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1. Supplementary organization
In this Supplementary(Supp), we provide the

supplemental material to the paper: Composite
Diffusion: whole >= Σparts. It is organized into the
following four main parts:

1. Background for methods Supp section-2
provides the mathematical background for image
generation using diffusion models relevant to this
paper.

2. Our base setup and serial inpainting method
Supp section-3 provides the details of our
experimental setup, the features and details of the
base implementation model, and text-to-image
generation through the base model which also
serves as our baseline 1. Supp section-4 provides
the details of our implementation of the serial
inpainting method which also serves as our baseline
2.

3. Our method: details and features Supp
section-5 covers the additional implementation
details of our Composite Diffusion method
discussed in the main paper. Supp section-5.3
discusses the implication of Composite Diffusion in
personalizing content generation at a scale. Supp
section-5.4 discusses some of the limitations of
our approach and Supp section-5.5 discusses the
possible societal impact of our work.

4. Details: Related work and Evaluation Supp
section-6 provides a more detailed comparison
with the related work. Supp section-7 and section-8
cover the additional details of the surveys in the
human evaluation, and automated methods for
evaluation respectively. Supp section-9 provides a
discussion of results for each quality parameter.
Supp section-10 describes the validation exercise
with an external artist.

∗Work performed while working at TCS Research.

2. Background for methods
In this section, we provide an overview of diffusion-

based generative models and diffusion guidance
mechanisms that serve as the foundational blocks of
the methods in this paper. The reader is referred to
[14, 21, 47] for any further details and mathematical
derivations.

2.1. Diffusion models(DM)

In the context of image generation, DMs are a type
of generative model with two diffusion processes: (i) a
forward diffusion process, where we define a Markov
chain by gradually adding a small amount of random
noise to the image at each time step, and (ii)a reverse
diffusion process, where the model learns to generate
the desired image, starting from a random noise sample.

2.1.1 Forward diffusion process

Given a real distribution q(x), we sample an image x0
from it (x0 ∼ q(x)). We gradually add Gaussian noise
to it with a variance schedule {βt ∈ (0, 1)}T

t=1 over T
steps to get progressively noisier versions of the image
x1, . . . , xT . The conditional distribution at each time
step t with respect to its previous timestep t−1 is given
by the diffusion kernel:

q(x1:T ) = q(x0)
T∏

t=1
q(xt|xt−1) (1)

The features in x0 are gradually lost as step t
becomes larger. When T is sufficiently large, T →
∞, then xT approximates an isotropic Gaussian
distribution.

Q-sampling: An interesting property of the forward
diffusion process is that we can also sample xt directly
from x0 in the closed form. If we let αt = 1 − βt,
ᾱt =

∏t
s=1 αs, we get:

q(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I) (2)
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Further, for ϵ ∼ N (0, I), xt can be expressed as a
linear combination of x0 and ϵ:

xt =
√

ᾱtx0 +
√

1 − ᾱtϵ (3)
We utilize this property in many of our algorithms

and refer to it as: ‘q-sampling’.

2.1.2 Reverse diffusion process

Here we reverse the Markovian process and, instead,
we sample from q(xt−1|xt). By repeating this process,
we should be able to recreate the true sample (image),
starting from the pure noise xT ∼ N (0, I). If βt is
sufficiently small, q(xt−1|xt) too will be an isotropic
Gaussian distribution. However, it is not straightforward
to estimate q(xt−1|xt) in closed form. We, therefore,
train a model pθ to approximate the conditional
probabilities that are required to run the reverse
diffusion process.

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) (4)

where µθ and Σθ are the predicted mean and variance
of the conditional Gaussian distribution. In the earlier
implementations Σθ(xt, t) was kept constant [21], but
later it was shown that it is preferable to learn it through
a neural network that interpolates between the upper
and lower bounds for the fixed covariance [13].

The reverse distribution is:

pθ(x0:T ) = p(xT )
T∏

t=1
pθ(xt−1|xt) (5)

Instead of directly inferring the image through
µθ(xt, t)), it might be more convenient to predict the
noise (ϵθ(xt, t)) added to the initial noisy sample ( xt) to
obtain the denoised sample (xt−1) [21]. Then, µθ(xt, t)
can be derived as follows:

µθ(xt, t) = 1
√

αt

(
xt − βt√

1 − ᾱt
ϵθ(xt, t)

)
(6)

Sampling: Mostly, a U-Net neural architecture [41]
is used to predict the denoising amount at each step. A
scheduler samples the output from this model. Together
with the knowledge of time step t, and the input
noisy sample xt, it generates a denoised sample xt.
For sampling through Denoising Diffusion Probabilistic
Model (DDPM) [21], denoised sample is obtained
through the following computation:

xt−1 = 1
√

αt

(
xt − βt√

1 − ᾱt
ϵθ(xt, t)

)
+ σtϵ (7)

where Σθ(xt, t) = σ2
t I , and ϵ ∼ N (0, I) is a random

sample from the standard Gaussian distribution.
To achieve optimal results for image quality and

speed-ups, besides DDPM, various sampling methods,
such as DDIM, LDMS, PNDM, and LMSD [1,28] can
be employed.

We use DDIM (Denoising Diffusion Implicit Models)
as the common method of sampling for all the
algorithms discussed in this paper. Using DDIM, we
sample xt−1 from xt and x0 via the following equation
[46]:

xt−1 =
√

ᾱt−1x0 +
√

1 − ᾱt−1 − σ2
t ϵθ(xt, t) + σtϵ (8)

Using DDIM sampling, we can produce samples that
are comparable to DDPM samples in image quality,
while using only a small subset of DDPM timesteps
(e.g., 50 as opposed to 1000).

2.1.3 Latent diffusion models(LDM)

We can further increase the efficiency of the generative
process by running the diffusion process in latent
space that is lower-dimensional than but perceptually
equivalent to pixel space. Performing diffusion in lower
dimensional space provides massive advantages in terms
of reduced computational complexity. For this, we first
downsample the images into a lower-dimensional latent
space and then upsample the results from the diffusion
process into the pixel space. For example, the latent
diffusion model described in [40] uses a suitably trained
variational autoencoder to encode an RGB pixel-space
image (x ∈ RH×W ×3) into a latent-space representation
(z = E(x), z ∈ Rh×w×c ), where f = H/h = W/w
describes the downsampling factor. The diffusion model
in the latent space operates similarly to the pixel-
space diffusion model described in the previous sections,
except that it utilizes a latent space time-conditioned
U-Net architecture. The output of the diffusion process
(z̃) is decoded back to the pixel-space (x̃ = D(z̃)).

2.2. Diffusion guidance

An unconditional diffusion model, with mean µθ(xt)
and variance Σθ(xt) usually predicts a score function
∇xt

log p(xt) which additively perturbs it and pushes it
in the direction of the gradient. In conditional models,
we try to model conditional distribution ∇xt

log p(xt|y),
where y can be any conditional input such as class
label and free-text. This term, however, can be derived
to be a combination of unconditional and conditional
terms [14]:

∇xt
log p(xt|y) = ∇xt

log p(xt) + ∇xt
log p(y|xt)



2.2.1 Classifier driven guidance

We can obtain log p(y|xt) from an external classifier
that can predict a target y from a high-dimension input
like an image x. A guidance scale s can further amplify
the conditioning guidance.

∇xt
log ps(xt|y) = ∇xt

log p(xt) + s.∇xt
log p(y|xt)

s affects the quality and diversity of samples.

