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1. Implementation Details

1.1. Global Perception Module

Architecture. The spatial encoder is a ResNet50 model [9]
with 2048 output classes. The temporal decoder is adapted
from the Transformer [23] with 2048 hidden dimensions
and 8 heads. The decoder is constructed by stacking 6
up-sampling blocks. Each block contains an up-sampling
function, a convolution layer, and a ReLU activation
function. The kernel size is 7 for the first and last blocks
and 3 for the rest. The interpolation sizes are 8, 16, 32, 64,
128, and 256, sequentially. The channels are 1024, 512,
256, 128, 64, and 3, respectively.

Optimizer and schedule. We use the standard Adam [10]
optimizer with a learning rate of 1e-4 and a multi-step
scheduler. We train the model for a total of 250000 steps
with a batch size of 16.

1.2. Human-Object Interaction Model

Architecture. The architecture of the human-object inter-
action model is the same as the global perception model
without the decoder.

Human-object interaction masks. We obtain the masks
from an off-the-shelf object detection model implemented
by the open source platform Detectron2 [28]. We select the
Faster-RCNN-X101-FPN model pre-trained on the COCO
train2017 dataset [17] with a box average precision (box
AP) of 43.0. For human-object interaction, we select masks
that contain human body parts, e.g. person.

1.3. Object Relationship Model

Architecture. The encoder is also a ResNet50 model [9],
and the decoder is the same as the frame prediction
model. We adapt architecture from GATv2 [3] for graph
implementation in the bottleneck part. We use two 8-heads
self-attention layers, with 32 input channels and 6 output
channels for each head. We then add a fully-connected

layer to project the output to 2048 dimension.

Optimizer and schedule. We use the standard Adam [10]
optimizer with a learning rate of 5e-5 and a multi-step
scheduler. We train the model for a total of 100000 steps
with a batch size of 16.

Object relationship look-up table. For all the object
classes in COCO dataset [17], we select 44 classes that ap-
pear most frequently in instructional videos. All 44 classes
are depicted in Table 1. We then seek their relations through
human annotations from the Visual Genome dataset [11],
which is designed for cognitive tasks. To be more specific,
we first re-organize the object classes of the Visual Genome
dataset to be in line with the 44 classes we selected from the
COCO dataset. Some examples of the re-organization are
shown in Table 2. Then, for each class, we list and count all
possible connections of the objects through predicates pro-
vided by the Visual Genome dataset. Finally, we filter out
object pairs that appear less than 30 times and build the ob-
ject relation look-up table. A few illustrations of the look-up
table are illustrated in Table 3.

toothbrush scissors vase clock book refrigerator sink
toaster oven microwave cell keyboard remote mouse
laptop tv table plant couch chair cake
donut pizza hotdog carrot broccoli orange sandwich
apple banana bowl spoon knife fork cup
glass bottle suitcase handbag backpack bench person
rack cabinet

Table 1. New object classes selected from the COCO dataset.

Object masks. We obtain the object masks from the same
off-the-shelf object detection model [28] as the human-
object interaction model. We select masks that are in the
new object classes and have confidence scores that are
larger than 0.7.
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person
person, man, woman
table
table, coffee table, counter, countertop, desk
knife
knife, steak knife, butter knife, knife blade, bread knife, butcher knife

Table 2. Illustrations of the re-organization for the Visual
Genome dataset.

toothbrush
cup, sink, person, rack, table
cake
table, bowl, person, cup, knife, fork
knife
table, fork, person, cake, pizza, apple, orange, banana, sandwich

Table 3. Illustrations of the object relationship look-up table.

2. Evaluation Metrics

2.1. F1 Score

For the computation of the F1 score, we follow the im-
plementation of Shou et al. [20], Wang et al. [25] and first
calculate the distance between the N detected boundaries
and the M ground truth boundaries. We pair each ground
truth boundary with a detected boundary that has a minimal
distance. Then, we set a fixed distance threshold to deter-
mine if the detected boundary is positive or not. The total
number of positive detection is P . The Precision/Recall and
F1 score can be computed as:

precision “
P

N

recall “
P

M

F1 “ 2
precision ¨ recall

precision ` recall

We compute the Precision/Recall and F1 score for each
video and average across the whole dataset.

