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A. Derivation of Equations
A.1. Log Gradient of Spike and Slab Regularization

The spike and slab distribution can be viewed as:
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Let α2 = 1 − α1 and take the log of both sides, we can
obtain:
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We then take the partial derivative with respect to z and get:
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Multiplying e
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2 on the numerator and denominator
of the third term, we can simplify the equation:
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. With such deriva-
tion, we can prevent exponent overflow when training the
model.

A.2. Posterior Component

Given a Gaussian mixture model with two components
and prior probability of component p(Ci) = αi, we can
represent its posterior below:
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A.3. Log Gradient of Spike and Slab Prior from
Posterior Perspective

We start to take the derivative with respect to z without
any reparametrization from Equation 3:
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Substituting with Equation 14, we can have:
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B. Additional Experiments
B.1. Analysis of Sparsity Level

We plotted the model’s PSNR performance with various
sparsity levels on CelebA dataset [2]. As we can see from
Figure 1, the PSNR does not drop significantly even with a
very sparse latent representation. With the use of maximum
likelihood sampling, we are able to achieve better results
than the dense short-run model [3].

B.2. Ablation on Maximum Sampling

We also tested the performance using multiple MCMC
chains and a single chain with skip steps on MNIST dataset
[1]. We tested the PSNR and the cost of time for training
each epoch with a batch size equal to 100. From the ta-
ble, we can see even though running multiple independent
MCMC chains can lead to slightly better PSNR, the cost of
time is much larger. We showed that running a single chain
with K skip steps can be efficient and lead to comparative
performance.

B.3. Generation Results

To maintain fair comparison, we adopted the structure
from [5] and we have shown that our model can achieve

Figure 1. Different sparsity level vs PSNR.

Model K = 3 K = 5 K = 7
PSNR Time (s) PSNR Time (s) PSNR Time (s)

Multiple Chains 19.44 50.58 19.82 72.16 19.90 104.91
Single Chain 18.56 22.31 19.77 30.44 19.84 36.12

Table 1. PSNR and cost of time on ablation models.

better performance compared to the existing sparse latent
variable models. Even though our aim is to learn explain-
able and robust sparse latent representations rather than fo-
cusing on the image generation, we can still incorporate the
diffusion model and follow the procedure in [4] to produce
sharp generation results to demonstrate our model’s gener-
alization ability on larger models. From Figure 2, we can
see our model can generate sharp images and can benefit
from modern architecture.

Figure 2. Generated Images from CelebA.
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