2.2.2 CLIP driven guidance

Contrastive Language–Image Pre-training (CLIP) is a
neural network that can learn visual concepts from
natural language supervision [37]. The pre-trained
encoders from the CLIP model can be used to obtain
semantic image and text embeddings which can be used
to score how closely an image and a text prompt are
semantically related.

Similar to a classifier, we can use the gradient of
the dot product of the image and caption encodings (
f(xt) and g(c)) with respect to the image to guide the
diffusion process [18,30,34].

µ̂θ(xt|c) = µθ(xt|c) + s · Σθ(xt|c)∇xt
(f(xt) · g(c))

To perform a simple classifier-guided diffusion,
Dhariwal and Nichol [13] use a classifier that is pre-
trained on noisy images to guide the image generation.
However, training a CLIP model from scratch on noisy
images may not be always feasible or practical. To
mitigate this problem we can estimate a clean image x̂0
from a noisy latent xt by using the following equation.

x̂0 = xt√
ᾱt

−
√

1 − ᾱtϵθ(xt, t)√
ᾱt

(9)

We can then use this projected clean image x̂0 at each
state of diffusion step t for comparing with the target
text. Now, a CLIP-based loss LCLIP may be defined as
the cosine distance (or some similar distance measure)
between the CLIP embedding of the text prompt (d)
and the embedding of the estimated clean image x̂0:

LCLIP (x, d) = Dc(CLIPimg(x̂0), CLIPtxt(d))

2.2.3 Classifier-free guidance

Classifier-guided mechanisms face a few challenges,
such as: (i) may not be robust enough in dealing with
noised samples in the diffusion process,(ii) not all the
information in x is relevant for predicting y, which
may cause adversarial guidance, (iii) do not work well
for predicting complex y like ‘text’. The classifier-free

guidance [22] helps overcome this and also utilizes
the knowledge gained by a pure generative model. A
conditional generative model is trained to act as both
conditional and unconditional (by dropping out the
conditional signal by 10-20% during the training phase).
The above equation (section 3.3.1) can be reinterpreted
as [14,30]:

∇xt
log ps(xt|y) = ∇xt

log p(xt)
+ s.(∇xt

log p(xt|y) − ∇xt
log p(xt)) (10)

For s = 0, we get an unconditional model, for
s = 1, we get a conditional model, and for s > 1 we
strengthen the conditioning signal. The above equation
can be expressed in terms of noise estimates at diffusion
timestep t, as follows:

ϵ̂θ(xt|c) = ϵθ(xt|∅) + s · (ϵθ(xt|c) − ϵθ(xt|∅)) (11)

where c is the text caption representing the
conditional input, and ∅ is an empty sequence or a
null set representing unconditional output. Our DDIM
sampling for conditioned models will utilize these
estimates.
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Figure 1. Running Example: Free-form segment layout and
natural text input

3. Our experimental setup
As stated earlier, in this work, we aim to generate a

composite image guided entirely by free-form segments
and corresponding natural textual prompts (with
optional additional control conditions). In this section,
we summarize our choice of base setup, provide a
running example to help explain the working of different
algorithms, and provide implementation details of the
base setup.

3.1. Running example

To explain the different algorithms, we will use
a common running example. The artist’s input is
primarily bimodal: free-form segment layout and
corresponding natural language descriptions as shown
in Figure 1. As a first step common to all the algorithms,
the segment layout is converted to segment masks as one-
hot encoding vectors where ‘0’ represents the absence
of pixel information, and ‘1’ indicates the presence
of image pixels. To standardize the outputs of the
generative process, all the initial inputs (noise samples,
segment layouts, masks, reference, and background
images) and the generated images in this paper are
of 512x512 pixel dimensions. Additionally, in the case of
latent diffusion setup, we downsize the masks, encode
the reference images, and sample the noise into 64x64
pixels corresponding to the latent space dimensions of
the model.

3.2. Implementation details

We choose open-domain diffusion model architecture,
namely Stable Diffusion [40], to serve as base
architectures for our composite diffusion methods. Table
1 provides a summary of the features of the base setup.
The diffusion model has a U-Net backbone with a cross-
attention mechanism, trained to support conditional
diffusion. We use the pre-trained text-to-image diffusion
model (Version 1.5) that is developed by researchers
and engineers from CompVis, Stability AI, RunwayML,
and LAION and is trained on 512x512 images from a
subset of the LAION-5B dataset. A frozen CLIP ViT-
L/14 text encoder is used to condition the model on

text prompts. For scheduling the diffusion steps and
sampling the outputs, we use DDIM [46].

Table 1. Summary of features of the base setup

Feature Setup
Diffusion Space Latent
Conditionality Conditional
Guidance Classifier-free
Model Size ≈ 850 million
Open Domain Models StabilityAI
Sampling Method DDIM

Algorithm 1: Text-to-Image generation in the base
setup

1 Input Target text description d,
2 Initial image, xT ∼ N (0, I), Number of diffusion

steps = k.
3 Output: An output image, x0, which is sufficiently

grounded to input d.
4 zT ← E(xT ), ; ◁ Encode into latent space
5 dz ← C(d) ; ◁ Create CLIP text encoding
6 for all t from k to 1 do
7 zt−1 ← Denoise(zt, dz) ; ◁ Denoise using

text-condition and DDIM
8 end
9 return x0 ← D(z0) ; ◁ Final Image

We describe image generation through this setup in
the next section.

3.3. Text-to-Image generation in the base setup

In this setup (refer to Figure 2), a pixel-level image
(x) is first encoded into a lower-dimensional latent-
space representation with the help of a variational
autoencoder(VAE) (E(x) → z). The diffusion process
then operates in this latent space. This setup uses a
conditional1 diffusion model which is pre-trained on
natural text using CLIP encoding. For a generation, the
model takes CLIP encoding of the natural text (C(d) →
dCLIP ) as the conditioning input and directly infers
a denoised sample zt without the help of an external
classifier (classifier free guidance) [22]. Mathematically,
we use equation 11 for generating the additive noise ϵ̂θ at
timestep t, and use equation 8 for generating zt from ϵ̂θ

1In practice, the model is trained to act as a both conditional
and unconditional model. An empty text prompt is used for
unconditional generation along with the input text prompt for
conditional generation. The two results are then combined to
generate a better quality denoised image. Refer to section 2.2.3.
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Figure 2. Base setup generation with latent-space diffusion and classifier-free implicit guidance

via DDIM sampling. After the diffusion process is over,
the resultant latent z0 is decoded back to pixel-space
(D(z0) → x0).

As stated earlier, spatial information cannot be
adequately described through only text conditioning.
In the next section, we extend the existing in-painting
methods to support Composite Diffusion. However, we
shall see that these methods do not fully satisfy our
quality desiderata which leads us to the development
of our approach for Composite Diffusion as described
in the main paper.

4. Composite Diffusion through serial
inpainting

Inpainting is the means of filling in missing portions
or restoring the damaged parts of an image. It has been
traditionally used to restore damaged photographs and
paintings and (or) to edit and replace certain parts
or objects in digital images [8]. Diffusion models have
been quite effective in inpainting tasks. A portion of
the image, that needs to be edited, is marked out with
the help of a mask, and then the content of the masked
portion is generated through a diffusion model - in the
context of the rest of the image, and sometimes with
the additional help of a text prompt [3, 5, 27].

An obvious question is: Can we serially (or repeatedly
) apply inpainting to achieve Composite Diffusion? In
the following section, we develop our implementation
for serial inpainting and discuss issues that arise with
respect to Composite Diffusion achieved through these
means. The implementation also serves as the baseline
for comparing our main Composite Diffusion algorithms.

