial expression analysis. Due to the high
cost of AU labeling and the limited size of existing bench-
marks, previous AU detection methods tend to overfit the
dataset, resulting in a significant performance loss when
evaluated across corpora. To address this problem, we pro-
pose FG-Net for generalizable facial action unit detection.
Specifically, FG-Net extracts feature maps from a Style-
GAN?2 model pre-trained on a large and diverse face im-
age dataset. Then, these features are used to detect AUs
with a Pyramid CNN Interpreter, making the training ef-
ficient and capturing essential local features. The pro-
posed FG-Net achieves a strong generalization ability for
heatmap-based AU detection thanks to the generalizable
and semantic-rich features extracted from the pre-trained
generative model. Extensive experiments are conducted to
evaluate within- and cross-corpus AU detection with the
widely-used DISFA and BP4D datasets. Compared with
the state-of-the-art, the proposed method achieves superior
cross-domain performance while maintaining competitive
within-domain performance. In addition, FG-Net is data-
efficient and achieves competitive performance even when
trained on 1000 samples. Our code will be released at
https://github.com/ihp-lab/FG-Net

1. Introduction

Automatic detection of facial action units is a fundamen-
tal block for objective facial expression analysis [6]. Man-
ual annotations for facial action units are cuambersome and
costly, as they require trained coders to label each frame
individually. Common AU datasets, i.e., DISFA [22] and
BP4D [33], only contain a limited number of subjects (27
and 41 subjects respectively). Recent methods for AU de-
tection [21, 25, 36] focus on deep representation learning,
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Figure 1. Performance (F1 score 1) gap between the within- and
cross-domain AU detection for DRML [36], JAA-Net [25], ME-
GraphAU [21], and the proposed FG-Net. The within-domain
performance is averaged between DISFA and BP4D, while the
cross-domain performance is averaged between BP4D to DISFA
and DISFA to BP4D. The proposed FG-Net has the highest cross-
domain performance, thus, superior generalization ability.

requiring a large number of samples. Existing AU detec-
tion methods are often evaluated with within-domain cross-
validation, with training and testing data from the same
dataset, and the generalization to other datasets (model
trained and tested on different datasets) has not been widely
investigated. As within-domain performance can be due to
overfitting, cross-corpus performance can suffer a consid-
erable loss (see comparisons in Figure 1).

In the field of semantic segmentation, recent studies
[2,34] leverage a well-trained generative model to synthe-
size image-annotation pairs from only a few labeled exam-
ples (around 30 training samples). They show that the inter-
mediate features of generative models exhibit semantic-rich
representations that are well-suited for pixel-wise segmen-
tation tasks in a few-shot manner. Li et al. [16] showcase
extreme out-of-domain generalization ability from such ap-
proaches. However, to the best of our knowledge, no ex-
isting work adapts such architectures to AU detection, po-
tentially due to the following limitations: (i) the high di-
mensionality of the pixel-wise features results in inefficient
training, and (ii) inference with pixel-level features lacks
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the information from the nearby regions, which is crucial to
AU detection [25,30].

In this paper, inspired by the success of GAN features
in semantic segmentation, we propose FG-Net, a facial ac-
tion unit detection method that can better generalize across
domains. The general idea of FG-Net is to extract the gen-
eralizable and semantic-rich deep representations from a
well-trained generative model (see Figure 2). Specifically,
FG-Net first encodes and decodes the input image with a
StyleGAN2 encoder (pSp) [24], and a StyleGAN2 genera-
tor [14], trained on the FFHQ dataset [13]. Then, FG-Net
extracts feature maps from the generator during decoding.
To take advantage of the informative pixel-wise representa-
tions from the generator, FG-Net detects the AUs through
heatmap regression. We propose a Pyramid CNN Inter-
preter which incorporates the multi-resolution feature maps
in a hierarchical manner. The proposed module makes the
training efficient and captures essential information from
nearby regions. Thanks to the powerful features from the
generative model pre-trained on a large and diverse facial
image dataset, the proposed FG-Net obtains a strong gener-
alization ability and data efficiency for AU detection.

