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In this document, we further provide additional expla-
nations and experimental results. Specifically, in Sec. 1,
we report about the details of training configurations and
datasets. Sec. 2 provides more ablation studies about the
proposed model. In Sec. 3, we present the analysis of multi-
frame results.

1. Experimental Details
1.1. Training hyperparameters

Along with the hyperparameters settings provided in
Tab. 1, a weight decay of 1 x 10~ is used to regularize the
model for all experiments. Also, during the testing phase,
a non-maximum suppression is applied to filter out predic-
tions that fall below the predefined confidence threshold.

We train the model with a batch size of 1, containing
three to eight views per batch depending on the dataset, as
specified in Tab. 2. The memory requirement varies based
on factors such as the chosen Z-dimension, the number of
views, the ground plane size and the downsampled resolu-
tion. Detailed information about the memory requirements
for various Z-dimensions is provided in Tab. 4.

1.2. Datasets comparison

Tab. 2 shows the comparison between three datasets.
Apart from the differences shown in the table, certain pa-
rameters such as image size and grid cell size remain the
same across the datasets, using 1920 x 1080 and 2.5 cm?,
respectively.

Evaluation Train-set Test-set Ir  epochs threshold

Same-domain WildTrack ~ WildTrack  5e-5 8 0.4
MultiviewX  MultiviewX  le-4 20 0.4
MultiviewX  WildTrack  2e-5 15 0.4

Scene generalization GMVD WildTrack 2e-5 8 0.4
GMVD GMVD le-5 5 0.3

Table 1. Hyperparameters used for training the proposed
model on different evaluation protocols rhreshold means the
confidence threshold used in non-maximum suppression.

Figure 1. Sample sequences from GMVD GTAYV Scene 1. The
dataset provides variance for the same scene by recording time
difference (Night, Shady, Sunny) and weather condition difference
(Rain, Snow).

The GMVD dataset contains seven scenes with both in-
door and outdoor environments, each with their own ground
plane size and camera setup. Specifically, GTAV Scene 5 is
used as a testing split. Notably, this scene also introduces
an additional layer of complexity by offering two different
camera configurations: one with 6 cameras and the other
with 8 cameras, testing the model’s adaptability to varying
camera setups. In addition to the challenges presented by
varying scenes and camera configurations, GMVD dataset
also incorporates differing weather conditions and record-
ing times for each individual scene, as illustrated in Fig. 1.

1.3. Ground plane downsampling

To maintain consistency with previous methods and to
reduce memory usage, we also increase the grid cell size
from 2.5cm? to 10 cm?, leading to a 4 times downsampled
ground plane resolution as described in in Tab. 2. The use of
downsampled discrete coordinates introduces a truncation
error due to the discretization of grid coordinates, as op-
posed to using continuous meter-based measurements and
results in decrease on the MODP score which accesses the
localization precision of each true positive detection.



Dataset Scene Frames Cameras Ground Plane Area Original Grid Size Downsampled Grid Size Crowdedness
WildTrack Real Scene 400 7 12 x 36 m? 480 x 1440 120 x 360 20 person/frame
MultiviewX  Unity Scene 400 6 16 x 25 m? 640 x 1000 160 x 250 40 person/frame
GTAV Scene 1 1034 5 20 x 30 m? 800 x 1200 200 x 300 20 person/frame
GTAV Scene 2 1000 3 30 x 12 m? 1200 x 480 300 x 120 30 person/frame
GTAV Scene 3 1014 5 25 x 25 m? 1000 x 1000 250 x 250 30 person/frame
GMVD GTAV Scene 4 182 5 28 x 27 m? 1120 x 1080 280 x 270 20 person/frame
GTAV Scene 5 1012 6,8 29 x 19 m? 1160 x 760 290 x 190 30 person/frame
GTAV Scene 6 1030 7 33 x 31 m? 1320 x 1240 330 x 310 30 person/frame
Unity Scene 723 6 16 x 25 m? 640 x 1000 160 x 250 40 person/frame

Table 2. Dataset statistics between three multi-view pedestrian detection datasets. Crowdedness shows the average number of persons
involved in the scene. For GMVD Scene 5, two configurations (6 or 8 cameras) are available for the same scene.

Refiner MODA MODP Prec. Recall
Dilated [1,2,4] 92.9 78.5 96.8 96.0
Tx7x7 93.2 77.2 97.3 95.8
5x5x5 93.1 78.3 96.1 97.0
3x3x3 93.1 79.0 96.8 96.2
7x5x3 94.1 78.8 96.4 97.7

Table 3. Performance of large kernel refiner module with dif-
ferent refinement mechanism on the WildTrack dataset. The
top row shows three stacks of dilated convolutions with different
dilation rates of [1, 2, 4] with 3 x 3 kernel size. The following rows
demonstrate the utilization of different large kernel sizes within the
LKR module.

2. More ablation studies

2.1. Effectiveness of gradual refinement in Large
Kernel Refiner module

Our large kernel refiner module aims to gather an indi-
vidual’s dispersed features on the BEV plane and generate
a concise and accurate representation. To achieve this, we
have systematically explored the impact of employing large
kernel convolutions, both in terms of dilation rates and ker-
nel sizes in Tab. 3.

Dilated convolutions result in suboptimal performance
compared to using larger kernel sizes. Smaller kernel sizes
improve individual location accuracy on the ground plane,
while larger kernel sizes exhibit the advantage of reducing
false positive rates. Given our focus on accurate person
identification across multiple views, we opt for a gradual
refinement strategy. This approach yields superior results
in terms of MODA and recall scores, aligning well with our
goal of achieving robust multi-view detection performance.

