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Figure 1. AvatarOne’s Reposing Capabilities. We present AvatarOne’s novel pose editing. We repose the generated 3D avatar with help
of only SMPL skeletons obtained from text prompts as in [6]

A. Network Architecture

We present the NeRF Network architecture in Fig. 2
which dynamically models the human surface and texture
in canonical space. We use a occupancy grid of 112 ×
112×112 to capture the canonical space and utilize a voxel
grid with dimensions 64 × 64 × 64 voxels to parameterize
the skinning weights, similar to the architecture described
in [1].

B. Implementation Details

The framework achieves satisfactory results within ap-
proximately 15 minutes and scores saturate under 30 min-
utes when run on an RTX 4090 GPU.

• Warm-up stage: We randomly sample 10000 points
from the SMPL canonical mesh and update the param-
eters of FΘsurf

and use the bone weight loss to opti-
mize the FΘlbs

. The FΘsurf
MLP uses the multi-hash

encoding as in InstantNGP [3].

• Stage I: We employ randomized ray sampling on a
downsampled-resolution of 512× 512 image, initially
selecting 4096 rays. These rays are subsequently

thresholded based on their distance to the posed skele-
ton.

• Stage II: We freeze the FΘlbs
module and shift to a

patch based sampling, we randomly sample 3 patches
of 32×32 and additionally introduce the loss LLPIPS

to ensure that the model captures high-level features so
that the output images are not overly muddied.

Pre-processing: We follow similar pre-processing steps
as in TAVA [2] to cluster poses based on joint information.

• valood
pose : encompasses the most varied pose sequences

and serves as an out-of-distribution validation set

• valind
pose : consist of new poses considered to be in dis-

tribution to train split.

• valview
pose : contains data with the same poses as the

training set but captured from different camera angles

C. Algorithm
In this section, we provide the pseudocode of the

warmup and training stages of AvatarOne in Algorithm 1.
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Figure 2. Network architecture. Given the positional encoding of canonical points γ(xc) based on [3], the network outputs the SDF,
color, and normals. The input dimensions are indicated by the numbers in each block. ReLU activations for linear layers, except for the
output layers of color and density, are excluded.

Figure 3. Text-driven Novel pose. AvatarOne provides detailed consistent results with all body parts intact

D. Further Analysis

In this section, we closely examine image results from
our model and other baselines. Additional video demon-
stration of our model’s output can be found in the video
attached in the supplementary package.

D.1. Text-driven Novel Pose Rendering

We compare our model’s novel pose synthesis capabil-
ities with TAVA [2]. We produce novel pose rendering
based on challenging poses generated by Motion-Diffusion-
Model [6]. In Fig. 3, it can be clearly observed that



Figure 4. Baseline Comparisons. Novel pose comparisions on Neural Body [4] and TAVA [2]

AvatarOne successfully reconstructs intricate details of dif-
ferent human body parts such as the white stickers on the
shoes, and visible glasses on the person’s face. On the
other hand, the novel pose results from TAVA is overly
smoothened, and doesn’t provide meaningful reconstruc-
tion at a finer level.

D.2. Novel View Rendering Comparison

We further compare our model’s novel view rendering
abilities with Neural Body [5] and TAVA [2]. In each com-
parison, we focus on different body parts in order to get

a comprehensive understanding of all the models’ perfor-
mance. AvatarOne captures the wrinkles on clothing with
far more details than Neural Body and TAVA. In addition
for the subject in the last row, AvatarOne even successfully
captures the buttons on the orange shirt, which is a detailed
reconstruction neither Neural Body nor TAVA were able to
achieve.

D.3. Additional Ablation Studies

In addition to the ablation studies discussed in the paper,
we point out another key method in our model. We observe



Figure 5. Ablation Experiment. We employ an identity trans-
form as a control mechanism to prevent background and empty
rays from being deformed during the skinning process.

that the human reconstruction contains many black floaters
as can be seen in the left of Fig. 5. This is due to background
and empty rays being wrongfully deformed in the skinning
process, while they should not interact with the deformation
process. By adopting a background identity transform, we
largely filter out empty rays from being considered during
skinning, thereby significantly improving the quality of our
reconstruction.

E. Potential Social Impacts
Given that our model recovers realistic human avatars

from monocular video input. Abuse, and misuse of 3D an-
imatable avatars could lead to severe identity theft. There-
fore, it is crucial to constrain the usage of such models and
ensure that they are used legally and ethically.

F. Notations
In Tab. 1, we list the important variables used in this pa-

per, along with their descriptions.
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Algorithm 1 Warm-up and Traning Stages for AvatarOne

Inputs:
x ∈ set of points on SMPL canonical mesh
nsmpl surface normal of the SMPL mesh
x̄c points on the bones
B bone transformations
wv skinning weights parameterised by FΘlbs

MLP
d,o denote ray directions and origins, ray samples (xo)

Warm-up: FΘsurf
, FΘlbs

for x ∈ {Ssmpl} do Ssmpl = { x | FΘsurf
(x) = 0 }.

subject to, Li
n,Li

eik
for k ← 0, n do
FΘlbs

(x̄c)→ w1, ..., wnb
subject to, Lw

w1, ..., wnb
← wσw(xv) ▷ xv voxel weight field

end for
end for

Training: FΘsurf
, FΘlbs

, FΘrgb
, FΘa

Define filter f(d,o) as:

f(d,o) =

{
0 if dist(d,o, B) < 0.3

d,o otherwise

For each d,o, apply f(d,o)→ t0, t1
For each t0, t1 → xo, ▷ Get points from ray indicies
Tv ←

∑nb
i=1 wi ·Bi

for xo,xc
∗, J̃∗ in parallel do ▷ Initialize xc

1,2...9

for k ← 0, n do
T← trilerp(xk, {Tv})
xk+1, J̃k+1 ← broyden(xk, J̃k,T,x′)

end for
end for
xc, feat, nc = argmin

(
|FΘsurf

(xc
∗) |

)
▷ iso-surface

nc → no ▷
c, h← FΘrgb

(feat, no) ; FΘa
← FΘa

(h,B) ; c = c · ao
subject to: Li

rgb,Li
mask,Li

sparse,Li
eik,Li

n,Lw

return: {xc, c}
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Table 1. Notations. A list of the important variables used in the paper.

Symbol Description

FΘsurf
MLP for point features in canonical space

FΘrgb
MLP for RGB and intermediate activation

FΘa
MLP for ambient occlusion value

FΘlbs
MLP for skinning weights

xc A point in canonical space
xo A point along a ray in world space
wv Low resolution voxel grid for skinning weight
S Canonical SMPL surface
B Bone transformations
T Ray transmittance for volume rendering
α Ray opacity
n Surface normals
c Color
Lrgb Pixel RGB reconstruction loss
Lmask Mask loss
Leik Eikonal loss in canonical space
Ln Normal consistency loss with SMPL surface
Lw Bone weight loss
Lsparse Opacity sparseness regularization
LLPIPS Perceptual Similarity loss between patches of image
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