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Appendix A: Target viewing vectors

Here we discuss the construction process of the target
viewing vectors θgttarget, which are crucial for optimizing
FacadeNet. To achieve this, we leverage the pre-processed
rectified facades of panoramic images found in the the
Large Scale Architectural Asset dataset [5]. Building fa-
cades were already extracted from each panoramic street-
view image, during the development of the LSAA dataset.
Moreover, for each panorama two rectified planes, Πleft

rect

and Πright
rect are constructed, that cover the entire panoramic

image. Each rectified plane has a predefined width WΠ

and height HΠ and a horizontal and vertical field of view
that span in the range of [−75◦,+75◦]. Following a stan-
dard image rectification process, each extracted facade is
mapped to one of the two rectified planes, according to its
location in the panorama, by maintaining its viewing angles
θfh and θfv . These angles denote the viewing directions of
the center pixel of the rectified facade image along the hori-
zontal and vertical axes, w.r.t. to a camera that is positioned
in the center of the rectified plane, .

Utilizing this information, for a rectified plane we con-
struct two horizontal and vertical viewing vectors accord-
ing to their corresponding field of views, normalized in the
range [−1,+1], and the spatial dimensionality of each axis,
denoted as θΠh ∈ [−1,+1]WΠ and θΠv ∈ [−1,+1]HΠ re-
spectively. Each element of these viewing vectors, captures
the horizontal and vertical viewing directions of each pixel
in the rectified plane. Then, we construct the horizontal tar-
get viewing vector θfh and vertical target viewing vector θfv
of the rectified facade, whose dimensionality is equal to the
width Wf and Hf of the facade. Finally, by treating the
rectified plane’s viewing vectors as lookup tables, we find
the position of each facade in these, based on the values of
θfh and θfv , and extract the viewing angles for the facade’s
target viewing vectors (see Figure 1). For the synthesis of
novel facades, we modify the target viewing vectors of the
reference facade by adding a constant negative or positive
offset, in order to influence its viewing direction from left
to right and top to bottom.

Rectified Plane

Figure 1. Facades can occupy various positions on the rectified
plane, each position denoting specific horizontal θh and vertical
θv view direction targets for the facade image. These view direc-
tion targets encompass the location of the facade within the recti-
fied plane, effectively determining the perspective from which it is
viewed. By referring to the accompanying figure, it becomes ev-
ident that the values of the horizontal and vertical vectors (h and
v) undergo gradual changes as the points shift across the rectified
plane. The spatial location of the rectified plane captures identical
view directions for distinct facades

Appendix B: FacadeNet analysis

Ablation. We conducted a comprehensive ablation study,
presented in Table 1, to examine the influence of our design
choices on both image synthesis quality and content consis-
tency with respect to reference images. Our model is based
on an Encoder-Decoder(Generator) architecture where the
reference facade image f is encoded into a latent tensor
z that captures the structure and the style of the input im-
age. Subsequently, leveraging the latent matrix z, our model
generates a coherent representation of the reference facade
from various viewpoints by conditioning the generative pro-
cess using view target vectors.

FacadeNetbase serves as our baseline and represents
the existing design choice without the selective editing
module. Utilizing the selective editing mask (SEM)
FacadeNetA achieves higher image quality in novel view
synthesis, reducing the metric from 10.59 to 9.74. In the
case where the features used for the selective editing mod-
ule is set to semantics, we refer to fixed masks that utilize
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Method SEM features # Views LPIPS-alex↓ LPIPS-vgg↓ FIDrec ↓ FIDnovel ↓ PSNR↑ SSIM↑
FacadeNetbase – – 1 0.174 0.296 10.59 9.91 24.13 0.69
FacadeNetA ✓ semantics 1 0.147 0.265 9.74 9.28 24.13 0.693
FacadeNetB ✓ semantics 2 0.143 0.262 9.66 8.89 24.25 0.698
FacadeNetC ✓ semantics 4 0.135 0.247 10.32 8.63 24.62 0.717
FacadeNetD ✓ semantics 6 0.136 0.255 9.96 9.64 24.55 0.718
FacadeNetE ✓ DINO 1 0.143 0.261 9.626 8.971 23.80 0.708
FacadeNetF ✓ DINO 2 0.128 0.250 9.645 8.769 24.77 0.712
FacadeNetG ✓ DINO 4 0.119 0.240 9.601 8.327 23.866 0.714
FacadeNetH ✓ DINO 6 0.145 0.265 12.39 11.453 23.91 0.708

Table 1. Our ablation study aims to assess the performance of various design choices we employed in our work. Specifically, we investigate
the impact of selective editing mask (SEM), the choice of features used as priors for computing the selective mask and the number of
novel views per iteration (#Views). From our findings, we conclude that SEM yields to the most significant improvement in terms of both
novel view consistency and image quality. Notably, we observe a substantial enhancement when employing DINO features and learnable
weights to combine them, as opposed to manually selected semantic groups as editing masks. Moreover, using more than 1 view for each
iteration improves the results regarding novel inter-view consistency even further.

semantic maps and a manually selected group of classes to
create a binary mask assigning 1 to selected classes and 0
otherwise. Notably, it significantly outperforms the base-
line in terms of consistency, with the LPIPS − alex and
LPIPS − vgg metrics improving from 0.174 to 0.147 and
from 0.296 to 0.265, respectively.