2.2. Choice of Z-dimension in 3D feature-pulling

In Tab. 4, we have investigated the impact of varying the
Z-dimension in the 3D feature-pulling mechanism. As the

Z Height MODA MODP Prec. Recall Memory
1 16m 92.3 71.5 96.7  95.6 9GB
4 16m 93.0 77.9 96.2  96.7 10GB
8 1.6m 9.1 78.8 9.4 977 15GB
16 1.6m 9.1 78.6 97.3  96.8 27GB
7 14m 93.8 79.1 97.0  96.7 14GB

Table 4. Performance of 3D feature-pulling mechanism with
different Z-dimensions on the WildTrack dataset. Larger Z-
dimension performs better until Z = 16.

Z-dimension increases gradually, the overall performance
also improves. However, there is no significant improve-
ment byeond a Z-dimension of 16, even though a substan-
tial increase in memory consumption. When reducing the
height to 1.4m with Z = 7, there is a slight drop in per-
formance compared to the setting with 1.6 m with Z = 8.
Therefore, we choose a Z-dimension of 8 with a height of
1.6 m which provides the optimal balance between accuracy
and computational efficiency.

2.3. Analysis on Maximal Fusion Module

We have conducted experiments to test the impact of em-
ploying different aggregation mechanisms and the omission
of the ”Coord Volume” in the maximal fusion module, as
presented in Tab. 5. By using an average pooling instead
of max. pooling, we observe a minor decrease of 0.3% in
MODA score, with the most notable decline in recall score,
amounting to 1.7%.

Additionally, when the ”Coord Volume” is excluded, the
MODA score experiences a significant reduction of 0.9%,
which underscores the importance of including positional
information in our model’s design.

2.4. Additional view-level augmentations

We have experimented adding view-level augmentations
to the proposed framework, including random horizontal
flipping, cropping and scaling, similar to MVDeTr. Unlike



MODA MODP Prec. Recall
Avg. pooling 93.8 78.6 97.8  96.0
Max. pooling 94.1 78.8 9.4 977

w/0. Coord. Volume 93.2 78.3 96.0 97.3
w/. Coord. Volume 94.1 78.8 96.4 97.7

Table 5. Performance of maximal fusion module with different
configurations on the WildTrack dataset. The first two rows
show the results with different pooling mechanisms, while the last
two rows show the results with or without ”Coord Volume” tech-
nique.

previous approaches, we applied the same transformation
to all views. The results, as shown in Tab. 6, indicate only
minimal improvements during same-domain testing on the
WildTrack dataset. Our model already achieves a high level
of performance, and augmentations provide only marginal
additional benefit. Moreover, the WildTrack dataset in-
cludes missed annotations, which might have contributed
to reaching an upper bound in the same-domain evaluation.

In Tab. 7, we have tested the performance of the pro-
posed model on MultiviewX scene generalization experi-
ment with or without augmentations. The results indicate
that incorporating augmentations yields a 1.5% increase in
the MODA score. This demonstrates that augmentations
play a beneficial role in scene generalization. It can be noted
that further optimization of hyperparameters and potentially
employing more robust augmentations, such as in 3DROM
and MVAug could lead to even better results.

2.5. Recovering truncation error with offset head

As reported in Sec. 1.3, there is a truncation error intro-
duced due to the downsampling of the ground plane to a
lower resolution. To address this issue, we adopt an ad-
ditional offset head to regress the omitted decimal part,

MODA MODP Prec. Recall

w/o. augmentations 94.1 78.8 96.4  97.7
w/. augmentations 94.2 79.5 975 970

Table 6. Adding augmentations to the same-domain testing on
the WildTrack dataset. Trained and tested on the same scene of
WildTrack dataset.

MODA MODP Prec. Recall

w/o. augmentations 82.6 76.2 89.6 934
w/. augmentations 84.1 74.5 904 94.1

Table 7. Adding augmentations to the scene generalization
evaluation with the MultiviewX dataset. Trained on a synthetic
dataset (MultiviewX) and tested on a real dataset (WildTrack).

MODA MODP Prec. Recall

w/o. offset  94.1 78.8 9%.4 977
w/. offset 94.0 80.1 974 969

Table 8. Performance of the proposed model with or without
an offset head. Utilizing an offset head improves in MODP score
but slightly impacts the localization accuracy.

Params (M) Time (ms)
Backbone 11.2 2.4
FSM 0.33 0.22
3DFP - 0.36
MEFM 0.13 0.18
LKR 0.06 0.29

Table 9. Computational cost analysis of each module (tested on
A100 GPU). Backbone is the dilated ResNet-18 network. 3DFP
refers to the 3D feature pulling mechanism. FSM, MFM and LKR
are the foreground selector, maximal fusion and large kernel re-
finer modules, respectively.

following a similar approach as in MVDeTr. The results
presented in Tab. § indicate that this strategy improves the
MODP score by 1.3%, leading to enhanced precision in in-
dividual location estimation, while it decreases both MODA
and recall scores. Since we prioritize on achieving larger
MODA and recall scores, we exclude the use of an offset
head in our implementation.

2.6. Computational cost analysis

In Tab. 9, a detailed computational cost analysis of each
individual module is presented. Notably, the inclusion of
each proposed module does not significantly increase com-
putational complexity. The most substantial GPU memory
requirement and inference cost is attributed to the backbone
network and the 3D feature-pulling process.

3. Multi-frame analysis

In Fig. 2, we conduct a multi-frame analysis that com-
pares the localization accuracy on the WildTrack dataset
using the model trained on GMVD dataset. Our approach
demonstrates a lower count of false positives and missed
detections, showcasing its robustness in managing identity
disappearance across multiple frames.



Frames

Figure 2. Multi-frame analysis between GMVD model and our method. The model is trained on GMVD dataset and tested on
WildTrack dataset. Green circles denote false positives and red circles denote missed detections.
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