As mentioned in the paper, previous works [20, 25] set
the distance threshold to be 5% of the length of the corre-
sponding video instance, while we choose 2 seconds which
is invariant of video lengths. We show some examples in
Figure 1 for the impact of the 2 different thresholds. It is
clear that the small threshold is more suitable and general
for the evaluation of various instructional videos.

2.2. Hungarian Matching

To perform a fair evaluation with previous methods uti-
lizing clustering algorithms [4, 6, 14, 18], we first applying
clustering algorithm as in Du et al. [6] to transfer OTAS
boundaries into clusters based on IDT features. Then, we

P04_cam01_pancake
Video length: 7min 26s 

Start of  “spoon powder”

21.8s

End of  “spoon powder”

40.8s

Small threshold: 2s

2s 2s

Large threshold: 22.3s

22.3s 22.3s

6.33s
Pour milk…Crack egg

0.13s
Take plateBackground

Figure 1. Illustrations of different thresholds for the boundary-
level F1 score. For evaluation of the boundary “Start of spoon
powder”, it is clear that a 2s deviation is not harmful. However, a
22.3s threshold (5% of a 7 min 26s video) will cause the bound-
aries even in “Background” and “Take plate” to be falsely labeled
positive.

follow [1, 25] and perform the Hungarian matching [13]
on a video level.

Noting that for other clustering-based methods that are
either only performing on same activities [7, 8, 14, 16,
19, 22, 24, 26, 27] or extend to unknown activities but only
provide global-level Hungarian matching results and do not
provide code to reproduce [5, 15], we can not conduct a fair
comparison.

2.3. Mean over Frames (MoF)

We calculate MoF after clustering and Hungarian Match-
ing. MoF indicates the percentage of frames in the video
instance that are correctly segmented [14, 19]. For a video
with K frames, we count all the correct frames C and com-
pute the MoF as:

MoF “
C

K

We average the video-wise MoF across the whole dataset.

3. User Study
3.1. Implementation

We first pick 20 videos from the Breakfast dataset [12]
randomly and generate segmented videos from 5 different
methods: one from ground truth, one from OTAS, one from
ABD [6], one from CTE [14], and the last one from TW-
FINCH [18]. For each video, We shuffle and label 5 seg-
mentation results with numbers 1-5. We invite 33 users
to watch and rank the segmentation results with only the
reference to the original videos. A part of the user study
questionnaire is depicted in Figure 2. Since it is a tempo-
ral segmentation task, the average time of completion is 2.5
hours. We use 6 ´ rank as the score for each method (i.e.,
rank No.1 has 5 points). A video-wise score distribution is
shown in Figure 8. We show one of our segmentation results
that gains the highest score in Figure 4.
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Figure 2. User study questionnaire interface. We provide only
the options to choose from, excluding any reference to the granu-
larity information.

3.2. Breakfast Ground Truth

We provide more illustrations of the inconsistent ground
truth segmentation of the Breakfast dataset [12] in Figure 3.

P20_cam01_sandwich

P44_cam01_sandwich

P24_cam02_sandwich

Cut bun Smear butter

Take knife Take butter

Take knife

Figure 3. Inconsistency of the ground-truth. For “Sandwich”
activity, the action “Cut bun” can be further segment into “Take
bun”, “Take knife”, and “Actually cut the bun”; while the action
“Smear butter” can be further segment into “Take butter”, “Take
knife”, and “Actually smear the butter”. However, the ground truth
annotation provides inconsistent segmentation that sometimes pro-
duces larger segments and sometimes smaller segments. Even
within a video, the segmentation is inconsistent.

4. Qualitative Result
For a better illustration of boundary evaluation, we as-

sign all different ground truth segments distinct colors
within a video regardless of labels.

4.1. Breakfast

We provide more qualitative comparisons with the
ground truth of our methods on the Breakfast dataset [12]
in Figure 5.