FacadeNetE demonstrates that learnable masks are
better suited for the novel view synthesis task. DINOV iT
[1] proves to be a valuable resource, offering meaningful
and useful localized features that can effectively be uti-
lized in methodologies similar to ours without the need for
supervision. The binary format of fixed masks seems to
have a disadvantage in contrast to the continuous represen-
tation of masks that are extracted from DINOV iT fea-
tures [1]. Moreover, DINOV iT features provide the free-
dom to the network to choose the group of features that are
required to alter for novel view synthesis in contrast to fixed
semantics features. In terms of quality FacadeNetE en-
hances the FIDnovel value for novel view synthesis from
9.28 of FacadeNetA to 8, 971. Additionally, it achieves
better scores, reducing the LPIPS − alex metric from
0.147 to 0.143 and the LPIPS − vgg metric from 0.265
to 0.261.

Furthermore, it is evident that incorporating multiple
views during training brings significant benefits. Intu-
itively, this approach provides a multi-view consistency,
preventing the model from being misled and generating
incompatible results between different views. The multi-
view version of FacadeNet outperforms their single-
view counterparts, regardless, of the other attributes be-
ing used in the model. Multi-view training primarily en-
hances the quality and consistency of novel facade synthe-
sis, while also yielding slight improvements in reconstruc-
tion tasks. As illustrated FacedeNetB,C,D clearly outper-
form FacedeNetA regarding LPIPS − alex, LPIPS −
vgg and FIDnovel while the same observation stands for

FacedeNetF,G,H in contrast to FacedeNetE. Among our
models, FacadeNetH emerges as the best-performing ver-
sion. It combines the selective editing module, learnable
edit masks and multi-view training, resulting in superior
performance compared to other versions of FacadeNet.
FacadeNetH is referenced as FacadeNetfull in the main
paper.

Selective editing improvements. To visually assess the
effectiveness of our selective editing module, we conducted
a comparison between our FacadeNetfull and our base
model, FacadeNetbase, in order to validate the improve-
ments in consistency. In Figure 2, we present an interpo-
lation of view angles for two facades, emphasizing the en-
hancements we have achieved.

While both models generate high-quality and believable
center images, it is evident that the model trained with the
selective editing module exhibits significantly superior con-
sistency. The improvements in maintaining coherence and
smooth transitions between the generated views are remark-
able when compared to our base model.

In Figure 2, we present the results of FacadeNetfull
and FacadeNetbase in pairs of rows. The top row
in each sample corresponds to the outputs generated by
FacadeNetfull, while the rows below depict the re-
sults from FacadeNetbase. Upon careful observation,
it becomes apparent that FacadeNetbase introduces var-
ious artifacts between different view angles. In contrast,
FacadeNetfull demonstrates a higher level of robustness
and maintains the integrity of facades’ detailed areas (see
highlighted area in the green and red boxes in Figure 7).

In the second sample (rows 3 & 4), FacadeNetfull ex-
hibits the ability to discern insignificant features, such as
the car that is present in the image, and preserves them con-
sistently across different views. However, FacadeNetbase



Figure 2. In this figure we display visual comparisons between FacadeNetfull and FacadeNetbase. We observe the emergence of
various artifacts when generating examples using FacadeNetbase (bottom row of each sample) from different view angles. In contrast,
FacadeNet′fulls results (top row of each sample) demonstrate a higher level of robustness, effectively preserving the structural details.
This distinction is highlighted by the annotated area, where green and red boxes indicate the differences in inter-view consistency.

fails to maintain such details, resulting in distorted and pe-
culiar outcomes (see last row red box in figure 2).

Appendix C: Facade view interpolation

Here, we demonstrate the impact of our horizontal vector
θh and vertical vector θv on specific input facade images,
showcasing their influence. By utilizing our encoder, we
obtain a latent matrix z based on a reference facade image
fref . Subsequently, our generator employs the same latent
matrix z along with different combinations of horizontal θh
and vertical θv targets to generate samples.

Figure 4 illustrates the camera movement on the hori-
zontal axis, moving from right to left (represented by the

camera’s motion in the top row). Similarly, on the vertical
axis, the camera moves from bottom to top (represented by
the camera’s motion in the left column). This visual repre-
sentation exemplifies the disentangled controllability of the
view angle vectors for both axes. As evident from the re-
sults, the generated content precisely aligns with the target
vectors.

Figures 7 and 8 present additional results that serve to
exemplify the effectiveness of our approach. These visual
examples showcase our model’s ability to successfully han-
dle a diverse range of structures and architectural styles.
Notably, our method maintains the overall style coherence
while preserving the distinctive style of individual windows
throughout the interpolation process. Moreover, we observe



Figure 3. Example of edit masks that were extracted from mask extraction module.

