
Supplementary File

Controlling Character Motions without Observable Driving Source

Weiyuan Li, Bin Dai, Ziyi Zhou, Qi Yao, Baoyuan Wang
Xiaobing.AI

{liweiyuan, daibin, zhouziyi, yaoqi, wangbaoyuan}@xiaobing.ai

This is a companion supplementary file for our submis-
sion (Paper ID 405). This file describes the network archi-
tectures and training details. An additional video explaining
our work is also attached.

1. Experiment Settings
1.1. VQ-VAE

The encoder of VQ-VAE network is constructed by a
fully-connected network with 3 hidden layers of [512, 512,
512] units, followed by a linear network to 64 dimension
latent space. The decoder of VQ-VAE network is con-
structed by the same structure with the encoder. The out-
put dimension of the decoder is the feature space of differ-
ent dataset, which is 45 in Trinity Gesture datasets, 56 in
VTuber-EMOCA datasets and 72 in AIST++ datasets.

We use the Adam optimizer with the initial learning rate
being 1× 10−4. The learning rate is decayed by a factor of
0.96 every two epochs. The batch size for different datasets
varies, with Trinity dataset having a batch size of 1000,
VTuber-EMOCA dataset having a batch size of 20000, and
AIST++ having a batch size of 256. All the models are
trained for 200 epochs, which takes about half an hour on a
single NVIDIA V100 GPU.

1.2. Low-Level Policy

The low-level policy network is constructed by a fully-
connected network with 3 hidden layers of [1024, 1024,
512] units, followed by linear output units. The value func-
tion is modeled by a similar network, but with a single linear
output unit. The encoder and discriminator are jointly mod-
eled by a single network but with separate output units. We
used Tanh activations for hidden layers in PPO algorithms
while ReLU activations are used for the other hidden units.

During training, the task tokens are randomly sampled
from the activated code in the codebook pre-trained in the
high-level policy. 256 environments are simulated in par-
allel on a single NVIDIA V100. The low-level policy is
trained with over 6 billion samples, requiring about 2 days

on a single GPU.
The detailed hyperparameter settings used in low-level

policy are available in Table 1.

Parameter Value
Token Embedding Dim 64
Action Distribution Standard Deviation 0.2
Window Size ∆T 10
Realistic Reward Weight 2
Diversity Reward Weight 0.2
Correspondence Reward Weight 0.5
Discriminator/Encoder Minibatch Size 4096
Policy/Value Function Minibatch Size 4096
Adam Stepsize 1e-5
γ Discount 0.98
TD(λ) 0.95
GAE(λ) 0.95
PPO Clip Threshold 0.2
T Episode Length 128

Table 1. Hyperparameters for training low-level policy.

1.3. High-Level Policy

For the autoregressive high-level policy, we use a 4-layer
transformer with 8 heads. The embedding size is 512 while
the hidden size is 256. The training scheme is the same as
that of the VQ-VAE model, which takes about 4 hours on a
single NVIDIA V100 GPU.

During the inference period, the prior tokens are gen-
erated in an autoregressive pattern with past token length
of 20. We adopt the top-k sampling strategy to add some
randomness with k being 5. We also add a temperature
(= 10) when calculating the probability distribution over
the selected k tokens using softmax.

For the random high-level policy, there is no need to
build a model and train it. We only need to randomly sam-
ple from the codebook every 20 frames. Interestingly, this

1



AR VQ-C VQ-F AMP ASE Ours0

2

4

Figure 1. Average score of different algorithms annotated by 5 in-
dependent users. Our algorithm produces the highest score among
all the comparing methods.

scheme achieves surprisingly good results, even better than
all the other methods on Trinity dataset.

2. Additional Results
2.1. User Study

Besides, we apply user study on the Trinity dataset to fur-
ther evaluate the sequence quality of different algorithms.
For each algorithm, we generate twenty 10-second clips.
Five independent users are invited to rate the clips with
score ranging from 1 to 5. 10 ground-truth clips are first
represented before rating. Then we obtain 20× 5 scores for
each algorithm. The average score with error bar is shown
in Fig. 1. Our algorithm achieves the best performance
(4.73) while the score of the second best method ASE is
1 point lower (3.73).

2.2. Further Demonstration of Periodic Pattern

Similar to Figure5(right) in the main paper, we show an-
other example in Figure 2 to demonstrate the periodic pat-
tern issue of the autoregressive method.

0 1000 2000

Autoregressive
Ours-R-Prior
GT

Figure 2. Periodic Pattern Issue of AR


	. Experiment Settings
	. VQ-VAE
	. Low-Level Policy
	. High-Level Policy

	. Additional Results
	. User Study
	. Further Demonstration of Periodic Pattern