4.1. Serial Inpainting - algorithm and
implementation

The method essentially involves successive
application of the in-painting method for each segment
of the layout. We start with an initial background
image (Ibg) and repeatedly apply the in-painting
process to generate segments specified in the free-form
segment layout and text descriptions (refer to Algo. 2
for details). The method is further explained in Fig. 3

Denoiser

“beautiful evening sky”

xt x0

xT

bg0 ⊚

DenoiserxT

bg1
⊚

x0xt

DenoiserxT

bg2 ⊚

x0xt

“beautiful lily pond”

“beautiful palace building”

1-m1

1-m3

1-m2

m1

m2

m3

St
ar

ti
n

g
B

ac
kg

ro
u

n
d

Im
ag

e 

Fu
ll

y
N

oi
se

d
La

te
n

t

In
te

rm
ed

ia
te

B
ac

kg
ro

u
n

d
Im

ag
e 

-1
 

In
te

rm
ed

ia
te

B
ac

kg
ro

u
n

d
Im

ag
e 

-2
 

Final Composite

Partial 
Composite -1

Partial 
Composite -2Fu

ll
y

N
oi

se
d

La
te

n
t

Fu
ll

y
N

oi
se

d
La

te
n

t

Figure 3. Diffusion steps in the algorithm for Serial
Inpainting. Starting with an initial background image bg0,
we inpaint a segment into it to get x0. The new image x0
serves as the background image for the next stage inpainting
process to generate the new x0 with the inpainted second
segment. The process is repeated till we have inpainted all
the segments. The final x0 is the generated composite.
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Figure 4. Some of the issues in serial-inpainting: (A) The background image plays a dominant part in the composition, and
sometimes the prompt specifications are missed if the segment text-prompt does not fit well into the background image
context, e.g., missing red basketball in the swimming pool, (B) The earlier stages of serial-inpainting influence the later
stages; in this case, the initial background image is monochrome black, the first segment is correctly generated but in the
later segment generations, the segment-specific text-prompts are missed and duplicates are created.

with the help of the running example.

Algorithm 2: Serial Inpainting for composite
creation

1 Input: Set of segment masks mi ∈M , set of
segment descriptions di ∈ D, background image
Ibg, initial image, xT ∼ N (0, I)

2 Output: An output image, xcomp, which is
sufficiently grounded to the inputs of segment
layout and segment descriptions.

3 zT ← E(xT ), ; ◁ Encode into latent space
4 ∀i, mi

z ← Downsample(mi) ; ◁ Downsample all masks
to latent space

5 ∀i, di
z ← CCLIP (di) ; ◁ Generate CLIP encoding for all

text descriptions
6 for all segments i from 1 to n do
7 zmasked

bg ← E(Ibg ⊙ (1−mi)) ; ◁ Encode masked
background image

8 zbg ← Inpaint(zT , zmasked
bg , mi

z, di
z); ◁ Inpaint the

segment
9 Ibg ← D(zbg) ; ◁ Decode the latent to get the new

reference image
10 end
11 return xcomp ← Ibg ; ◁ Final composite

We base our implementation upon the specialized
in-painting method developed by RunwayML for Stable
Diffusion [40]. This in-painting method extends the U-
net architecture described in the previous section to
include additional input of a masked image. It has 5
additional input channels (4 for the encoded masked
image and 1 for the mask itself) and a checkpoint model
which is fine-tuned for in-painting.

4.2. Issues in Composite Diffusion via serial
inpainting

The method is capable of building good composite
images. However, there are a few issues. One of the main
issues with the serial inpainting methods for Composite
Diffusion is the dependence on an initial background
image. Since this method is based on inpainting, the
segment formation cannot start from scratch. So a
suitable background image has to be either picked from
a collection or generated anew. If we generate it anew,
there is no guarantee that the segments will get the
proper context for development. This calls for a careful
selection from multiple generations. Also because a
new segment will be generated in the context of the
underlying image, this sometimes leads to undesirable
consequences. Further, if any noise artifacts or other
technical aberrations get introduced in the early part of
the generation, their effect might get amplified in the
repeated inpainting process. Some other issues might
arise because of a specific inpainting implementation.
For example, in the method of inpainting that we used
(RunwayML Inpainting 1.5), the mask text inputs were
occasionally missed and sometimes the content of the
segments was duplicated. Refer to Fig. 4 for visual
examples of some of these issues.

All these issues motivated the need to develop our
methods, as described in the main paper, to support
Composite Diffusion. We compare our algorithms
against these two baselines of (i) basic text-to-image
algorithms, and (ii) serial inpainting algorithms. The
results of these comparisons are presented in the main
paper with some more details available in the later
sections of this Supplementary.



5. Our method: details and features
In the main paper, we presented a generic algorithm

that is applicable to any diffusion model that supports
conditional generation with classifier-free implicit
guidance. Here, we present the implementation details
and elaborate on a few downstream applications of
Composite Diffusion.

5.1. Implementation details of the main algorithm

In the previous Supplementary section 3, we detailed
the actual base model which we use as the example
implementation of Composite Diffusion. Since the base
setup operates in latent diffusion space, to implement
our main Composite Diffusion algorithm in this setup,
we have to do two additional steps: (i) Prepare the
input for latent diffusion by decoding all the image
latents through a VAE to 64x64 latent pixel space, (ii)
After the Composite Diffusion process (refer to Fig. 6
for the details of typical steps), use a VAE decoder to
decode the outputs of the latent diffusion model into the
512x512 pixel space. Since the VAE encoding maintains
the spatial information, we either directly use a 64x64
pixel segment layout, or downsize the resulting masks
to 64x64 pixel image space.

As mentioned in the main paper, for supporting
additional control conditions in Composite Diffusion, we
use the Stable Diffusion v1.5 compatible implementation
of ControlNet [49]. ControlNet is implemented as a
parallel U-Net whose weights are copied from the main
architecture, but which can be trained on particular
control conditions [49] such as canny edge, lineart,
scribbles, semantic segmentations, and open poses.

In our implementation, for supporting control
conditions in segments, we first prepare a control input
for every segment. The controls that we experimented
with included lineart, open-pose, and scribble. Each
segment has a separate control input that is designed
to be formed in a 512x512 image space but only in the
region that is specific to that segment. Each control
input is then passed through an encoding processor
that creates a control condition that is embedded along
with the text conditioning. ControlNets convert image-
based conditions to 64 × 64 feature space to match the
convolution size: cf = E(ci) (refer to equation 9 of [49]),
where ci is the image space condition, and cf is the
corresponding converted feature map.

Another important aspect is to use a ControlNet
model that is particularly trained for the type of control
input specified for a segment. However, as shown in
the main paper and also illustrated in Fig. 1 in the
main paper, more than one type of ControlNets can be
deployed for different segments to achieve Composite
Diffusion.
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Figure 5. Scaffolding stage step for three different cases: (A)
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the diffusion noising process is only a single step, while for
cases (B) and (C), the diffusion denoising process repeats
for each time step till the end of scaffolding stage at t = κ.
All the segments develop independently of each other. The
individual segments are composed to form an intermediate
composite only at the end of the scaffolding stage.

5.2. Example runs

With reference to the running example shown in
the main paper, we present the different stages of the
evolution of a composite image using Serial Inpainting
and our Composite Diffusion algorithms. Refer to
Figures 12, 13, 14, 15, and 16. To standardize our
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depiction, we run each algorithm for a total of 50
diffusion steps using DDIM as the underlying sampling
method. The figures show every alternate DDIM step.

The scaffolding images used in the text-only case of
Composite Diffusion, do influence the characteristics
of the generated image. Though we allow the use of
any arbitrary scaffolding image, an artist is advised to
make judicious use of scaffolding images suitable for her
particular artwork. Fig. 9 visually illustrates the impact
of the scaffolding image on the generated image with
the help of a few scaffolding examples.

