

Evidential Uncertainty Quantification: A Variance-Based Perspective

Supplementary Material

Ruxiao Duan¹, Brian Caffo¹, Harrison X. Bai², Haris I. Sair², Craig Jones¹

¹Johns Hopkins University

²Johns Hopkins University School of Medicine

{rduan6, bcaffo1, hbai7, craigj}@jhu.edu, hsair1@jhmi.edu

A. Derivations

A.1. Problem Setup

In a C -class classification problem, it is assumed that the label vector $\mathbf{y} = [y_1, y_2, \dots, y_C]^\top$ is a one-hot random vector that follows a categorical distribution with parameters $\boldsymbol{\mu}$. The class probabilities $\boldsymbol{\mu}$ follow a Dirichlet distribution with concentration parameters $\boldsymbol{\alpha}$.

$$\mathbf{y} \sim \text{Cat}(\boldsymbol{\mu}) \quad \boldsymbol{\mu} \sim \text{Dir}(\boldsymbol{\alpha}) \quad (1)$$

in which $\text{Cat}(\cdot)$ and $\text{Dir}(\cdot)$ denote categorical distribution and Dirichlet distribution respectively.

The class probability vector is $\boldsymbol{\mu} = [\mu_1, \mu_2, \dots, \mu_C]^\top$, in which $\mu_c \in [0, 1]$ and $\sum_{c=1}^C \mu_c = 1$. The Dirichlet parameters are specified by $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, \dots, \alpha_C]^\top$ in which $\alpha_c > 0$ for $c \in \{1, 2, \dots, C\}$. The Dirichlet strength is denoted by $\alpha_0 = \sum_{c=1}^C \alpha_c$.

The expected class probabilities are $\bar{\boldsymbol{\mu}} = \mathbb{E}[\boldsymbol{\mu}] = \frac{\boldsymbol{\alpha}}{\alpha_0}$. For class c , the expected probability is $\bar{\mu}_c = \mathbb{E}[\mu_c] = \frac{\alpha_c}{\alpha_0}$.

A.2. Covariance Matrices

The covariance matrix of \mathbf{y} is defined as

$$\text{Cov}[\mathbf{y}] := \mathbb{E}[(\mathbf{y} - \mathbb{E}[\mathbf{y}])(\mathbf{y} - \mathbb{E}[\mathbf{y}])^\top] \quad (2)$$

which can be decomposed into aleatoric and epistemic components based on the law of total covariance.

$$\text{Cov}[\mathbf{y}] = \underbrace{\mathbb{E}[\text{Cov}[\mathbf{y}|\boldsymbol{\mu}]]}_{\text{total}} + \underbrace{\text{Cov}[\mathbb{E}[\mathbf{y}|\boldsymbol{\mu}]]}_{\text{epistemic}} \quad (3)$$

A.2.1 Aleatoric Covariance

The aleatoric covariance matrix can be calculated as

$$\text{Cov}[\mathbf{y}]^{alea} = \mathbb{E}[\text{Cov}[\mathbf{y}|\boldsymbol{\mu}]] = \mathbb{E}[\text{Diag}(\boldsymbol{\mu}) - \boldsymbol{\mu}\boldsymbol{\mu}^\top] \quad (4)$$

in which $\text{Diag}(\cdot)$ represents a diagonal matrix with the specified vector in its diagonal.

For $i \in \{1, 2, \dots, C\}$,

$$\text{Cov}[\mathbf{y}]_{i,i}^{alea} = \mathbb{E}[\mu_i - \mu_i^2] \quad (5)$$

$$= \mathbb{E}[\mu_i] - \mathbb{E}[\mu_i^2] \quad (6)$$

$$= \mathbb{E}[\mu_i] - \mathbb{E}^2[\mu_i] - \text{Var}[\mu_i] \quad (7)$$

$$= \bar{\mu}_i - \bar{\mu}_i^2 - \frac{\bar{\mu}_i - \bar{\mu}_i^2}{\alpha_0 + 1} \quad (8)$$

$$= \frac{\alpha_0}{\alpha_0 + 1}(\bar{\mu}_i - \bar{\mu}_i^2) \quad (9)$$

For $i, j \in \{1, 2, \dots, C\}$ such that $i \neq j$,

$$\text{Cov}[\mathbf{y}]_{i,j}^{alea} = \mathbb{E}[-\mu_i \mu_j] \quad (10)$$

$$= -\mathbb{E}[\mu_i \mu_j] \quad (11)$$

$$= -\text{Cov}[\mu_i, \mu_j] - \mathbb{E}[\mu_i] \mathbb{E}[\mu_j] \quad (12)$$

$$= -\frac{-\bar{\mu}_i \bar{\mu}_j}{\alpha_0 + 1} - \bar{\mu}_i \bar{\mu}_j \quad (13)$$

$$= -\frac{\alpha_0}{\alpha_0 + 1} \bar{\mu}_i \bar{\mu}_j \quad (14)$$

Therefore, the aleatoric covariance matrix can be expressed as

$$\text{Cov}[\mathbf{y}]^{alea} = \frac{\alpha_0}{\alpha_0 + 1} (\text{Diag}(\bar{\boldsymbol{\mu}}) - \bar{\boldsymbol{\mu}} \bar{\boldsymbol{\mu}}^\top) \quad (15)$$