To demonstrate the effectiveness of our proposed
method, we conduct extensive experiments with the widely-
used DISFA [22] and BP4D [33] for AU detection. The re-
sults show that the proposed FG-Net method has a strong
generalization ability and achieves state-of-the-art cross-
domain performance (see Figure 1). In addition, FG-
Net achieves comparable or superior within-domain perfor-
mance to the existing methods. Finally, we showcase that
FG-Net is a data-efficient approach. With only 100 training
samples, it can achieve decent performance.

Our major contributions are as follows. (i) We propose
FG-Net, a data-efficient method for generalizable facial ac-
tion unit detection. To the best of our knowledge, we are
the first to utilize StyleGAN model features for AU detec-
tion. (ii) Extensive experiments on the widely-used DISFA
and BP4D datasets show that FG-Net has a strong gener-
alization ability for heatmap-based AU detection achieving
superior cross-domain performance and maintaining com-
petitive within-domain performance compared to the state-
of-the-art. (iii) FG-Net is data-efficient. The performance
of FG-Net trained on 1k samples is close to the whole set
(~100k).

2. Related Work

Facial Action Unit Detection. A facial action unit is an
indicator of activation of an individual or a group of mus-
cles, e.g., cheek raiser (AU6). AUs are formalized by Paul
Ekman in Facial Action Coding System (FACS) [6]. Previ-
ous studies explore attention mechanism [12,25,28] or self-
supervised learning [4] to get discriminative representations
for AU detection.

Shao et al. [25] propose JAA-Net for joint AU detec-
tion and face alignment. JAA-Net uses adaptive attention
learning to refine the attention map for each AU. Jacob et
al. [12] combine transformer-based architectures with re-
gion of interest (ROI) attention module, per-AU embed-
dings, and correlation module to capture relationships be-
tween different AUs. Chang et al. [4] propose a knowledge-
driven self-supervised representation learning framework.
AU labeling rules are leveraged to design facial partition
manners and determine correlations between facial regions.

Recent work on AU detection use graph neural net-
works [21,27,35]. Zhang et al. [35] utilize a heatmap
regression-based approach for AU detection. The ground-
truth heatmaps are defined based on the ROI for each AU.
Besides, the authors utilize graph convolution for feature re-
finement. Luo et al. [21] propose an AU relationship mod-
eling approach that learns a unique graph to explicitly de-
scribe the relationship between each pair of AUs of the tar-
get facial display. Previous studies on AU detection achieve
promising within-domain performance. However, the gen-
eralization ability, i.e., cross-domain performance, for AU
detection has not been widely investigated.

Ertugrul et al. [7, 8] demonstrate that the deep-learning-
based AU detectors achieve poor cross-domain performance
due to the variations in the cameras, environments, and sub-
jects. Tu et al. [29] propose Identity-Aware Facial Action
Unit Detection (IdenNet). IdenNet is jointly trained by AU
detection and face clustering datasets that contain numer-
ous subjects to improve the model’s generalization ability.
Yin et al. [32] propose to use domain adaptation and self-
supervised patch localization to improve the cross-corpora
performance for AU detection. However, this method re-
quires data from the target domain for domain adaptation.
Hernandez et al. [ 10] conduct an in-depth analysis of perfor-
mance differences across subjects, genders, skin types, and
databases. To address this gap, they propose deep face nor-
malization (DeepFN) that transfers the facial expressions of
different people onto a common facial template.

In this paper, without using any data from the target do-

main, we improve the cross-corpus AU detection with the
semantic-rich features from a generative model trained on a
large-scale and diverse dataset.
Face Understanding with Generative Models. Generative
models provide an estimate of the distribution of training
samples [3]. Prior work utilizing generative models for face
understanding has mainly focused on semantic segmenta-
tion [2, 16, 34] and landmark detection [31, 34].