4.2. 50Salads

The qualitative comparison of our methods on both
eval-level and mid-level 50salads [21] is illustrated in Fig-
ure 6. For eval-level, we compare with baselines ABD [6],

CTE [14], TW-FINCH [18], Coseg [25] and groundtruth.
For mid-level, we only compare with ABD [6], CTE [14],
TW-FINCH [18], and ground truth, since Coseg [25] does
not provide mid-level results.

4.3. INRIA

The INRIA dataset [2] is collected from YouTube and
segmented with the aid of English transcripts obtained from
YouTube’s automatic speech recognition (ASR) system.
For all tasks, the ordered sequence of ground truth steps is
made by an agreement of 2-3 annotators who have watched
the input videos and verified the steps on instruction video
websites. Therefore, the rest of the video where no step
is assigned is considered background. The percentage of
average background frames is 73% of all frames. The back-
ground frames are various and complicated, as shown in
Figure 7. Since we rely on feature differences for boundary
detection, the variation in backgrounds influences the result
largely. Moreover, we do not have access to prior knowl-
edge of cluster numbers. Therefore, the result of INRIA is
very likely to be over-segmented.

5. Ablation Study
5.1. Comparison of Different α

We utilize a hyper-parameter α to control the number
of boundaries. The comparison of different α is shown in
Tab. 4. Generally, lower α leads to higher recall, but also
redundancy, which causes precision to drop. Higher α gen-
erates fewer boundaries, resulting in higher precision and
MoF but low recall. We select α “ 15 that best balances
the trade-off.

F1(small) Recall(small) Precision(small) MoF

α “ 8 42.43 71.96 30.08 65.22
α “ 25 42.77 48.31 38.37 67.57
α “ 15 44.49 53.90 37.87 67.90

Table 4. Comparison of different αs. There is a trade-off be-
tween better precision and better recall.

5.2. Global Perception Module Architectures

We also conduct an ablation study on different model ar-
chitectures for the global perception module. Specifically,
we leverage features from pre-computed IDT, a pre-trained
ResNet-50 model and ResNet with a 2-layer LSTM model
that respectively replaces the Transformer layer for compar-
ison. The results demonstrated in Table 5 indicate that the
Transformer-based model generates finer features for action
segmentation than the other models.

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

WACV
#62

WACV
#62

WACV 2024 Submission #62. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 4. More consistent granularity of the segmentation results produced by OTAS. The video shown in the figure contains several
smaller segments at the action level. The ground truth only segments “Take butter” out, and combine the others, which is confusing while
watching. Furthermore, the ground truth does not separate “Take ingredients” and “Serve on plate” from the backgrounds. However, our
segmentation result is neat and consistent, which is more in line with human consensus.

Figure 5. Qualitative comparison with ground truth (GT) of the Breakfast dataset. The results predicted by OTAS are largely in line
with the ground truth.
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F1(small) MoF

IDT 27.49 63.50
Pretrained-ResNet 35.28 65.00
LSTM 36.00 65.50
Transformer 37.46 65.99

Table 5. Ablation of different architectures for the global per-
ception module (OTAS excluding the local attention module)
on Breakfast. Transformer-based approach achieves the best per-
formance of F1 score and IoU.
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Figure 6. Qualitative comparison of the 50Salads dataset. Note that the original illustration of Coseg is not aligned with the actual
timestamp. However, since they do not provide code to reproduce, we roughly resize their illustration for comparison.

GT labels: CONNECT_REDEMPTY, CONNECT_REDFULL, CONNECT_BLACK, GROUND_BLACK, START_FULLCAR,
START_EMPTYCAR, REMOVE_GROUND, REMOVE_BLACK, DISCONNECT_REDEMPTY, DISCONNECT_REDFULL

Jump_car_0004

Figure 7. Illustration of the various background frames of INRIA. It contains frames when the person shows preparation, stops to
introduce upcoming steps, illustrates precautions, etc. It also contains shot changes and video editing.
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Figure 8. Video-wise user study score.
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