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1. Introduction

In this supplementary material, we provide more details
about the BRIAR dataset and its evaluation protocol. Next,
we elaborate on the synthetic occlusions used in our exper-
iments. We further train new models on dynamic occlu-
sions and show that occlusion awareness can help even in
dynamic occlusions. Next, we provide additional details
and analysis on the Learnable 3D Conv method. Further,
we perform experiments with different occlusion types, and
restrict occlusion types in the gallery and probe set to anal-
yse how difficult different occlusions types are. Lastly, we
provide more details and experimental evaluation results re-
garding the occlusion detector.

2. BRIAR Dataset

The BRIAR [1] dataset is a recently collected dataset for
gait recognition in outdoor, uncontrolled conditions. It has
a lot of challenging outdoor scenes containing large varia-
tions in illumination, camera quality, distance of the subject
from the camera, and extreme viewpoints. This makes it
one of the most challenging gait recognition datasets.

The dataset contains videos captured systematically
from distances of 100m, 200m, 400m and 500m. Addi-
tionally, some videos are captured from UAVs and some are
captured at close range from an elevated viewpoint. Some
video frames captured from UAVs are visualized in Fig-
ure 2. In BRIAR, the subjects move inside a fixed square
boundary. The movement of the subjects may be 1) struc-
tured, where they walk along pre-defined straight lines in-
side the boundary, or 2) random, where subjects can move
arbitrarily inside the boundary. While walking, the subjects
are free to use their mobile phones and walk naturally, to
represent a more practical scenario.

We use the BRS-1 and BRS-1.1 subsets of the BRIAR
dataset for training, giving us a total of 212 training sub-
jects. We use the BTS-1 subset for evaluation, containing

90 subjects. The BRS and BTS subsets are mutually exclu-
sive, so no subjects used for training are used for evaluation
and vice versa. The dataset defines the protocol for evalua-
tion, containing the subject IDs, and start and end frame for
each of the probe and gallery sequences.

Additionally, the videos captured from the 200m range
are kept at a position which introduces jagged occlusions
where the lower part of the subject is always occluded from
view from tall grass of varying height. This makes recog-
nizing the gait especially difficult, since the legs are par-
tially hidden from view of the camera and the occlusion
is also not consistent across the video. Some examples of
these jagged occlusions have been shown in Figure 4 of the
main paper.

2.1. Evaluation Protocol

The BRIAR dataset contains a variety of different condi-
tions and distances. We take the non-occluded videos from
the dataset and introduce synthetic occlusions in them for
evaluation. The BRIAR protocol provides the probe and
gallery split. A single video may have multiple probes
within it, as specified by the start and end frames of each
probe according to the protocol. It should be noted that
none of the probes overlap with each other. The BRIAR
dataset also contains single images as probes, but we filter
them out because temporal information is required to run
gait recognition models.

The controlled, indoor sequences in BRIAR are of higher
quality and are treated as the gallery set. Meanwhile, the
outdoor, more challenging conditions constitute the probe
set. For evaluation, we use the Top-K rank retrieval metric.
We compute the euclidean distance between each probe-
gallery pair, and select the top K gallery matches for each
probe. If the correct identity of the probe subject is within
the top K predictions, the subject is regarded as being iden-
tified correctly. Since each subject also has multiple entries
within the gallery, we select the top K gallery videos in-
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stead of the top K subjects. This list may have a subject
being repeated, effectively reducing the number of possible
candidates to choose from. Thus, this is a tougher evalua-
tion metric than selecting the top K unique subjects while
also being a more practical one to evaluate the model on.

3. Synthetic Occlusions
3.1. Consistent Occlusions

We use synthetic consistent occlusions to train the occlu-
sion detector D as well as the gait recognition backbone F
in most of our experiments. Consistent occlusions are one
where all the frames have the occlusion patch at the same
position, thereby blocking a body part from view for the en-
tire length of the video. The consistent occlusion types we
use in our experiments are described in Figure 1 and Sec-
tion 3.2 of the main paper. The range R of these synthetic
occlusions is set to be 20% - 50% of the frame size. The
level of occlusion in a video is randomly chosen from this
range.