Figure 4. We present an interpolated representation of camera
movement in both horizontal and vertical directions. The spatial
code z remains fixed, while the output dynamically adjusts ac-
cording to the camera’s motion, which modifies the conditional
information of the view direction target, θtarget. In the accompa-
nying figure, we demonstrate the camera’s movement from left to
right (top row) along the horizontal axis and from top to bottom
(left column) along the vertical axis. Furthermore, we showcase
the disentangled controllability achieved on both axes.

the robustness of our model in challenging scenarios where
the image contains noise or when facade details are partially
occluded by trees. These results highlight the adaptability
and reliability of our approach in real-world situations.

Appendix D: FacadeNet applications results

Problematic rectified facade improvement. Figure 6
showcases pairs of facade images for visual comparison.
The top row displays the problematic rectified facade im-
ages fref , while the bottom row exhibits the 0-view im-
proved generated facade images fnovel = G(E(zf , θ0)).
We observe that our generative approach successfully re-
constructs an identical appearance to the reference facade
images fref while maintaining structure and style. Addi-
tionally, the approach effectively translates the components
of the facades to align with a 0-angle viewpoint. This trans-
formation results in fewer problematic areas in the gener-
ated facade images.

Real-time textures for urban scenes. In Figure 5 we ren-
der examples of our approach from 2 different view an-
gles. This example contains 4 buildings whose textures are
changing simultaneously but differently based on their lo-
cation in the 3D world and the position of the camera. We
illustrate that our application can create multiple plausible
results in real-time



Reference Images 3D Scene Renderings from Moving Camera

Camera position 1 Camera position 2

Figure 5. Urban Scenes Renders from the in Real-Time interactive textures application

Figure 6. We display examples of problematic facade image improvement. We display pairs of the reference images (left) and the θ0(center
image) reconstruction images(right). We observe that our model can rotate the facade to a better view orientation in contrast to the reference
while at the same time, it achieves a high similarity of style and structure.

Appendix E: Additional visualizations

Edit mask examples. Figure 3 provides a visual repre-
sentation of the edit mask obtained through our selective
editing module. This module leverages information from
DINO ViT to extract plausible edit masks by employing
learnable weights that blend the input features into a 1-
channel edit mask. The purpose of this edit mask is to guide
the network in manipulating the reference image in a tar-
geted manner, thereby enhancing the consistency of novel
views across different view angle targets.

A notable observation in Figure 3 is the consistent pat-
tern exhibited by the selective editing module. It assigns
high values to semantic areas such as windows, doors, and
balconies, indicating their significance in the editing pro-
cess. Moderate values are assigned to various facade de-

tails, particularly those found on the ground floor. Areas
with plain walls or minimal details receive low importance
values, while the sky and trees receive the lowest impor-
tance values in the context of the novel view synthesis task.

The underlying rationale behind the use of masks is to
group areas in the reference image that are crucial for our
task and focus on modifying them while leaving the remain-
ing areas intact. This approach allows us to selectively and
effectively alter specific regions of the image to achieve our
desired outcomes.

Qualitative results. Figures 9, 10, 11, 12 presents quali-
tative comparisons between Palette [3] (1st row), 3DGP [4]
(2nd row), swapping-AE [2] (3rd row) and FacadeNetfull
(4th row). Palette and 3DGP are unable to generate fine de-
tails as the generation is combined with novel view synthe-



Reference Image Horizontal View Interpolation

Figure 7. Examples of 5-step image interpolation on the horizontal axis. Given the reference images (left column), we can reconstruct the
novel view from different angles as it is illustrated in the images of columns 2-6.



Reference Image Horizontal View Interpolation

Figure 8. Examples of 5-step image interpolation on the horizontal axis. Given the reference images (left column), we can reconstruct the
novel view from different angles as it is illustrated in the images of columns 2-6.



sis. Notably, artifacts become apparent in the output gener-
ated by the swapping−AE model across varying viewing
angles. In contrast, FacadeNetfull’s results demonstrate a
higher level of robustness, effectively preserving the struc-
tural details. More results are displayed in the supplemen-
tary.
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Figure 9. Novel view interpolation comparison between textitPalette [3] (1st row), 3DGP [4] (2nd row), swapping-AE [2] (3rd row) and
FacadeNetfull (4th row)

Figure 10. Novel view interpolation comparison between textitPalette [3] (1st row), 3DGP [4] (2nd row), swapping-AE [2] (3rd row) and
FacadeNetfull (4th row)



Figure 11. Novel view interpolation comparison between textitPalette [3] (1st row), 3DGP [4] (2nd row), swapping-AE [2] (3rd row) and
FacadeNetfull (4th row)

Figure 12. Novel view interpolation comparison between textitPalette [3] (1st row), 3DGP [4] (2nd row), swapping-AE [2] (3rd row) and
FacadeNetfull (4th row)


