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Figure 1. weight matrix of Layer 14 of VGG-19 trained on CIFAR-
100. Each element in this matrix is a 2D kernel.

Figure 2. weight matrix of Layer 14 of VGG-19 trained on CIFAR-
100. Each element in this matrix is a 2D kernel.

In Figure 1, we provide our analysis when training our
model with different values of λT for both (r) and (p).
Specifically, we experiment with three different λT =
10−6, λT = 10−7 and λT = 10−8 for different model
architectures at different speedup. (Note: we have scaled
the values of VGG-19 on CIFAR100 by 0.1 in order for
easier insight). As already mentioned in the main paper,
all above models perform exceptionally well intialized with
pre-trained model as compred to randomly initialized. Ad-
ditionally, for most of the networks we observe λT = 10−7

and λT = 10−8 performance to be superior than λT =
10−6.

We especially noticed that when the VGG-19 model
is randomly initialized and trained with λT = 10−6 on
CIFAR-100 dataset, we see significant drop in performance.
On further analysis of the VGG-19 layers trained with dif-
ferent λT , we observed at high value of λT , the constraint
is too strong and the model is unable to recover from such
strong damage. Figure 2 shows layer-14 of VGG-19 after
torque training process.
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