Zhang et al. [34] introduce DatasetGAN, an automatic
procedure to generate massive datasets of high-quality se-
mantically segmented images requiring minimal human ef-
fort. The authors show how the GAN latent code can be de-
coded to produce a semantic segmentation of the image and
allow the decoder to be trained with only a few labeled ex-
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Figure 2. Overview of our proposed pipeline. FG-Net first encodes the input image into a latent code using a StyleGAN2 encoder (e.g.
pSp [24] here). In the decoding stage [14], we extract the intermediate multi-resolution feature maps and pass them through our Pyramid
CNN Interpreter to detect AUs coded in the form of heatmaps. Mean Squared Error (MSE) loss is used for optimization between the

ground truth and predicted heatmaps.

amples. Baranchuk et al. [2] demonstrate that feature maps
from diffusion models [5] can capture the semantic informa-
tion and appear to be excellent pixel-wise representations.
Li et al. [16] propose semanticGAN, a generative adversar-
ial network that captures the joint image-label distribution.
The proposed semanticGAN showcases an extreme out-of-
domain generalization ability, such as transferring from real
faces to paintings, sculptures, and even cartoons and ani-
mal faces. Xu et al. [3 1] consider the pre-trained StyleGAN
generator as a learned loss function and train a hierarchi-
cal encoder to get visual representations, namely GH-Feat,
for input images. GH-Feat has strong transferability to both
generative and discriminative tasks.

Previous studies show that the hidden states from the
generative models are powerful representations for face un-
derstanding. However, to the best of our knowledge, no
existing work adapts such architectures to AU detection.
Zhang et al. [34] and Baranchuk et al. [2] extract pixel-wise
features and treat each pixel as a training sample, leading to
extreme inefficiency due to the per-sample computational
overhead. More importantly, inference with singe-pixel fea-
tures lacks the inductive bias (local features), crucial to AU
detection shown in the previous studies [25,36]. In addition,
semanticGAN [16] has to encode the input image to the la-
tent space in an optimization-based manner for inference,
which is extremely time-consuming. Thus semanticGAN
can be only tested with a few samples. The limitation of this
approach does not allow for training or testing with larger
datasets. In this paper, we propose a Pyramid CNN Inter-
preter to detect the heatmaps, representing activated AUs,
for AU detection, which is more efficient and can capture
both local and global information. GH-Feat [3 1] is the clos-
est method to ours that extracts latent code representations

Figure 3. Visualizations of the ROI centers for DISFA (left) and
BP4D (right). AU indices are labeled above or below.

from generative models. The major differences between
GH-Feat and our method are: (i) GH-Feat extracts the 1D
latent code features while FG-Net further decodes the latent
codes to images and gets the 2D feature maps. (ii) GH-
Feat is trained in a multi-stage manner while our method
is end-to-end. GH-Feat utilizes the StyleGAN generator
as a learned loss function and trains a hierarchical encoder
and then uses this encoder to extract visual representations
for downstream tasks. The whole pipeline requires more
than 700 GPU hours due to the complicated training pro-
cess while FG-Net only needs 10 GPU hours for training.

3. Methods
3.1. Problem Formulation

Facial Action Unit Detection. Given a video set S, for
each frame x € S, the goal is to detect the occurrence for
each AU a; (i = 1,2,...,n) using function F(-).

; An, :F(]}), (1)

where n is the number of AUs. a; = 1 if the AU is active
otherwise a; = 0.

ai,ag, ...
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Figure 4. Visualization of the generated ground-truth heatmaps on DISFA (first row) and BP4D (second row). We generate one heatmap
for every AU which has two Gaussian windows with the maximum values at the two ROI centers (see Figure 3). The peak value is either 1

(red, AU is active) or —1 (blue, AU is inactive).

3.2. Overview

Figure 2 illustrates an overview of the proposed FG-Net.
FG-Net first encodes and decodes the input image with the
pSp encoder [24] and the StyleGAN2 generator [14] pre-
trained on the FFHQ dataset [13].

During the decoding, FG-Net extracts feature maps from
the generator. Leveraging the features extracted from a gen-
erative model trained on a large-scale and diverse dataset,
FG-Net offers a higher generalizability for AU detection.

To take advantage of the pixel-wise representations from
the generator, FG-Net is designed to detect the AUs using a
heatmap regression. To keep the training efficient and cap-
ture both local and global information, a Pyramid-CNN In-
terpreter is proposed to incorporate the multi-resolution fea-
ture maps in a hierarchical manner and detect the heatmaps
representing facial action units.

