
Supplementary Material

1. Related Work
1.1. Continuous Latent Space Models

Continuous latent space(CLS) models have gained signifi-
cant popularity in the field of medical image segmentation.
These models offer a flexible and powerful framework for
capturing the complex and continuous variations present in
medical images. Existing work can be divided into CNNs,
transformers, and hybrid models.

CNN-based CLS models: Convolutional Neural Networks
(CNNs) have emerged as the widely accepted standard for
various computer vision applications. Image segmentation,
a task that involves assigning class labels to individual
pixels, has particularly benefited from the effectiveness of
CNNs. Initial work in the field of image segmentation,
such as Fully Convolutional Networks (FCN) [18], and
SegNet [1], demonstrated the effectiveness of CNNs in
this domain. FCN eliminated the need for fully connected
layers and enabled pixel-wise segmentation. SegNet, on
the other hand, introduced an encoder-decoder architecture
that utilized pooling indices for efficient upsampling.
Other notable work consist of DeepLab [7], [20], [36]
which improves FCNs by increasing the receptive field
and capturing contextual information. CNN models have
also achieved remarkable success in medical imaging
tasks, notably with the introduction of U-net [12], which
inspired subsequent research on U-shaped encoder-decoder
architectures [2, 14, 21, 37]. Notably, studies [2, 2, 14] have
explored enhancing the encoder-decoder structure with
dense skip connections, leading to improved performance
in diverse medical domains. Furthermore, encoder-decoder
arch. have also shown great success in Semi-SL [29–34]

Multi-head Cross-attention Mechanism emerges as a piv-
otal convergence point in both natural language process-
ing (NLP) and computer vision domains, amalgamating the
potency of multi-head attention and cross-attention mech-
anisms. It combines the strengths of multi-head attention,
which is rooted in the Transformer model’s mechanism for
focusing on different parts of input, and cross-attention,
which extends this capability to interactions between differ-
ent data types. For instance, in tasks like image captioning
and understanding relationships between images and text,
the concept proves its utility. This innovation has led to im-

provements in machine translation, question answering, and
text summarization as well, showcasing its potential to rev-
olutionize the handling of diverse data. In our study, we har-
ness Multi-Head Cross Attention to jointly model discrete
and continuous latent spaces, capturing complementary fine
and coarse-grained information. This is particularly critical
in medical image segmentation.
Transformer-based CLS models Vision transformers [8]
and their variants [16, 17, 23, 27, 35] have emerged as
powerful models in computer vision, akin to the remarkable
success of transformers in Natural Language Processing
(NLP). These models leverage self-attention mechanisms
to learn global information and have achieved impressive
results in various visual tasks such as object classifica-
tion [35], segmentation [4, 6, 16], and detection [3, 38].
Their end-to-end solutions demonstrate the versatility
and effectiveness of vision transformers across different
vision domains. For instance, Swin Transformer [17]
introduces a hierarchical vision transformer that efficiently
computes self-attention locally using a shifted windowing
approach. CrossViT [5] proposes a dual-branch vision
transformer followed by a cross-attention module, enabling
richer feature representations while maintaining linear time
complexity. These approaches have proven effective in
improving performance. In addition to fully transformer-
based models, recent methods like Swin-UNet [4] and
TransUNet [6] adopt pure transformer architectures with
a U-shaped design based on Swin Transformer for 2D
segmentation tasks. More recent work such as FCT [25]
and Transwnet [28] more accurately capture local and
global information and improve medical segmentation
performance.

Hybrid CLS models Hybrid models combine the capabil-
ities of CNN and transformers models to capture local and
global complementary features tackling the limitation of
each. TransUNet [6] combines the strengths of both CNNs
and transformers [10] to capture both low-level and high-
level features, while UNETR [12] utilizes a transformer-
based encoder and a CNN-based decoder for 3D segmenta-
tion tasks. More recent approach HiFormer [13]effectively
incorporates both global and local information and utilizes a
novel transformer-based fusing scheme to maintain feature
richness and consistency for the task of 2D medical image
segmentation.
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Figure 1. The Grad-CAM visualization demonstrates the characteristics of different models. A UNet with a confined receptive field excels
at capturing essential local context, making it suitable for tasks like cardiac segmentation. However, it may overlook the imperative global
context required for intricate organ segmentation. Conversely, vector quantization adeptly captures the global context but misses finer
details like boundaries. As evident from the visualization, the proposed SynergyNet successfully combines the strengths of both local and
global contexts due to the synergy between CLS and DLS components.

1.2. Discrete Latent Space models

Vector Quantization Vector quantization is a classical
method for compressed coding that employs a codebook
and quantization strategy. Typically using mean square er-
ror (MSE), it identifies similar patterns in the codebook to
replace original input data. It’s akin to discrete representa-
tion learning, using a one-hot vector coefficient. Research
[11, 19, 24] demonstrates its impact on visual understand-
ing and model robustness. Notably, VQVAE [26] lever-
ages a codebook-based neural network for effective discrete
feature distribution learning in images, widely adopted in
generative models. In our study, we integrate VQVAE’s
discrete representation with continuous representation, en-
hancing medical image segmentation.

Discrete latent space (DLS) models have emerged as a
promising approach in various domains, including com-
puter vision and natural language processing. Unlike con-
tinuous latent space models, which utilize continuous vari-
ables, DLS models leverage discrete variables to represent
latent features or concepts. However, the application of
DLS in medical image segmentation remains an active and
evolving research domain. For instance, Gangloff et al. [9]
exploit DLS techniques for anomaly detection, while Jin et
al. [15] employ a DLS-based model [26] as a regularizer
for semantic segmentation of fundus retina images. Pinaya
et al. [22] introduce VQUnet, a DLS-based approach for
3D anomaly detection and segmentation in brain imaging.
Additionally, Santhirasekaram et al. [24] demonstrate the

robustness and interpretability of vector quantization in se-
mantic segmentation tasks. These studies collectively con-
tribute to the ongoing exploration and advancement of DLS
methods in the context of medical image segmentation.

2. Limitations:
While SynergyNet has demonstrated success, it can also
be susceptible to issues inherited from its quantizer mod-
ule, including limited scalability and sensitivity to hyper-
parameters. Additionally, relying solely on a strategy that
selects the most similar codebook item to represent in-
put might face limitations in capturing intricate data pat-
terns, potentially leading to information loss. In cases like
ACDC, where fixed ROIs require segmentation, continuous
space can offer a more viable option due to vector quanti-
zation’s structured sparsity property. Furthermore, we ob-
serve that CLS and DLS models experience false negatives
due to poor inter-class dependencies, a problem partially
addressed by SynergyNet. As a result, there is merit in con-
ducting further research on SynergyNet.

3. Future Works:
Integrating SynergyNet with efficient architectures like
Swin Transformer [4], HiFormer [13] and others shows
promise for further advancements. Exploring SynergyNet’s
performance with unsupervised models is an intriguing re-
search area that enables leveraging unlabeled data to en-
hance capabilities in medical image analysis. This holds
the potential to improve efficiency and performance in this



critical domain.
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