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A. Line Cropping and Projecting Characters
and Word Boxes Back to Image Space
A.1 Preliminaries: Bezier curve representation

Liu et al. [5] proposes to use a pair of Bezier curves1 to
represent a polygonal text detection box, denoted by:

top(t) =

n∑
i=0

btop,iBi,n(t), 0 ≤ t ≤ 1 (1)

for the top edge of text, and:

bottom(t) =

n∑
i=0

bbottom,iBi,n(t), 0 ≤ t ≤ 1 (2)

for the bottom edge. In this formulation, both top and bot-
tom edges are represented as parametric Bezier curves of
order n, with parameter t, control points btop,i and bbottom,i,
and Bernstein basis polynomials Bi,n(t) defined as:

Bi,n(t) =

(
n
i

)
ti(1− t)n−i, i = 0, ..., n (3)

where
(

n
i

)
are the binomial coefficients. Specifically,

top(0), top(1), bottom(0), and bottom(1) are the ‘top-
left’, ‘top-right’, ‘bottom-left’, and ‘bottom-right’ of a text
bounding polygon, as shown in Fig. 1.

A.2 BezierAlign for cropping

In order to crop from the input image, Liu et al. [5] es-
tablish a correspondence from the coordinate space of text
crops to the space of the input image. Denote the shape of
a text crop as ho × wo. For the j−th pixel with coordi-
nates pcrop,j = (xj , yj) in the text crop, we first compute
tj =

xj

wo
to determine the t parameter as in Eq. (1) and Eq.

(2). Then, the supporting points on top and bottom edges

1https://en.wikipedia.org/wiki/Bezier_curve
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Figure 1. Illustration of Bezier curve polygons.

are computed as tpj = top(tj) and bpj = bottom(tj). Note
that both tpj and bpj are in the coordinate space of the in-
put image. Then, the image space coordinates for (xj , yj),
denoted as pimage can be obtained by linearly interpolating
between tpj and bpj :

pimage,j = tpj × (1− yj
ho

) + bpj ×
yj
ho

(4)

In this way, we establish a mapping from text crop space
coordinates to full image space coordinates:

fBezier : pcrop,j −→ pimage,j (5)

We can then easily apply bilinear interpolation to calculate
each pixel for the text crop.

A.3 Postprocessing: Projecting Characters and
Word Boxes Back to Image Space

Our L2C2W recognizer produces bounding boxes for
each recognized characters. After text line is split into
words, word bounding boxes are then obtained by merging
character bounding boxes. We project each vertex of word
and character bounding boxes from line crop spaces to full

https://en.wikipedia.org/wiki/Bezier_curve


image spaces using Eq. 5, and obtain the coordinates in the
original input image space.

B. Label Maps
Our recognizer learns to recognize a total number of

708 character classes, excluding special tokens for Start-
of-Sentence, End-of-Sentence and Padding. The character
list includes digits, punctuation symbols, Latin letters and
their variants. We also attach the complete list of character
classes to this zip file under the name of label maps.txt.

C. Samples of Synthetic Training Images
Our recognizer is trained on a mixture of real image data

and synthetic data. We show and compare text crops from
different synthetic datasets in Fig. 3. We use a similar
method to [3] to generate our internal synthetic data. Our
synthetic data is visually similar to the other two except that
ours are mostly text lines containing multiple words sam-
pled from natural text corpus. In contrary to ours, Synth90K
[3] is generated by using a fixed word vocabulary list con-
taining about 90K words, and each crop only has one word.
SynthText [2] is generated from a corpus of natural text2.
While most previous works train text recognizers on word
crops extracted from SynthText, we notice that SynthText
actually has line-level labels. Nonetheless, lines in Synth-
Text are much shorter than our synthetic lines, as shown in
Fig. 2. To train line recognizers, line-level synthetic data is
indispensable. Among the 3 datasets, SynthText and our in-
ternal line datasets provide character level bounding boxes.
The training of the character localization head is enabled by
these labels.

D. Model output samples
In the submission, we are only able to demonstrate the

model output on one image due to space limit. Here, we
show the outputs of our model on multiple images from Hi-
erText [6], ICDAR 2015 [4], and Total-Text [1], in Fig. 4, 5,
6, 7, 8, 9, 10. In addition to character bounding boxes and
their grouping into words, lines, and paragraphs, we also
visualize the character classes.
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Figure 3. Sample images from 3 synthetic text datasets. Top: SynthText [2]. Middle: Synth90K [3]. Bottom: Our internal synthetic line
dataset.



Figure 4. Sample of model outputs. Image is from HierText Val set. Top left: Character bounding boxes and transcriptions; Top right:
Character bounding boxes grouped into words; Bottom left: Character bounding boxes grouped into lines; Bottom right: Character
bounding boxes grouped into paragraphs. Images are converted to gray for better visualization. Zoom-in for clearer views.



Figure 5. Sample of model outputs. Image is from ICDAR 2015 test set. Top left: Character bounding boxes and transcriptions; Top
right: Character bounding boxes grouped into words; Bottom left: Character bounding boxes grouped into lines; Bottom right: Character
bounding boxes grouped into paragraphs. Images are converted to gray for better visualization. Zoom-in for clearer views.



Figure 6. Sample of model outputs. Image is from ICDAR 2015 test set. Top left: Character bounding boxes and transcriptions; Top
right: Character bounding boxes grouped into words; Bottom left: Character bounding boxes grouped into lines; Bottom right: Character
bounding boxes grouped into paragraphs. Images are converted to gray for better visualization. Zoom-in for clearer views.



Figure 7. Sample of model outputs. Image is from Total-Text test set. Top left: Character bounding boxes and transcriptions; Top
right: Character bounding boxes grouped into words; Bottom left: Character bounding boxes grouped into lines; Bottom right: Character
bounding boxes grouped into paragraphs. Images are converted to gray for better visualization. Zoom-in for clearer views.



Figure 8. Sample of model outputs. Image is from Total-Text test set. Top left: Character bounding boxes and transcriptions; Top
right: Character bounding boxes grouped into words; Bottom left: Character bounding boxes grouped into lines; Bottom right: Character
bounding boxes grouped into paragraphs. Images are converted to gray for better visualization. Zoom-in for clearer views.



Figure 9. Sample of model outputs. Image is from Total-Text test set. Top left: Character bounding boxes and transcriptions; Top
right: Character bounding boxes grouped into words; Bottom left: Character bounding boxes grouped into lines; Bottom right: Character
bounding boxes grouped into paragraphs. Images are converted to gray for better visualization. Zoom-in for clearer views.



Figure 10. Sample of model outputs. Image is from Total-Text test set. Top left: Character bounding boxes and transcriptions; Top
right: Character bounding boxes grouped into words; Bottom left: Character bounding boxes grouped into lines; Bottom right: Character
bounding boxes grouped into paragraphs. Images are converted to gray for better visualization. Zoom-in for clearer views. Note that, this
image contains some variations of Latin characters, for example ‘DÖNE’ in the bottom right of the image. Although our recognizer is able
to recognize them, the visualization function we used (cv2.putText) fails to print them accordingly, and thus they are replaced with ‘??’.