3.2. Dynamic Occlusions

Dynamic occlusions are one where the position of the
occlusion patch changes with time. We perform some addi-
tional experiments using such dynamic occlusions to check
the generalizability of the occlusion aware model to unseen
occlusion types, and to verify whether using the occlusion
detector in the transient mode through the Learnable 3D
Conv technique helps with dynamic occlusions.

To simulate dynamic occlusions, we place black patches
of different shapes on the image frames, and the position
of these patches can change with time. Specifically, we
place either a small rectangular moving patch which oc-
cludes a portion of the subject, or a tall rectangular moving
patch which covers the entire height of the frame. Some
examples of these dynamic occlusions are shown in Fig-
ure 1. The height and width of the small patch are chosen
randomly within the range Rds = (0.3, 0.5) which corre-
sponds to 30% - 50% of the frame dimension. The height of
the tall rectangular patch of occlusion is fixed to the height
of the frame, and its width is chosen randomly within the
range Rdt = (0.2, 0.4) for each video. We decide these
ranges of the occlusion patch size by manually visualizing
the occluded video for different ranges, and choosing one
which looks most similar to occlusion patterns which might
be caused by objects like trees or poles covering the height
of the frame, or small stationary objects like cones or boxes
blocking a part of the moving subject.

To make the occlusions dynamic and realistic, we decide
to give a velocity to the occlusion patches as opposed to
randomly deciding the position across each frame. The di-
rection of movement of the patch is decided randomly from
left to right or right to left, and the velocity of these patches

Figure 1. Examples of the synthetic dynamic occlusions we use,
applied on video frames taken from the GREW dataset. The top
row shows a small moving rectangular patch, and the bottom row
shows a tall patch which covers the height of the frame applied
on the same video. The occlusion patches are shown with a red
boundary for visualization purposes only.

Method Rank-1 Rank-5 Rank-10 Rank-20
Learnable 3D Conv 22.45 37.45 44.42 51.93

Deferred Concat 30.32 47.08 54.45 62.62

Table 1. Different occlusion awareness methods used for dynamic
occlusions. Even for occlusions which change with time, inserting
occlusion information in the deeper layers of the network performs
better.

is chosen randomly from the range Rv = (0.5, 1.0) pixels
per frame. This range has also been chosen by manually
inspecting the synthetically occluded videos with different
velocities for the occlusion patch.

4. Occlusion Awareness in dynamic occlusions
Here, we train occlusion aware networks on dynamic oc-

clusions. We experiment with Learnable 3D Conv and the
Deferred Concat method to insert occlusion awareness in
the GaitGL backbone. The results are summarized in Ta-
ble 1. We observe that even in dynamic occlusions, the
Deferred Concat method, where D operates in cumulative
mode and outputs βc, performs better than Learnable 3D
Conv where D operates in transient mode and outputs βt.
This further demonstrates that the position where Learn-
able 3D Conv inserts occlusion aware features is not opti-
mal for the gait recognition backbone, and occlusion aware-
ness helps in the deeper layers of the network. It remains
to be seen whether inserting transient occlusion features βt

into these deeper layers further improves performance on
dynamic occlusions, and we leave that to future work.

5. Learnable 3D Conv
5.1. Additional details

The occlusion awareness module M takes as input the
occlusion feature β and the intermediate feature X . It out-
puts a new occlusion aware intermediate feature X

′
which

is replaced by X in the backbone. In most of the experi-
ments, the size of X

′
is same as X , so that the architecture

of the backbone remains unchanged. However, in Section



Figure 2. Some sample frames taken from the videos captured
from UAVs in the BRIAR [1] dataset. We can see the extreme
viewpoint angle in these videos, making recognition a more chal-
lenging problem from these.

5.2, we experiment with a larger size of the intermediate
feature X

′
.

The size of the occlusion feature β is 64 × f in tran-
sient mode (f being the number of frames in the video),
and 64× 1 in cumulative mode. In the Learnable 3D Conv
method, the transient occlusion feature βt is repeated along
height and width dimensions and concatenated with the in-
termediate feature X (of size 32×f×h×w) along the chan-
nel dimension to give a feature size of 96× f ×h×w. The
learnable 3D Conv layer reduces this again to 32×f×h×w.
However, the 3D Conv described in Section 5.2 transforms
it into another block of 96× f × h× w.