3.3. Model

Prerequisites. Our proposed method is built on top of the
StyleGAN2 generator [14]. The StyleGAN2 generator de-
codes a latent code z € Z sampled from N(0, I) to an im-
age. The latent code z is first mapped to a style code w € W
by a mapping function. Both z and w have 512 dimen-
sions. There are k synthesis blocks (in practice k£ = 9) and
each block has two convolution layers and one upsampling
layer. Each convolution layer is followed by an adaptive in-
stance normalization (AdalN) layer [ 1] which is controlled
by the style code w. However, for image inversion which
encodes the images into the latent space, YV-space has lim-
ited expressiveness and thus can not fully reconstruct the
input [30]. Therefore, prior works [1,24] extend WW-space
to W -space where a different style code w is fed to each
AdalIN layer. W™ -space alleviates the reconstruction dis-
tortion. The dimension of w™ € W is 18 x 512.
Feature Extraction from StyleGAN2. To extract features
from the StyleGAN2 generator, we first encode the input
image to the latent space and then decode the latent code.
Prior work [16] encodes the input image in an
optimization-based manner. Optimization-based methods

iteratively optimize a reconstruction objective which is ex-
tremely time-consuming. Instead, we utilize the pSp en-
coder E [24] to encode the input image x € X and get the
latent code wt € W+ viaw™t = E(z).

Despite the efficient encoding of the pSp encoder, the
generator features may not capture the key facial features
for AU detection. To address the problem, we fine-tune the
encoder and the generator during training. Then, we de-
code the latent code with the StyleGAN2 generator G [14]
to obtain image ' = G(w™). During decoding, we extract
the intermediate activations from the generator. To keep the
training efficient, unlike the previous work [34] which ex-
tracts the outputs from all the AdaIN layers [11], we only
extract the hidden states after the second AdalN layer in
each block. We denote the feature maps we get from the k
blocks as {f1, fa, .-, fx} = G'(w) = G'(E(x)).
Heatmap Detection. The proposed method detects the AU
occurrences in a heatmap regression-based approach. We
generate the ground-truth heatmaps following the previous
work [35]. We first define the Region of Interest (ROI) for
each AU. We select two points on the face based on the most
representative landmarks (see Figure 3, detailed positions
are provided in the supplementary).

Then, we generate the ground-truth heatmaps with the
definition of ROI. Figure 4 gives the visualization of the
ground-truth heatmaps on DISFA and BP4D. Formally,
given a face image x € R*¥*"*3, we generate n ground-
truth heatmaps m1, ma, ..., m, € R¥*" with the AU labels,
where n is the number of AUs. Specifically, for heatmap
m;, we add two Gaussian windows g} and g7 with the max-
imum value at the two ROI centers ¢} and ¢? following [35].

j llp — /13
gl (p) = N eXP(—TQ), =12, (2)
mi(p) = g; (p) + g; (p). 3)

where p is the pixel location (p € [1,w] X [1,h]). A; is the
indicator denoting whether the ¢-th AU is active. \; = 1 if
a; = 1 otherwise \; = —1. o is the standard derivation. We
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clip the heatmaps into the range of [—1, 1] to make sure the
peak value is either 1 or —1.

After feature extraction from the generative models,
prior work [2, 34] upsamples the features to the input res-
olution and concatenates them according to the channel di-
mension. Then, each pixel is treated as a training sample
and a multi-layer perceptron (MLP) is trained to detect the
semantic class. Simply upsampling and concatenating all
the feature maps results in redundant and high dimensional
features (in practice the number of channels is 6080), thus
leading to inefficient training and inference. More impor-
tantly, using single-pixel features for inference lacks the
spatial context from nearby regions, which is crucial to AU
detection, as demonstrated in the previous studies [25, 36].