5.3. Personalization at a scale

One of the motivations for composite image
generation is to produce a controlled variety of outputs.
This is to enable customization and personalization at a
scale. Our Composite Diffusion models help to achieve
variations through: (i) variation in the initial noise
sample, (ii) variation in free-form segment layout, (iii)
variation through segment content, and (iv) variation
through fine-tuned models.

5.3.1 Variation through Noise

This is applicable to all the generative diffusion
models. The initial noise sample massively influences
the final generated image. This initial noise can be
supplied by a purely random sample of noise or by
an appropriately noised (q-sampled) reference image.
Composite Diffusion further allows us to keep these

initial noise variations particular to a segment. This
method, however, only gives more variety but not any
control over the composite image generations.

5.3.2 Variation through segment layout

We can introduce controlled variation in the spatial
arrangement of elements or regions of an image
by changing the segment layout while keeping the
segment descriptions constant. Refer to figure 10 for an
illustration where we introduce two different layouts for
any given set of segment descriptions.

5.3.3 Variation through text descriptions

Alternatively, we can keep the segment layout constant,
and change the description of the segments (through
text or control conditions) to bring controlled variation
in the content of the segments. Refer to figure 10 for an
illustration where each of the three columns represents
a different set of segment descriptions for any of the
segment layouts.

5.3.4 Specialized fine-tuned models

The base diffusion models can be further fine-tuned
on specialized data sets to produce domain-specialized
image generations. For example, a number of fine-tuned
implementations of Stable Diffusion are available in the
public domain [2]. This aspect can be extremely useful
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Figure 7. Harmonization stage step for three different cases:
(A) a single global text description, (B) sub-scene specific
text description, and (C) sub-scene specific text description
and control condition. Please note that for all the cases, the
harmonization stage starts with the output of the scaffolding
stage composite latent. For case (A), there is no composition
step, while for cases (B) and (C), the composition step
follows the denoising steps for every timestep.

when creating artwork customized for different sets of
consumers. One of the advantages of our composite
methods is that as long as the fine-tuning does not
disturb the base-model architecture, our methods allow
a direct plug-and-play with the fine-tuned models.

Figure 11 gives an illustration of using 10 different
public domain fine-tuned models with our main
Composite Diffusion algorithm for generating specific-

styled artwork. The only code change required for
achieving these results was the change of reference to the
fine-tuned model and the addition of style specification
in the text prompts.

In the following sections, we discuss some of the
limitations of our approach and provide a brief
discussion on the possible societal impact of this work.

5.4. Limitations

Though our method is very flexible and effective in
a variety of domains and composition scenarios, we do
encounter some limitations which we discuss below:

Granularity of sub-scenes: The segment sizes in the
segment layout are limited by the diffusion image space.
So, as the size of the segment grows smaller, it becomes
difficult to support sub-scenes. Our experience has
shown that it is best to restrict the segment layout to 2-
5 sub-scenes. Some of this is due to the particular model
that we use in implementation. Since Stable Diffusion
is a latent space diffusion model [40], the effective size
for segment layout is only 64x64 pixels. If we were
operating directly in the pixel space, we would have
considerably more flexibility because of 8 fold increase
in the segment-layout size of 512x512 pixels.

Shape conformance: In the only text-only
conditioning case, our algorithms do perform
quite well on mask shape conformance. However, total
shape adherence to an object only through the segment
layout is sometimes difficult. Moreover, in the text-only
condition case, while generating an image within a
segment the whole latent is in play. The effectiveness
of a generation within the segment is influenced by
how well the scaffolding image is conducive as well
as non-interfering to the image requirements of the
segment. This creates some dependency on the choice
of scaffolding image. Further, extending the scaffolding
stage improves the conformance of objects to mask
shapes but there is a trade-off with the overall harmony
of the image.

So in the case where strict object conformance is
required, we recommend using the control condition
inputs as specified in our algorithm, though this might
reduce the diversity of the images that text-only
conditioning can produce.

Training and model limitations:The quality and
variety in generated object configurations are heavily
influenced by the variety that the model encounters
in the training data. So, as a result, not all object
specifications are equal in creating quality artifacts.
Although we have tested the models and methods on
different kinds of compositions, based on our limited
usage we cannot claim that model will equally work
well for all domains. For example, we find that it works
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Figure 10. By controlling layout, and/or text inputs independently an artist can produce diverse pictures through Composite
diffusion methods. Note how the segment layout is used as a guide for sub-scenes within an image and not as an outline of
shapes for the objects as happens in many object segment models.

very well on closeup faces of human beings but the faces
may get a bit distorted when we generate a full-length
picture of a person or a group of people.

5.5. Societal impact

Recent rapid advancements in generative models
have been so stunning that they have left many people
in society (and in particular, the artists) both worried
and excited at the same time. On one hand, these
tools, especially when they are getting increasingly
democratized and accessible, give artists an enabling
tool to create powerful work in lesser time. On the other
hand, traditional artists are concerned about losing the
business critical for their livelihood to amateurs [35].
Also, since these models pick off artistic styles easily
from a few examples, the affected artists, who take
years to build their portfolio and style, might feel
shortchanged. Also, there is a concern that AI art maybe
be treated at the same level and hence compete with
traditional art.

We feel that generative AI technology is as disruptive
as photography was to realistic paintings. Our work,
in particular, is based on Generative Models that can
add to the consequences. However, since our motivation
is to help artists improve their workflow and create

images that self-express them, this modality of art may
also have a very positive impact on their art and art
processes. With confidence tempered with caution, we
believe that it should be a welcome addition to an
artist’s toolkit.
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Figure 11. Composite generations using fine-tuned models. Using the same layout and same captions, but different specially
trained fine-tuned models, the generative artwork can be customized to a particular style or artform. Note that our Composite
Diffusion methods are plug-and-play compatible with these different fine-tuned models.
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Figure 12. Composite Diffusion generation using the inputs specified in Fig. 11, a scaffolding factor of κ = 30, and 50
DDIM diffusion steps. The figure shows segment latents and composites after the timesteps 1, 10, 20, 30, 40, and 50. Note
that for the first 15 steps (scaffolding stage), the segment latents develop independently, while for the remaining 35 steps
(harmonization stage), the latents develop in-the-context of all other segments.
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Figure 13. Composite generation using Serial Inpainting. The figure shows the development stages for the Segment 1.
The inputs to the model are as shown in the running example of Fig. 1.
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Figure 14. Composite generation using Serial Inpainting. The figure shows the development stages for the Segment 2.
The inputs to the model are as shown in the running example of Fig. 1.
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Figure 15. Composite generation using Serial Inpainting. The figure shows the development stages for the Segment 3.
The inputs to the model are as shown in the running example of Fig. 1.



2 4 6 8 10

12 14 16 18 20

22 24 26 28 30

32 34 36 38 40

42 44 46 48 50

Figure 16. Composite generation using Composite Diffusion. The figure shows the development stages of the composite
image. The inputs to the model are as shown in the running example of Fig. 1.



6. Detailed Related work
In this section, we discuss the approaches that are

related to our work from multiple perspectives.