5.2. Increasing number of channels in 3D Conv

In this experiment, we try a larger size of the intermedi-
ate feature X

′
to see if a larger size of the occlusion feature

benefits the model. Specifically, we use the Learnable 3D
Conv method and increase the number of output channels
in the 3D Conv to 96 from the earlier 32 channels. We
use the GaitGL [3] backbone and train the model on the
BRIAR [1] dataset. The results are mentioned in Table 2.
We compare the model to the earlier Learnable 3D Conv
and the Deferred Concat method, and observe that increas-
ing the number of channels actually hurts the model. Thus,
the occlusion information is able to fit better in the original
number of channels of X

′
and introducing more channel

confuses the model.

6. Occlusion Type Analysis

Evaluation by occlusion type: During evaluation, we
randomly apply occlusions of different types on the input.
In this section, we evaluate our model on these occlusion
types separately to get an idea about which occlusion types
are easier and which are difficult for the model. Our results

are summarized in Table 3. As expected, the model is able
to perform better when the size of the occlusion patch is
small (corresponding to occlusions #1-#4). However, the
task becomes much more difficult when half of the body is
missing in occlusions #5-#8.

Different occlusions in gallery and probe: In our ex-
periments, the occlusion type for each video is chosen at
random, independent of other videos. As a consequence,
the gallery and probe videos of a subject may have different
or the same type of occlusion within them. In this section,
we analyse the effect of enforcing the gallery and probe set
to have different occlusions. As such, we apply occlusion
types #1-#4 on the gallery set, and restrict occlusions on
the probe set to #5-#6 and #7-#8 in separate experiments.
Our results are shown in Table 4. Here as well, we observe
that the model with occlusion awareness is able to perform
better than the baselines.

7. Occlusion Detector
The occlusion detector D takes a video of silhouette

masks as input and outputs the occlusion feature β. It is
trained on silhouette images to classify the image into nine
classes - eight types of occlusions or no occlusion. When
working on videos, it outputs an occlusion feature for every
frame and depending on its mode of operation, it can either
output the entire block βt or the mean-pooled feature βc.

Optimal architecture: In our experiments, we use a
three-layer convolutional neural network as the occlusion
detector. In this section, we try out different depths of the
CNN architecture to see which one would be the best for
introducing occlusion awareness. We try out networks with
1, 3 and 5 convolutional layers, and they are able to achieve
classification accuracies of 89.1%, 98.8% and 99.1% re-
spectively. Even though the 5 layer network performs the
best, the difference in performance is not much between the
latter two variants. Thus, we choose the 3 layer network
to introduce occlusion awareness considering the trade-off
between computational cost and performance.

Implementation Details: The occlusion detector D we
use is a three layer CNN with two additional linear layers.
The ReLU activation function is used after each layer, ex-
cept the last one where we use the softmax activation func-
tion while training. The occlusion detector is trained on the
occlusion classification task using Cross Entropy Loss [4]
and the Adam optimizer [2] with a learning rate of 0.001.
We use a batch size of 32 for training the occlusion de-
tector. The occlusion detector is trained on the BRIAR
dataset, from which silhouette masks are extracted using
Detectron2 [5].



Occlusion Awareness Method 100m 400m 500m Extreme Angle Aerial
Rank1 Rank20 Rank1 Rank20 Rank1 Rank20 Rank1 Rank20 Rank1 Rank20

Learnable 3D Conv more channels 22.27 77.94 9.48 62.36 9.77 57.96 14.25 66.79 12.7 71.43
Learnable 3D Conv 27.3 81.05 14.15 72.39 13.38 74.31 21.37 73.55 19.05 82.54

Deferred Concat 34.58 82.12 21.15 70.19 18.47 70.91 25.73 78.27 28.57 82.54

Table 2. Comparison of the performance of the occlusion aware network when the intermediate feature has more channels, compared
to the regular Learnable 3D Conv method. The best deferred concat method is also shown for reference. We observe that increasing the
number of channels actually hurts the performance, and the occlusion information better fits in the original number of channels inside the
backbone.