To address these problems, we propose a multi-scale
Pyramid-CNN Interpreter H for heatmap-based AU detec-
tion which incorporates the multi-resolution feature maps
in a hierarchical manner (see Figure 2). Specifically, the
Pyramid-CNN Interpreter H contains k£ pyramid levels,
where k is the number of feature maps extracted from the
generator. In each pyramid level, the hidden states from the
last pyramid level c¢;_; are first summed with the feature
map from the generator f; and then passed through an in-
terpreter block C;. Each interpreter block consists of one In-
terpolate, one Convolution, one ReLU, and one BatchNorm
layer. m = ¢y, is the ultimate AU heatmap. specifically,

Co ZO,CiZCi(Ci_l—Ffi),iz1,2,...,/41, 4)

m:Ck:H(flana“'vfk>' (5)
3.4. Training and Inference

Training. The learning objective is the Mean Squared Error
(MSE) loss between the ground-truth heatmap m and the
detected heatmap m: £ = ||m — m|3.

Inference. For each detected heatmap m;, we sum up the
whole heatmap. If the sum is greater than 0, the correspond-
ing AU is active otherwise the AU is inactive.

4. Experiments and Discussions
4.1. Datasets

We select two publicly available datasets, i.e., DISFA
[22] and BP4D [33]. These two datasets are widely used
for AU detection and are captured from different subjects
with different backgrounds and lighting conditions.

DISFA [22] includes videos from 27 subjects, with
around 130,000 frames. Each frame has labels for eight
AU intensities (1, 2, 4, 6, 9, 12, 25, and 26). Following
the settings of previous studies [21,25,36], we map the AU
intensity greater than 1 to the positive class.

Table 1. Within-domain evaluation in terms of F1 score (7).
Except for GH-Feat and ME-GraphAU + FFHQ pre-train, all
the baseline numbers are from the original papers. Our method
achieves competitive performance compared to the state-of-the-
art.

Methods | DISFA BP4D
DRML [36] 26.7 48.3
IdenNet [29] 52.6 59.3
SRERL [17] 55.9 62.9
UGN-B [20] 60.0 63.3
HMP-PS [27] 61.0 63.4
FAT [12] 61.5 64.2
Zhang et al. [35] 62.0 63.5
JAA-Net [25) 63.5 62.4
PIAP [28] 63.8 64.1
Chang et al. [4] 64.5 64.5
ME-GraphAU [21] 63.1 65.5
ME-GraphAU + FFHQ pre-train 59.5 61.1
GH-Feat [31] 36.9 56.7
Ours | 654 643

BP4D [33] consists of videos from 41 subjects with
around 146,000 frames. Each frame has labels for 12 AU
occurrences (1, 2,4, 6,7, 10, 12, 14, 15, 17, 23, and 24).

We use dlib [15] to detect the 68 facial landmarks for
all the frames and FFHQ-alignment to align them. The de-
tected landmarks are also used for generating the ground-
truth heatmaps (see Figure 4).

4.2. Implementation and Training Details

All methods are implemented in PyTorch [23]. Code
and model weights are available, for the sake of repro-
ducibility.! We use a machine with two Intel(R) Xeon(R)
Gold 5218 (2.30GHz) CPUs with eight NVIDIA Quadro
RTX8000 GPUs for all the experiments. Each image is re-
sized into 128 x 128. We train the proposed model with the
AdamW optimizer [20] for 15 epochs with a batch size of
8 on a single GPU. The learning rate is 5e — 5. The weight
decay is be — 4. The gradient clipping is set to 0.1. ¢ for
the heatmaps (Equation 2) is 20.0. The dropout rate is 0.1.

4.3. Experimental Results

The models are evaluated for within-domain and cross-
domain performance in addition to data efficiency. Cross-
domain evaluation enables us to measure the generalization
ability of our AU detection method. For all the experiments,
F1 score (1) is the evaluation metric.

Within-domain Evaluation. We perform within-domain
evaluation on widely used DISFA and BP4D datasets. We
follow the same evaluation protocols as the previous stud-
ies [21,25,27]. Both datasets are evaluated with subject-
independent 3-fold cross-validation. We use two folds

Uhttps://github.com/ihp-lab/FG-Net
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Table 2. Cross-domain evaluation between DISFA and BP4D in terms of F1 scores (1). Our model achieves superior performance compared

to the baselines. * The numbers are reported from the original paper.