6.1. Text-to-Image generative models

The field of text-to-image generation has recently
seen rapid advancements, driven primarily by the
evolution of powerful neural network architectures.
Approaches like DALL·E [39] and VQ-GAN [16]
proposed a two-stage method for image generation.
These methods employ a discrete variational auto-
encoder (VAE) to acquire comprehensive semantic
representations, followed by a transformer architecture
to autoregressively model text and image tokens.
Subsequently, diffusion-based approaches, such as
Guided Diffusion [31] [13], have showcased superior
image sample quality compared to previous GAN-based
techniques. Dalle-2 [38] and Imagen [43] perform the
diffusion process in the pixel-image space while Latent
Diffusion Models such as Stable Diffusion [40] perform
the diffusion process in a more computationally suitable
latent space. However, in all these cases, relying on
single descriptions to depict complex scenes restricts
the level of control users possess over the generation
process.

6.2. Spatial control models

Some past works on image generation have employed
segments for spatial control but were limited to
domain-specific segments. For example, GauGAN
[33] introduced spatially-adaptive normalization to
incorporate semantic segments to generate high-
resolution images. PoE-GAN [23] utilized the product
of experts method to integrate semantic segments and
a global text prompt to enhance the controllability
of image generation. However, both approaches rely
on GAN architectures and are constrained to specific
domains with a fixed segment vocabulary. Make-A-
Scene [17] utilized an optional set of dense segmentation
maps, along with a global text prompt, to aid in
the spatial controllability of generation. VQ-GAN
[16] can be trained to use semantic segments as
inputs for image generation. No-Token-Left-Behind [32]
employed explainability-based methods to implement
spatial conditioning in VQ-GAN; they propose a
method that conditions a text-to-image model on
spatial locations using an optimization approach. The
approaches discussed above are also limited by training
only on a fixed set of dense segments.

6.3. Inpainting

The work that comes closest to our approach in
diffusion models is in-painting. Almost all the popular

models [38], [43], [40] support some form of inpainting.
The goal of inpainting is to modify a portion in
an image specified by a segment-mask (and optional
accompanying textual description) while retaining
the information outside the segment. Some of the
approaches for inpainting in the recent past include
repaint [27], blended-diffusion [5], and latent-blended
diffusion [3]. RunwayML [40] devises a specialized model
for in-painting in Stable Diffusion, by modifying the
architecture of the UNet model to include special
masked inputs. As we show in later this paper, one
can conceive of an approach for Composite Diffusion
using inpainting, where we can perform inpainting for
each segment in a serial manner (refer to Appendix
4). However, as we explain in this paper, a simple
extension of localized in-painting methods for multi-
segment composites presents some drawbacks.

6.4. Other diffusion-based composition methods

Some works look at the composition or editing
of images through a different lens. These include
prompt-to-prompt editing [19, 29], composing scenes
through composable prompts [25], and methods for
personalization of subjects in a generative model
[42]. Composable Diffusion [26] takes a structured
approach to generate images where separate diffusion
models generate distinct components of an image. As
a result, they can generate more complex imagery
than seen during the training. Composed GLIDE [25]
is a composable diffusion implementation that builds
upon the GLIDE model [30] and utilizes compositional
operators to combine textual operations. Dreambooth
[42] allows the personalization of subjects in a text-
to-image diffusion model through fine-tuning. The
learned subjects can be put in totally new contexts
such as scenes, poses, and lighting conditions. Prompt-
to-prompt editing techniques [12, 19, 29] exploit the
information in cross-attention layers of a diffusion
model by pinpointing areas that spatially correspond
to particular words in a prompt. These areas can then
be modified according to the change of the words in
the prompt. Our method is complementary to these
advances. We concentrate specifically on composing the
spatial segments specified via a spatial layout. So, in
principle, our methods can be supplemented with these
capabilities (and vice versa).

6.5. Spatial layout and natural text-based models

In this section, we discuss three related concurrent
works: SpaText [4], eDiffi [6], and Multi-diffusion [7].
All these works provide some method of creating
images from spatially free-form layouts with natural
text descriptions.



SpaText [4] achieves spatial control by training the
model to be space-sensitive by additional CLIP-based
spatial-textual representation. The approach requires
the creation of a training dataset and extensive model
training, both of which are costly. Their layout schemes
differ slightly from ours as they are guided towards
creating outlines of the objects, whereas we focus on
specifying the sub-scene.

eDiffi [6] proposes a method called paint-with-words
which exploits the cross-attention mechanism of U-Net
in the diffusion model to specify the spatial positioning
of objects. Specifically, it associates certain phrases
in the global text prompt with particular regions by
manipulating the cross-attention matrix. Similar to our
work, they do not require pre-training for a segment-
based generation. However, they must create an explicit
control for the objects in the text description for spatial
control. We use the inherent capability of U-net’s cross-
attention layers to guide the relevant image into the
segments through step-inpainting and other techniques.

Multi-diffusion [7] proposes a mechanism for
controlling the image generation in a region by providing
the abstraction of an optimization loss between an ideal
output by a single diffusion generator and multiple
diffusion processes that generate different parts of
an image. It also provides an application of this
abstraction to segment layout and natural-text-based
image generation. This approach has some similarities
to ours in that they also build their segment generation
by step-wise inpainting. They also use bootstrapping
to anchor the image and then use the later stages for
blending. However, our approach is more generic, has a
wider scope, and is more detailed. For example, we don’t
restrict the step composition to a particular method.
Our scaffolding stage has a much wider significance as
our principal goal is to create segments independent of
each other, and the goal of the harmonization stage is to
create segments in the context of each other. We provide
alternative means of handling both the scaffolding and
harmonization stages.

Further, in comparison to all the above approaches,
we achieve additional control over the orientation and
placement of objects within a segment through reference
images and control conditions specific to the segment.

Figures 17, 18, and 19 further provide a visual
comparison of our Composite Diffusion methods with
the baselines discussed in this paper.
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Figure 17. The figure provides a visual comparison of the outputs of Composite Diffusion with other related approaches
- using the same segment layouts and text prompts. Considered approaches are: Make-a-Scene [17], SpaText [4], Blended
Diffusion [3], and Multi-diffusion [7]. Note that these input specifications are from the related-work literature [4, 7]. Given a
choice, our approach to creating segment layout and text prompts would vary slightly - we would partition the image space
into distinct sub-scenes that fully partition the image space, and we will not have background masks or prompts.
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Figure 18. Example visual comparisons with baselines B1(base models) and B2 (serial inpainting). The considered base
model approaches are: B1:T, text-to-image Stable Diffusion model [40], and B1:TC, Stable Diffusion implementation of
Controlnets [49]. The considered approaches for serial inpainting B2:BLD and B2:RSD are respectively based on inpainting
approaches of blended diffusion [3], and specialized Runway ML inpainting method for Stable Diffusion [40].
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Figure 19. Example visual comparison of Composite Diffusion with B3 related work baseline. Approaches considered are
publicly available implementations of B3:ediff-I [6] paint-by-word method and B3:Multi-diffusion [7].
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Figure 20. Segment layouts and segment text prompts as inputs for Survey sample generations

7. Human evaluation and survey details
During the course of the project, we conducted a set

of three different surveys. A preliminary and a revised
survey were conducted on the general population, and a
separate survey was conducted on artists and designers.
In these surveys, we evaluated the generated outputs of
text-to-image generation, serial inpainting generation
methods, and our composite generation methods. The
text-to-image generations serve as the first baseline (B1)
and serial inpainting generations serve as the second
baseline (B2) for comparison.