Occlusion types Rank-1 Rank-5 Rank-10 Rank-20
Corner patch (#1-#4) 20.92 35.12 42.13 48.82

Half Horizontal (#5-#6) 7.97 14.35 17.87 21.8
Half vertical (#7-#8) 11.67 21.37 27.9 36.35

Table 3. Evaluation of the occlusion aware GaitGL model on the
GREW dataset, where synthetic occlusions are restricted to par-
ticular types during evaluation. #1-#4 correspond to an occlusion
patch placed in any of the four corners of the frame, #5-#6 corre-
spond to half horizontal occlusions where the top or bottom half
of the body may be missing, and #7-#8 correspond to occlusions
where either the left or the right half of the body may be missing.
Half horizontal is the toughest occlusion type and corner patches
are relatively the easiet occlusion types for the model.

7.1. Training and evaluation

During training, we sample one frame from every 50
frames in the video. During evaluation of the occlusion de-
tector, we randomly pick one frame from each video. Dur-
ing both training and evaluation, synthetic occlusions of the
previously discussed eight types are randomly introduced
during the data loading step of the input frame and the clas-
sification accuracy is measured.

7.2. Architecture

The architecture of the occlusion detector is described
in Table 5. It is a three-layer convolutional neural network
followed by two linear heads. During training, the output
of the FC2 layer is used to calculate the cross-entropy loss.
However, during inference, and when it is being used along
with the backbone F , the FC2 layer is removed and the out-
put of FC1 is used as the occlusion feature β.

8. Cross Domain Evaluation of Occlusion De-
tector

For our experiments with the gait recognition backbone
F , we use the weights of the occlusion detector obtained
after training it on the relatively smaller BRIAR dataset.
We use it directly on GREW without additional training to
demonstrate its robustness across different domains. In this
section, we further demonstrate its cross-domain general-
ization capability. We train and evaluate it on both BRIAR

and GREW datasets, and also perform cross domain evalu-
ation on the occlusion classifying task.

The results obtained are presented in Table 6. We ob-
serve that while the model performs best in-domain, the per-
formance does not drop significantly across domains, thus
demonstrating the robustness of the occlusion detector D.
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Method Rank-1 Rank-5 Rank-10 Rank-20
P #5-#6 P #7-#8 P #5-#6 P #7-#8 P #5-#6 P #7-#8 P #5-#6 P #7-#8

Baseline-1 0.23 1.27 0.6 3.23 1.18 4.8 2.33 7.03
Baseline-2 9.8 15.3 19.67 28.95 25.2 35.78 31.5 43.85

Occlusion Aware 11.4 18.22 21.68 33.62 27.88 40.7 35.05 47.8

Table 4. Performance of the baselines and occlusion aware model when gallery and probes have different occlusion types. Here, gallery
occlusion is chosen between #1-#4 and probe occlusion is chosen from either #5-#6 or #7-#8 as specified.

Layer Name Input shape Output Shape
Conv1 64 * 64 * 1 64 * 64 * 32

ReLU, MaxPool1 64 * 64 * 32 32 * 32 * 32
Conv2 32 * 32 * 32 32 * 32 * 64

ReLU, MaxPool2 32 * 32 * 64 16 * 16 * 64
Conv3 16 * 16 * 64 16 * 16 * 128

ReLU, MaxPool3 16 * 16 * 128 8 * 8 * 128
AdaptiveAvgPool 8 * 8 * 128 128

FC1 128 64
FC2 64 9

Table 5. The architecture of the occlusion detector. It is a three
layer convolutional neural network followed by two fully con-
nected layers.

Test on BRIAR Test on GREW
Train on BRIAR 98.0 94.9
Train on GREW 97.9 98.8

Table 6. In-domain and cross-domain evaluation of the occlusion
detector on the BRIAR and GREW datasets. As expected, the per-
formance is highest in the in-domain evaluation, but it does not
drop significantly across domains. This demonstrates the robust-
ness of the occlusion detector across domains.
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