Direction \ DISFA — BP4D \ BP4D — DISFA

AU | 1 2 4 6 12 | Avg | I 2 4 6 12 | A
DRML [36] 194 169 224 580 645 | 363 | 104 70 169 144 220 | 141
JAA-Net [25] 109 67 424 529 683 | 362 | 125 132 276 192 467 | 238
ME-GraphAU [21] 365 303 358 488 622 | 427 | 433 225 417 230 349 | 331
ME-GraphAU + FFHQ pre-train | 20.1 32.9 380 640 73.0 | 456 | 512 144 544 177 306 | 337
GH-Feat [31] 204 300 371 640 735 | 468 | 189 152 27.5 527 501 | 329
Patch-MCD* [32] - - 343 166 521 335 504 | 374
IdenNet* [29] - - 201 255 373 496 661 | 39.7
Ours | 514 460 360 496 618 | 490 | 613 705 363 422 615 | 544

for training and one fold for validation and iterate three
times. We compare FG-Net to the state-of-the-art AU de-

tection methods, including DRML [36], IdenNet [29], SR-
ERL [17], UGN-B [26], HMP-PS [27], FAT [12], Zhang
et al. [35], JAA-Net [25], PIAP [28], Chang et al. [4], and

ME-GraphAU [21]. These baseline numbers are reported
from the original papers.

Previous methods do not use the FFHQ dataset for train-
ing. Thus, to make the comparison fair, two baselines are
implemented and compared, e.g., ME-GraphAU + FFHQ
pre-train and GH-Feat [31]. Specifically, we first pre-train
the ME-GraphAU’s backbones (ResNet and Swin Trans-
former) with the FFHQ dataset and its facial expression la-
bels. Then we train the ME-GraphAU with the pre-trained
backbones. GH-Feat extracts features from generative mod-
els and it is pre-trained on the FFHQ in a self-supervised
manner. For both baselines, we implement with the offi-
cially released source codes.

Table 1 reports the within-domain results regarding the
average performance of AUs. We provide detailed results
for every individual AU in the supplementary material. On
DISFA, FG-Net outperforms all the baseline methods and
achieves an average F1 score of 65.4. The major im-
provement comes from AU1 and AU2. On BP4D, FG-Net
achieves competitive performance. These results demon-
strate that the pixel-wise features extracted from Style-
GAN?2 are beneficial for heatmap-based AU detection.
Cross-domain Evaluation. We perform two directions of
cross-domain evaluation, i.e., DISFA to BP4D and BP4D to
DISFA. For each direction, we use two folds and one fold
of data from the source domain as the training and valida-
tion set and use the target data as the testing set. We com-
pare the proposed method with DRML [36], JAA-Net [25],
ME-GraphAU [21], ME-GraphAU + FFHQ pre-train, and
GH-Feat [31] since they are open-source, and we can use
the officially released source codes and model weights to
conduct the experiments. In addition, we compare with
Patch-MCD [32] and IdenNet [29]. The numbers are re-
ported from the original paper. Ertugrul ef al. [7, 8] and
Hernandez et al. [10] do not report F1 scores for the cross-

domain performance of the aforementioned directions.

We report the cross-domain results in Table 2. As ex-
pected, compared to the within-domain performance, all
the baseline methods suffer a considerable performance loss
when evaluated across corpora. In particular, when evalu-
ated from BP4D to DISFA, the baseline methods’ perfor-
mance (average F1) drops by more than 30%, which demon-
strates the challenging nature of cross-domain AU detection
and the importance of developing generalizable AU detec-
tion.

Compared with DRML and JAA-Net, ME-GraphAU
achieves higher cross-domain performance. We suspect it
is because it utilizes the pre-trained models (ResNet [9]
and Swin Transformer [18]) as the backbones. In addi-
tion, when we continue pre-training ME-GraphAU with the
FFHQ dataset, we observe a further performance boost in
both directions of cross-domain evaluations. Similarly, GH-
Feat, which is trained on the FFHQ dataset, also obtains
superior performance than DRML and JAA-Net. The ex-
perimental results show the effectiveness of pre-training on
the FFHQ dataset since it is a large and diverse facial image
dataset. Moreover, Patch-MCD utilizes unsupervised do-
main adaptation with unlabeled target data while IdenNet
is jointly trained by AU detection and face cluster datasets
(CelebA [19]). Thus, with additional face data, these two
methods have better cross-domain performance than the
aforementioned baselines.

