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A. Derivations
A.1. Problem Setup

In a C-class classification problem, it is assumed that the
label vector y = [y1, y2, . . . , yC ]

⊤ is a one-hot random vec-
tor that follows a categorical distribution with parameters µ.
The class probabilities µ follow a Dirichlet distribution with
concentration parameters α.

y ∼ Cat(µ) µ ∼ Dir(α) (1)

in which Cat(·) and Dir(·) denote categorical distribution
and Dirichlet distribution respectively.

The class probability vector is µ = [µ1, µ2, . . . , µC ]
⊤,

in which µc ∈ [0, 1] and
∑C

c=1 µc = 1. The Dirichlet pa-
rameters are specified by α = [α1, α2, . . . , αC ]

⊤ in which
αc > 0 for c ∈ {1, 2, . . . , C}. The Dirichlet strength is
denoted by α0 =

∑C
c=1 αc.

The expected class probabilities are µ̄ = E[µ] = α
α0

.
For class c, the expected probabilty is µ̄c = E[µc] =

αc

α0
.

A.2. Covariance Matrices

The covariance matrix of y is defined as

Cov[y] := E[(y − E[y])(y − E[y])⊤] (2)

which can be decomposed into aleatoric and epistemic com-
ponents based on the law of total covariance.

Cov[y]︸ ︷︷ ︸
total

= E[Cov[y|µ]]︸ ︷︷ ︸
aleatoric

+Cov[E[y|µ]]︸ ︷︷ ︸
epistemic

(3)

A.2.1 Aleatoric Covariance

The aleatoric covariance matrix can be calculated as

Cov[y]alea = E[Cov[y|µ]] = E[Diag(µ)− µµ⊤] (4)

in which Diag(·) represents a diagonal matrix with the spec-
ified vector in its diagonal.

For i ∈ {1, 2, . . . , C},

Cov[y]aleai,i = E[µi − µ2
i ] (5)

= E[µi]− E[µ2
i ] (6)

= E[µi]− E2[µi]−Var[µi] (7)

= µ̄i − µ̄2
i −

µ̄i − µ̄2
i

α0 + 1
(8)

=
α0

α0 + 1
(µ̄i − µ̄2

i ) (9)

For i, j ∈ {1, 2, . . . , C} such that i ̸= j,

Cov[y]aleai,j = E[−µiµj ] (10)

= −E[µiµj ] (11)
= −Cov[µi, µj ]− E[µi]E[µj ] (12)

= −−µ̄iµ̄j

α0 + 1
− µ̄iµ̄j (13)

= − α0

α0 + 1
µ̄iµ̄j (14)

Therefore, the aleatoric covariance matrix can be ex-
pressed as

Cov[y]alea =
α0

α0 + 1
(Diag(µ̄)− µ̄µ̄⊤) (15)

A.2.2 Epistemic Covariance

The epistemic covariance matrix can be derived as

Cov[y]epis = Cov[E[y|µ]] = Cov[µ] (16)

For i ∈ {1, 2, . . . , C},

Cov[y]episi,i = Var[µi] =
µ̄i − µ̄2

i

α0 + 1
(17)

For i, j ∈ {1, 2, . . . , C} such that i ̸= j,

Cov[y]episi,j = Cov[µi, µj ] =
−µ̄iµ̄j

α0 + 1
(18)



Therefore, the epistemic covariance matrix can be ex-
pressed as

Cov[y]epis =
1

α0 + 1
(Diag(µ̄)− µ̄µ̄⊤) (19)

A.2.3 Total Covariance

The total covariance matrix can be derived as the sum of
aleatoric and epistemic components.

Cov[y] = Cov[y]alea +Cov[y]epis (20)

= Diag(µ̄)− µ̄µ̄⊤ (21)

A.3. Evidential Class Uncertainties

The evidential uncertainties of class c ∈ {1, 2, . . . , C}
not only can be directly retrieved from the diagonal of the
corresponding covariance matrix but also can be calculated
by decomposing the variance of the class random variable
yc based on the law of total variance. The two approaches
yield the same result.

Var[yc]︸ ︷︷ ︸
total

= E[Var[yc|µ]]︸ ︷︷ ︸
aleatoric

+Var[E[yc|µ]]︸ ︷︷ ︸
epistemic

(22)

The aleatoric, epistemic, and total class uncertainties can
respectively be quantified as follows

Ualea
c = E[Var[yc|µ]] (23)

= E[µc(1− µc)] (24)

= E[µc]− E[µ2
c ] (25)

= E[µc]− E2[µc]−Var[µc] (26)

= µ̄c − µ̄2
c −

µ̄c − µ̄2
c

α0 + 1
(27)

=
α0

α0 + 1
(µ̄i − µ̄2

c) (28)

Uepis
c = Var[E[yc|µ]] (29)

= Var[µc] (30)

=
1

α0 + 1
(µ̄c − µ̄2

c) (31)

Uc = Ualea
c + Uepis

c (32)

= µ̄i − µ̄2
c (33)

The derivation is the same as the covariance derivation on
the diagonal entries.