A.2.2 Epistemic Covariance

The epistemic covariance matrix can be derived as

$$\text{Cov}[\mathbf{y}]^{epis} = \text{Cov}[\mathbb{E}[\mathbf{y}|\boldsymbol{\mu}]] = \text{Cov}[\boldsymbol{\mu}] \quad (16)$$

For $i \in \{1, 2, \dots, C\}$,

$$\text{Cov}[\mathbf{y}]_{i,i}^{epis} = \text{Var}[\mu_i] = \frac{\bar{\mu}_i - \bar{\mu}_i^2}{\alpha_0 + 1} \quad (17)$$

For $i, j \in \{1, 2, \dots, C\}$ such that $i \neq j$,

$$\text{Cov}[\mathbf{y}]_{i,j}^{epis} = \text{Cov}[\mu_i, \mu_j] = \frac{-\bar{\mu}_i \bar{\mu}_j}{\alpha_0 + 1} \quad (18)$$

Therefore, the epistemic covariance matrix can be expressed as

$$\text{Cov}[\mathbf{y}]^{epis} = \frac{1}{\alpha_0 + 1} (\text{Diag}(\bar{\boldsymbol{\mu}}) - \bar{\boldsymbol{\mu}}\bar{\boldsymbol{\mu}}^\top) \quad (19)$$

A.2.3 Total Covariance

The total covariance matrix can be derived as the sum of aleatoric and epistemic components.

$$\text{Cov}[\mathbf{y}] = \text{Cov}[\mathbf{y}]^{alea} + \text{Cov}[\mathbf{y}]^{epis} \quad (20)$$

$$= \text{Diag}(\bar{\boldsymbol{\mu}}) - \bar{\boldsymbol{\mu}}\bar{\boldsymbol{\mu}}^\top \quad (21)$$

A.3. Evidential Class Uncertainties

The evidential uncertainties of class $c \in \{1, 2, \dots, C\}$ not only can be directly retrieved from the diagonal of the corresponding covariance matrix but also can be calculated by decomposing the variance of the class random variable y_c based on the law of total variance. The two approaches yield the same result.

$$\underbrace{\text{Var}[y_c]}_{\text{total}} = \underbrace{\mathbb{E}[\text{Var}[y_c|\boldsymbol{\mu}]]}_{\text{aleatoric}} + \underbrace{\text{Var}[\mathbb{E}[y_c|\boldsymbol{\mu}]]}_{\text{epistemic}} \quad (22)$$

The aleatoric, epistemic, and total class uncertainties can respectively be quantified as follows

$$U_c^{alea} = \mathbb{E}[\text{Var}[y_c|\boldsymbol{\mu}]] \quad (23)$$

$$= \mathbb{E}[\mu_c(1 - \mu_c)] \quad (24)$$

$$= \mathbb{E}[\mu_c] - \mathbb{E}[\mu_c^2] \quad (25)$$

$$= \mathbb{E}[\mu_c] - \mathbb{E}^2[\mu_c] - \text{Var}[\mu_c] \quad (26)$$

$$= \bar{\mu}_c - \bar{\mu}_c^2 - \frac{\bar{\mu}_c - \bar{\mu}_c^2}{\alpha_0 + 1} \quad (27)$$

$$= \frac{\alpha_0}{\alpha_0 + 1} (\bar{\mu}_i - \bar{\mu}_c^2) \quad (28)$$

$$U_c^{epis} = \text{Var}[\mathbb{E}[y_c|\boldsymbol{\mu}]] \quad (29)$$

$$= \text{Var}[\mu_c] \quad (30)$$

$$= \frac{1}{\alpha_0 + 1} (\bar{\mu}_c - \bar{\mu}_c^2) \quad (31)$$

$$U_c = U_c^{alea} + U_c^{epis} \quad (32)$$

$$= \bar{\mu}_i - \bar{\mu}_c^2 \quad (33)$$

The derivation is the same as the covariance derivation on the diagonal entries.