For both directions of cross-domain evaluation, our pro-
posed method achieves superior performance compared to
the baselines. Specifically, when evaluated from BP4D to
DISFA, FG-Net can outperform the baselines by 15% in
terms of the average F1 score. The major improvement
comes from AUl and AU2, which is consistent with the
findings in within-domain evaluation. Overall, the results
showcase that features extracted from the StyleGAN2 gen-
erator are generalizable and thus improve the performance
for cross-domain AU detection, showing its potential to
solve AU detection in a real-life scenario.

We present two qualitative examples of cross-domain
prediction in Figure 5. The models are trained on the BP4D
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Figure 5. Case analysis on ME-GraphAU [2 1] and FG-Net. Mod-
els are trained on BP4D and tested on DISFA. means active
AU while blue means inactive AU. FG-Net is more accurate than
ME-GraphAU.
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Figure 6. Data efficiency evaluation with different numbers of
samples. Our method is data-efficient and its performance trained
on 1k samples is close to the whole set.

dataset and tested on the DISFA dataset. ME-GraphAU fails
in those two cases while the proposed FG-Net method ac-
curately predicts the action units.

Data Efficiency Evaluation. To further evaluate the gen-
eralization capacity of the proposed approach, an investiga-
tion of its learning capability with limited samples is con-
ducted through within-domain evaluation. In this evalua-
tion, a subset of the training data is randomly selected, while
the testing data remains unchanged to facilitate assessment.
The model is trained using four different sample sizes: 100,
1k, 5k, and 10k. A comparative analysis is performed be-
tween our method and two other approaches, namely ME-
GraphAU [21] and ME-GraphAU + FFHQ pre-train. It is
noteworthy that ME-GraphAU + FFHQ pre-train and our
method employ the same pre-training dataset.

The efficiency evaluation results, depicted in Figure 6,
demonstrate the impact of data scarcity on performance for
both datasets. Notably, ME-GraphAU [2 1] exhibits remark-
ably low F1 scores when trained with 100 and 1k samples
on the DISFA dataset, as well as with 100 samples on the
BP4D dataset. This outcome can be attributed to the limited
and sparse nature of the training set, causing ME-GraphAU
to predict inactive AUs predominantly. By contrast, the per-
formance of ME-GraphAU improves when pre-trained on
the FFHQ dataset, underscoring the effectiveness of utiliz-
ing this extensive and diverse facial dataset for pre-training.

Table 3. Ablation study for FG-Net. F1 score (1) is the metric.
D and B stand for DISFA and BP4D. D — B means the model
is trained on DISFA and tested on BP4D and similar to B — D.
(1) Our method gets better performance than GH-Feat [31]. (ii)
With every component, our method achieves the highest within-
domain performance while removing late features gets the best
cross-domain performance.

| D B

642 627 634 42,5 359 39.2
68.4 588 63.6 46.4 473 46.9

Avg. | DB B—D Avg

Upscale & concat
Latent code

- Early 68.1 617 649 | 379 472 426
- Middle 674 631 653 | 485 380 433
- Late 674 628 651 | 512 566 539
FG-Net | 689 636 663 | 49.0 544 517

However, even with 100 samples from the DISFA dataset,
the performance of ME-GraphAU remains at 0.

In comparison, FG-Net outperforms ME-GraphAU +

FFHQ pre-train when trained with partial training data for
both datasets. Notably, FG-Net trained on 1k samples
achieves performance levels approaching those of the full
training set. Furthermore, even with a mere 100 training
samples, FG-Net manages to achieve commendable perfor-
mance. These results serve as evidence of the robust gen-
eralization ability exhibited by our proposed method when
confronted with limited data.
Ablation Study. We conduct three ablation experiments:
(1) We compare to the existing upscaling and concatenating
features proposed in [2, 34] (upscale & concat). (ii) We di-
rectly compare to using latent code to predict the activations
of AUs (latent code). (iii) We explore the best blocks for
extracting feature maps. Specifically, we divide the features
extracted from the nine synthesis blocks into three groups,
where each group has three feature maps, and denote them
as the early, middle, and late groups. Each time, we remove
one group. We perform both within- and cross-domain eval-
uations for the ablation study. Note that for within-domain
evaluation, we use two folds for training and one fold for
validation.