7.1. Survey design

The survey design involved the following parts:

7.1.1 Method for choosing survey samples

We designed five different input sets for the survey.
The free-form segment layouts and corresponding text
descriptions were chosen to bring in a variety of
scenarios for the input cases. Refer to Fig. 20 for
the inputs. Since we also wanted to compare our
generations with the base model generations, and text-
to-image model only allows a single text prompt input,
we manually crafted the prompts for the first base
case. This was done by: (i) creating a text description
that best tries to capture the essence of different
segment prompts, (ii) concatenating the different
segment descriptions into a single text description.
The best of these two generations were taken as the
representative pictures for base models. For selecting the
samples from the different algorithms we followed the
following protocol. Since the underlying models are of
different architecture (for example, the serial inpainting
method uses a specialized inpainting model and requires
a background image), we generated 3 images using
random seeds for each algorithm and for each set of
inputs. We then chose the best representatives (1 out
of 3) from each algorithm for the survey samples.

7.1.2 Survey questions:

In each of the surveys, the survey takers were presented
with a Google form on the web containing anonymized
and randomly sorted images generated from these three
algorithms with corresponding inputs. The respondents
were asked to rate each of these images on five quality
parameters. We explained each quality parameter and
asked a corresponding quality question as listed below:

1. Text Fidelity: How closely does the image match
the text prompts?

2. Mask Fidelity: How closely does the image match
the mask shapes?

3. Blending & Harmony: How well do the segments
blend together and how harmonious is the overall
image?

4. Technical Quality: How would you rate the overall
technical quality of the image?

5. Aesthetic Quality: How would you rate the overall
aesthetic quality of the image?

The respondents were asked to rate a generated
image for a given quality parameter on a scale of 1
to 5 (semantic differential scales). We also provided a
rough rating guideline for these parameters. Refer to
Fig.21 for a snapshot of the web survey.

7.2. Survey execution:

The details of the execution of the three surveys are
as follows:

7.2.1 Phase 1: Preliminary survey:

We conducted this survey on a diverse set of 14
respondents who were spread across age (20-80), gender,
and profession. Our experience with the first survey
gave us vital feedback on how to design the survey



Figure 21. Snippets from the interface used for collecting responses in user evaluation



more effectively. For example, many surveyors said that
they found it tough to take the survey as it was lengthy.
There were a total of 75 rating questions that needed
to be answered. So there was some fatigue due to the
cognitive load. The first survey was organized in the
following manner: Each set of inputs was a separate
page and contained all five quality questions. On each
page, the respondents were presented with 3 pics from 3
different algorithms(anonymized and randomly sorted)
and were asked to rate each of the pictures on five
quality parameters. We also received feedback that
all the guidance information was on the front page,
and they had to revisit it several times to understand
the rating guidelines and the meaning of each quality
parameter. Further, some users told us that ‘aesthetics’
influenced their rating of the other qualities; They
tended to rate an image with higher aesthetics higher
for other qualities as well.

7.2.2 Phase 2: Revised survey

We built upon this feedback, and without changing
the content, restructured the survey to make it more
modular for our final assessment. We also found the
guidelines in [10] relevant and followed them to fine-tune
the survey organization. The two major changes were:
(1) Each quality parameter was made into a separate
survey. This was done to help the surveyors focus on one
quality parameter at a time. (2) We provided guidelines
for the score rating on each of the survey pages as a
ready reference.

The survey was further divided into two sets of
Surveyors representing different sets of professional
skills.

• Survey population: Artists and Designers
(AD): We conducted this survey during the final
phase of our project. We used the same set of
images as used in the preliminary survey to collect
responses from artists and designers. We took the
help of Amazon M-Turk for collecting responses for
this survey. There was no restriction on whether a
person took all 5 surveys or only a subset of them.
There were a total of 20 respondents for each of
the five surveys (where one survey was comprised
of a distinct quality parameter).

• Survey population: General (GP): We
conducted this survey simultaneously with the
above survey. The participants in this survey
were chosen from a larger general population that
also included professionals such as engineers and
software developer. In this case, 22 respondents
completed all the five survey sets, while 48
completed at least one set.

Method B1 B2 Ours
Content Fidelity ↑ 3.81±1.0 3.22±1.07 3.92±0.97
Spatial Layout Fidelity ↑ 3.21±1.08 3.14±1.15 3.62±0.97
Blending & Harmony ↑ 3.87±0.96 4.02±0.99 3.86±1.03
Technical Quality ↑ 3.85±1.02 3.75±1.15 3.6±0.98
Aesthetic Quality ↑ 3.55±0.92 3.55±1.0 3.52±0.99

Table 2. Results of the survey conducted on Artists and
Designers

Method B1 B2 Ours
Content Fidelity ↑ 2.8±1.28 2.38±1.13 3.12±1.45
Spatial Layout Fidelity ↑ 2.19±1.11 2.99±1.44 3.82±1.08
Blending & Harmony ↑ 3.47±1.07 2.94±1.22 3.62±1.14
Technical Quality ↑ 3.33±1.11 2.78±1.16 3.39±1.14
Aesthetic Quality ↑ 3.16±1.19 2.66±1.26 3.36±1.28

Table 3. Results of the survey conducted on General
Population.

0 1 2 3 4 5

Aesthetic Quality

Technical Quality

Blending and Harmony

Spatial Layout Fidelity

Content Fidelity

Survey - Artists and Designers

B1 - Text-to-Image B2 - Serial Inpainting Ours - Composite Diffusion

Figure 22. Human evaluation results from the set -
Artists/Designers(AD)

7.3. Additional rurvey results

Table 2 presents the results of the survey for
the artists and designers population, and Fig. 22
presents a graphical representation of the same for easy
comparison. Since the set of images and the survey
questions were the same across the two phases of the
survey, we consolidated the results of general population
responses. Table 3 presents the consolidated results of
the survey of the general population, and Fig. 6 in the
main paper gives a graphical representation of the same.



Kappa Content Fidelity ↑ Spatial Layout Fidelity ↑ Technical Quality ↑ Human Preference ↓ Aesthetic Score↑ Blending & Harmony ↓
0 0.2634 0.278 1.2612 3 6.1809 5321
20 0.2629 0.278 1.2079 3 6.1487 6137
40 0.2596 0.2726 1.6987 3 6.296 8078
60 0.2627 0.2757 1.4186 4 6.2565 6827
80 0.2594 0.2744 1.3123 4 5.9693 7235
100 0.2579 0.2773 1.7702 3 6.0798 7699

Table 4. Automated Method evaluation across different scaffolding factor κ values. We observe that the general trend is that
Blending & Harmony (lower is better) progressively gets slightly worse as we move from lower to higher κ, while the other
factors remain quite similar across different κ values.

8. Automated evaluation methods

We find that the present methods of automated
quality comparisons such as FID and IS aren’t well
suited for the given quality criteria. In the section below
we discuss a few of the methods that are widely used in
measuring the capabilities of generative models, point
out their drawbacks, and then detail our methods for
automated evaluation.

8.1. Current approaches for automated evaluation

Inception score (IS), Fréchet inception distance
(FID), precision, and recall are some of the commonly
used metrics for assessing the quality of synthetically
generated images [9,20,44,45]. IS score jointly measures
the diversity and quality of generated images. FID
measures the similarity between the distribution of real
images and generated images. Metrics like precision and
recall [44] separately capture the quality and diversity
aspects of the generator. Precision is an indicator of
how much the generated images are similar to the real
ones, and recall measures how good the generator is
in synthesizing all the instances of the training data
set [9].

These approaches have some drawbacks to our
requirement of assessing the quality of Composite
Diffusion generations: (i) These approaches require a
large set of reference images to produce a statistically
significant score. The distribution of the training set
images is not relevant to us. We need datasets that have
- an input set of sub-scene layouts along with textual
descriptions of those sub-scenes, and a corresponding
set of reference images., (ii) Even if we had the facility
of a relevant large dataset, these methods assume that
the reference images provide the highest benchmark
for quality and diversity. This might not be always
true as the generated images can exceed the quality
of reference images and have a variety that is different
from the reference set., and (iii) These methods don’t
measure the quality with the granularity as described
in the quality criteria that we use in this paper.

