Supplementary Material for
Ray Deformation Networks for Novel View Synthesis of Refractive Objects

I. Visual Examples of Our Collected Datasets. We col-
lect the datasets using iPhone-11 and calculate the camera
poses with COLMAP. We randomly show some images of
each datasets in Figures A-1 and A-2.

Figure A-1. Visual example of datasets: Cup -A/B/C/D.

Table A-1. Ablation study. We report the average metrics across
the six refractive object datasets. The results demonstrate that the
size of the cuboid has a limited effect on our method.

Method PSNR (1) SSIM (1) LIPIS ()
Nerfacto 22.80 0.826 0.150
# Ours 26.73 0.861 0.109
A Expand 26.70 0.858 0.110
B Narrow 26.50 0.851 0.112

I1. Cuboid for Deformable Ray. We employ a cuboid to
estimate and pinpoint the refractive object’s area. If a ray
interacts with the cuboid, it is reviewed as a deformable ray.
To obtain the cuboid, we project rough bounding box anno-
tations from 2D training images into 3D space using known
camera poses. We randomly selected 10 training images for
this purpose. Alternatively, we can use ns-viewer of nerfs-
tudio [6] to draw a 3D cuboid easily.

Additionally, we assess the impact of the cuboid on our
method. We validate this by both expanding and narrowing
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Figure A-2. Visual example of datasets: Cup -E/F/G.

its scale by 5%. Results in Table A-1 demonstrate that the
size of the cuboid has a limited effect on our method.

I11. Evaluation on Foreground Region. Following[1,5],
we report the metrics of the foreground region with the pro-
vided object segmentation masks on Ball and Glass. We use
the evaluation code provided by [5]. As shown in Table A-2,
the three models that are designed for refraction (i.e., MS-
NeRF, Eikonal Fields [ 1], and SampleNeRFRO [5]) achieve
better performance than standard NeRF models. Compared
with them, our method performs competitively. Moreover,
we show a qualitative evaluation in Figure A-3. The refrac-
tive object regions in our renderings appear smoother and
cleaner on both datasets.

IV. Implementation Details. As depicted in Fig. A-4, our
deformation network comprises a three-hidden layer MLP
with ReLU activation. The inputs (position, normal, and
direction) are encoded with position encoding using three
frequencies. Our method’s implementation is based on ner-
facto, provided by nerfstudio [6] (Version 0.3.3), which can
be found at https://github.com/nerfstudio-
project /nerfstudio. For reference, the official
code for SampleNeRFRO can be accessed at https://
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Figure A-3. Qualitative comparison of novel view synthesis with four NeRF models that are designed for refraction. Our method achieves
promising novel view synthesis, resulting in smoother and cleaner results for refractive objects.
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Figure A-4. The direction deformation network architecture. It
comprises a three-hidden layer MLP with 128 units per layer, uti-
lizing ReLU activation. Inputs include position, normal, and direc-
tion, with position encoding using three frequencies. The Position
Deformation Network follows an identical structure.

github.com/alexkeroro86/SampleNeRFRO, and
the official code for Eikonal Fields is available at https:
//github.com/m-bemana/eikonalfield.



Table A-2. Quantitative evaluation on the test set of Ball and
Glass. We evaluate the foreground region with the segmentation
mask. We report PSNR (1), SSIM (1), and LPIPS (), across var-
ious NeRF models: TensoRF [2], Instant-NGP [4], MS-NeRF [3],
Nerfacto [6], Eikonal Fields [1], SampleNeRFRO [5], and ours.
T Assumes known geometry/masks and refractive indices.

Model Ball [1] Glass [ 1]

PSNR SSIM LPIPS PSNR SSIM LPIPS
TensoRF 25.25 0.906 0.071 25.48 0.926 0.0519
Instant-NGP 24.35 0.897 0.071 25.26 0.926 0.054
Nerfacto 24.90 0.901 0.065 25.48 0.926 0.052
MS-NeRF 25.16 0.910 0.057 26.19 0.936 0.043

SampleNeRFROT  25.73  0.896 0.063 26.97 0.932 0.039
Eikonal Fields 26.13 0.906 0.064 26.23 0.935 0.039

Ours 27.18 0.918 0.051 27.50 0.939 0.040
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