Table 3 shows the within- and cross-domain performance
on DISFA and BP4D. (i) We observe that FG-Net outper-
forms Upscale & concat for both within- and cross-domain
settings. We believe inference with singe-pixel features
lacks the inductive bias, considering local features, neces-
sary for AU detection. (ii) FG-Net outperforms latent code
for predicting AU activations for both within- and cross-
domain experiments. We think using the heatmap regres-
sion allows the model to localize where the AUs occur and
improves the model’s capacity. In addition, compared with
the 2D feature maps, the latent codes lose the semantic-rich
representations. (iii) For the contributions of different fea-
ture maps, we observe that removing any one of the fea-
ture groups lowers the within-domain performance. Sur-
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Figure 7. Visualization of the detected heatmaps for ablation
study. With all the components, FG-Net detects the most similar
heatmaps to the ground-truth (GT) for within-domain evaluation.
Removing late features results in the best cross-domain evaluation.

prisingly, removing late features achieves the highest cross-
domain performance. We suspect it is because the late fea-
tures contain more high-frequency and domain-specific in-
formation which reduces the model’s generalization ability.

We visualize the ground-truth and detected heatmaps for
ablation study in Figure 7. For the within-domain evalu-
ation, models are trained and tested with BP4D; For the
cross-domain evaluation, models are trained with BP4D
and tested with DISFA. For latent code, we directly use
it to predict the AU activations, thus, we do not have
the detected heatmaps for latent code. For within-domain
evaluation, FG-Net detects all AUs correctly, whereas the
other methods output the wrong prediction for AU2 (outer
brow raiser), showing that FG-Net achieves the best within-
domain performance with every component. For cross-
domain evaluation, both using all features and removing
late features detect all AUs correctly. However, removing
late features results in a more accurate heatmap for AU12
than using all features.

4.4. Limitations

In the within-domain evaluation, FG-Net achieves infe-
rior results on AU9 (nose wrinkler), AU1S5 (lip corner de-
pressor), and AU26 (jaw drop). Failure cases are shown in
Figure 8. We suspect it is because the FFHQ dataset lacks
faces with such active AUs, and thus the StyleGAN?2 fea-
tures can not capture the corresponding information well. In
addition, these failure AUs are not common in DISFA and
BP4D thus they do not appear in the cross-domain evalua-
tions and we can not evaluate the generalization for them.

FG-Net addresses the AU detection problem using a
heatmap regression. Though our method can be extended
to AU intensity estimation, there are only three common
AU s for intensity estimation between BP4D and DISFA (6,
12, and 17) with no AU on the eyebrows. Thus, we can not

AUY AU 15 AU 26
Nose wrinkler  Lip corner depressor Jaw drop

Input

Prediction

GT

Figure 8. Visualization of the failure cases. FG-Net achieves infe-
rior performance on AU9, AU15, and AU26.

properly evaluate the generalization ability of FG-Net for
AU intensity estimation.

5. Conclusion

In this paper, we propose FG-Net, a data-efficient
method for generalizable facial action unit detection. FG-
Net extracts the generalizable and semantic-rich features
from the generative model. A Pyramid CNN-Interpreter is
proposed to detect AUs coded as heatmaps which makes the
training efficient and captures essential information from
the nearby regions. The experimental results demonstrate
the challenging nature of cross-domain AU detection and
the importance of developing generalizable AU detection.
We show that the proposed FG-Net method has a strong
generalization ability when evaluated across corpora or
trained with limited data, demonstrating its strong potential
to solve action unit detection in a real-life scenario.

Social Implications. Our work falls within the broad
domain of facial expression analysis. Despite potential ben-
efits, any surveillance technology can be misused, and sen-
sitive private information may be revealed by malicious ac-
tors. Mitigation strategies for such misuses include restric-
tive licensing and government regulations.
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