8.2. Our approach for automated evaluation

We devise the following automated methods to
evaluate the generated images based on our quality
criteria.

Content Fidelity ↑: The objective here is to obtain
a measure of how similar the image is to each of the
artist’s intended content, and in this case, we use the
textual descriptions as content. We compute the cosine
similarity between the CLIP embeddings of the image
and the CLIP embeddings of each segment’s description.
We then take the mean of these similarity scores. Here
a greater score indicates greater content fidelity.

Spatial-layout Fidelity ↑: The objective here is
to measure how accurately we generate a segment’s
content. We use masking to isolate a segment from
the image. We find the CLIP similarity score between
the masked image and that segment’s description. We
do this for all the segments and then take the mean
of these scores. Here a greater score indicates greater
spatial-layout fidelity.

Technical Quality ↓: The goal here is to measure if
there are any degradations or the presence of unwanted
artifacts in the generated images. It is difficult to define
all types of degradations in an image. We consider
the presence of noise as a vital form of degradation.
We estimate the Gaussian noise level in the image by
using the method described in [11]. Here a lower score
indicates greater technical quality.

Aesthetics ↑: We use the aesthetic quality estimator
from [24] to get an estimate of the aesthetic quality of
the image. This method uses a linear layer on top of the
CLIP embedding model and is trained on 4000 samples
to estimate if an image is looking good or not. Here a
greater score indicates greater perceived aesthetics.

Blending & Harmony ↓: We detect the presence
of edges around the segment boundaries as a measure
of better blending. Hence a lower value in this case
indicates better blending.

Human Preference ↓: To additionally estimate
the human preference we rank the images generated by
the different algorithms using ImageReward [48]. This
method uses a data-driven approach to score human



preferences for a set of images. Here a greater score
indicates lower preference.

8.3. Limitations of automated evaluation methods

As stated in the main paper, these measures are
the initial attempts and may give only a ballpark
estimation of the qualities under consideration. Content
Fidelity and Spatial-layout metrics are only as good
as the capability underlying the image-text model -
OpenAI’s CLIP model [37]. Technical quality should
give an overall measure of technical aberrations like
color degradation, unwanted line artifacts, etc. However,
we limit ourselves to only measuring the overall noise
levels. Aesthetics is a highly subjective aspect of image
quality and the CLIP aesthetic model [24], though
effective, has been trained on a relatively small-sized
dataset. Blending & Harmony in our case is limited to
measuring the presence of edges around the boundaries
of a segment. Measuring harmony in images is a
challenging problem as one needs to also consider the
positioning, scale, and coloring of the elements and
segments in the context of the overall image. Human
preference scoring utilizes ImageReward [48], which
models the ranking that humans would assign to a group
of images. Although this method performs better than
CLIP and BLIP in this aspect, it lacks the explainability
of why one image is ranked higher over the other.

Finding better, more precise, and holistic machine-
assisted methods for measuring the qualities presented
in this paper is an opportunity for future research.

8.4. Benchmark dataset

A notable challenge in the automated evaluation of
the composite diffusion method is the lack of benchmark
datasets. Currently, there do not exist any datasets
that consist of segment (or sub-scene) layouts with rich
textual descriptions for each segment. Creation of such
a dataset is non-trivial using automated methods and
requires expensive annotation [4].

We handcraft a dataset containing 100 images
where we segment each representative image into sub-
scenes and manually annotate each sub-scene with a
relevant textual description. This enables us to build
a benchmark dataset for composite image generation
with sufficiently high-quality data. We use this dataset
to generate images using our baseline and Composite
Diffusion methods. We use the automated methods
described above to get the automated evaluation results
(Table 4). We initially gathered 100 diverse images from
Google Images, ensuring each was available under a
commercial license. Using these images as a reference,
we construct free-form spatial masks on them and craft
textual prompts for each of these masks.

Additionally, we created a control condition dataset
for the evaluation of Controlnet base models and the
evaluation of the Composite Diffusion approach using
control conditions. This was obtained by processing all
the reference images through a Lineart preprocessor.
To obtain the segment-specific control conditions, we
then segmented the reference control condition images
with the help of respective segment masks.

9. Results and discussion
In this section, we summarize the results from the

different types of evaluations and provide our analysis
for each quality criterion.

9.1. Content fidelity

Ours:CD-TC and Ours:CDT get the highest content
fidelity scores followed by B3:MD, B3:ediff-I and
B2:BLD and B2:RSD. B1:TC and B1:T get the least
scores.

Our take: The performance of Ours, B3, and B2 can
be attributed to the rich textual descriptions used for
describing each image segment, resulting in an overall
increase in semantic information and control in the
generation process. Moreover, the explicit scaffolding
stage in Our method leads to more conformity to the
textual descriptions compared to B3. One can argue that
similar rich textual descriptions are also available for
the serial inpainting method (B2). However, B2 might
get several limitations: (i) There is a dependency on the
initial background image that massively influences the
inpainting process, (ii) There is a sequential generation
of the segments, which would mean that the segments
that are generated earlier are not aware of the full
context of the image. (iii) The content in textual
prompts may sometimes be missed as the prompts
for inpainting apply to the whole scene rather than
a sub-scene generation.

9.2. Spatial fidelity

This is a key parameter for our evaluation. Ours:CD-
TC scores highest followed by Ours:CD-T, B3:MD and
B2:BLD.

Our take:This is on expected lines. Text-to-image
(B1) provides no explicit control over the spatial
layout apart from using natural language to describe
the relative position of objects in a scene. It is also
interesting to note that B1:TC does not score as high as
Ours or B3, this strengthens our argument that using
control conditions might not be sufficient to gain spatial
control. The performance of B2:BLD can be attributed
to the explicit use of a mask at each diffusion step to
enforce spatial control. In B2:BLD the generated image
is masked out using the inpainting mask and explicitly



added to the base image. Similarly, B2:RSD is tuned
for spatial control. Although B3:ediff-I manipulates
the cross-attention mechanism to achieve finer spatial
control, we notice that this is also somewhat limited.

9.3. Blending and harmony

This metric is hard to evaluate using automated
metrics so we also borrow insights from the human
surveys. Human-GP evaluation rates our method as
the best, while Human-AD evaluation and automated
methods give an edge to the serial inpainting method.

Our take: Text-to-Image (B1) generates one holistic
image, and we expect it to produce a well-harmonized
image. This higher rating for the serial-inpainting
method could be due to the particular implementation
of inpainting that we use in our project. This inpainting
implementation (RunwayML SD 1.5 [40]) is especially
fine-tuned to provide seamless filling of a masked region
by direct inference similar to text-to-image generation.
Further, in Composite Diffusion, the blending and
harmonization are affected by the chosen scaffolding
value, as shown in Supp table 4.

9.4. Technical quality

This metric is again hard to evaluate using
automated metrics so we also borrow insights from the
human surveys. Human evaluation-GP gives our method
a better score, while Human evaluation-AP gives a slight
edge to the other methods. The automated evaluation
method considers only one aspect of technical quality,
viz., the presence of noise; our algorithm shows fewer
noise artifacts.

Our take: Both B2 and Ours build upon the
base model B1:T. Any derivative approach risks losing
the technical quality while attempting to introduce
control. Hence, we expect the best-performing methods
to maintain the technical quality displayed by B1.
However, repeated application of inpainting to cover
all the segments in B2 may amplify any noisy artifact
introduced in the early stages. We also observed that for
Composite Diffusion, if the segment masks do not have
well-demarcated boundaries, we might get unwanted
artifacts in the generated composites. B3:ediff-I on the
other hand is similar to B1:T, except that it controls the
cross-attention matrices associated with the different
phrases in the input prompt to achieve spatial control.

9.5. Aesthetic quality

Ours:CD-TC gets the highest score followed by
B1:TC and Ours:CD-T, B3:MD. B2 and B3:ediff-I get
the lowest scores.

Our take: These results indicate that our approach
does not cause any loss of aesthetic quality but may

even enhance it. The good performance of Composite
Diffusion in aesthetic evaluation can be due to the
enhanced detail and nuance with both textual and
spatial controls. Interestingly, the usage of control
conditions enhances the aesthetic quality as evident
in the results of Ours:CD-TC and B1:TC. The lack of
global context of all the segments in serial inpainting
and the dependence on an appropriate background
image put it at a slight disadvantage. Aesthetics is
a subjective criterion that can be positively influenced
by having more meaningful generations and better
placements of visual elements. Hence, combining
segment layouts and content conditioning in Composite
Diffusion may lead to compositions with more visually
pleasing signals.

We further did a qualitative validation with an
external artist. We requested the artist to specify
her intent in the form of freehand drawings with
labeled descriptions. We manually converted the artist’s
intent to bimodal input of segment layout and textual
descriptions suitable for our model. We then created
artwork through Composite Diffusion and asked the
artist to evaluate them qualitatively. The feedback was
largely positive and encouraging. The artist’s inputs,
the generated artwork, and the artist’s feedback are
available in the Supp section 10.

We also present a qualitative visual comparison of our
generated outputs with the baselines and other related
approaches in the main paper Fig. 5 and Supp figures
17,18, and 19 respectively. Summarizing the results of
multiple modes of evaluation, we can affirm that our
Composite Diffusion methods perform holistically and
well across all the different quality criteria.

9.6. Scalability and computational efficiency

In this section, we discuss the computational
efficiency of our method and the baselines that we
compare against. We further discuss the scalability
aspects of our approach

Computational efficiency: B1:T which only uses a
single prompt as input takes the least amount of time to
create an artwork. B1:TC which uses control conditions
on top of it takes some additional time for a total of 7
seconds. Our:CD-T takes 13s which is in line with other
related works like B3:MD, and similar to the additional
time taken by B1:TC, Ours:CD-TC takes 19 seconds.

Our take: B1:T is on expected lines since it only
takes a single input. B1:TC takes an additional 2s per
prompt when compared to B1:T. This is also observed
in Ours:CD-T which takes 13 seconds, and Ours:CD-TC
takes an additional 2s per prompt ( avg 3-4 prompts
in the benchmark) to get a total of 19s to create an
artwork. Ours:CD-T’s creation time is comparable to



related work such as B3:MD and B3:ediff-I. B2:RSD
is specifically fine-tuned to take in as input masks and
perform inpainting, and its diffusers implementation
reads the mask within its inference method leading to
some additional overhead in its reading and processing
of masks. B2:BLD on the other hand uses B1:T as its
base, however, its official implementation is particularly
efficient considering that it only takes 7s to create an
artwork, 2s more compared to B1:T.

Scalability In the domain of image generation,
diffusion models have largely replaced GANs due to
their powerful ability to generate high-fidelity images.
This frontier of research is rapidly advancing, and
larger and better diffusion models are continuously
being developed. Within this rapidly evolving frontier
Composite diffusion emerges as a flexible framework
that is adaptable to emerging innovations in the
diffusion model. This ensures that as state-of-the-art
models emerge with new innovations or large sizes,
composite diffusion can seamlessly integrate and scale
with them.

One of the salient features of composite diffusion is
its input versatility. We have already demonstrated how
it can use diverse inputs such as lineart, scribble, human-
pose, and reference images. This versatility expands the
utility of composite diffusion and makes it a suitable
choice for a wide array of potential applications.

Diffusion models do have one notable challenge, that
is inference time. However, this is an active area of
research in diffusion models and there have been recent
works that aim to reduce inference time [36]. On the
other hand, there has been massive engineering effort
to improve the computational efficiency of existing
diffusion models [15]. Some of these approaches include
running model in half-precision weights, utilizing sliced
and tiled VAE to combat low VRAM, utilizing memory
efficient attention, etc. Using just a couple of these
optimizations together results in 3.6x performance
improvement [15]. Furthermore, the capability to
process data in batches provides an avenue for efficient,
large-scale operations.

10. Artworks exercise
Here, we present the outcomes of a brief collaboration

with an artist. The aim of this exercise was to expose the
modalities of our system to an external artist and gather
early-stage user feedback. To achieve this, we explained
the workings of the Composite Diffusion system to the
artist and asked her to provide us with 2-3 specific
scenarios of artwork that she would normally like to
work on. The artist’s inputs were given to us on plain
sheets of paper in the form of rough drawings of the
intended paintings, with clear labels for various objects

and sections.
We converted these inputs into the bimodal input

- the free-form segment layouts and text descriptions
for each segment. We did not create any additional
control inputs. We then supplied these inputs to our
Composite Diffusion algorithm and performed many
iterations with base and a few fine-tuned models, and
also at different scaffolding values. The outputs were
first shown to a few internal artists for quick feedback,
and the final selected outputs were shared with the
original artist. For the final shared outputs, refer to
Figures 23 and 24 for input 1, Figures 25 and 26 for
input 2, and Figures 27, 28, and 29 for input 3. Please
note that the objective here was to produce an artwork
with artistically satisfying outputs. So, for some of our
generations, we even allowed the outputs which were
creative and caught the overall intent of the artist, but
did not strictly conform to the prescribed inputs by the
artist.

The feedback that we received from the artist at the
end of the exercise (as received on Jan 25, 2023), is
presented here verbatim:

For artwork 1 (refer to Figures 23 and 24): “The
intended vision was of a lively scene with bright blue
skies, picnic blossoms blooming, soft green grass with
fallen pink petals, and a happy meal picnic basket. All
the images are close enough to the description. Colors
are bright and objects fit harmoniously with each other.”

For artwork 2 (refer to Figures 25 and 26):
“The intended vision was of bears in their natural
habitat, surrounded by forest trees and snow-clad
mountains, catching fish in the stream. Overall, the
bears, mountains, trees, rocks, and streams are quite
realistic. However, not a single bear could catch a fish.
Bear 4 looks like an Afgan hound (dog breed with long
hair) and bear 5 itself became a mountain. In image
10, the objects have merged into one another, having
ill-defined margins and boundaries.”

For artwork 3(refer to Figures 27, 28, and 29):
“The intended vision was of an angel - symbolic of
hope & light, salvaging a dejected man, bound by the
shackles of hopelessness and despair. Each and every
angel is a paragon of beauty. Compared to the heavenly
angels, the desolate men look a bit alienish. There is
a slight disproportion seen between man and angel in
some images. My personal best ones are no. 1,3,6,10.”

In another case, we wanted to check if our system
can be effectively used for artistic pattern generation.
Here we gave the system an abstract pattern in the
form of a segment layout and specified the objects that
we want to fill within those segments. Figure 30 shows
a sample output of such an exercise where we fill in the
pattern with different forms of flowers.



While the exercise of interactions with the artist and
the application of the system for creating the artwork
was informal and done in a limited manner, still, it
demonstrated to us at an early stage the effectiveness
of Composite Diffusion in creating usable art in real-life
scenarios. It also validated that the art workflow was
simple and intuitive enough to be adopted by people
with varied levels of art skills.
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