
Taming Normalizing Flows: Supplementary Material

In the next sections, we provide additional details,
results, and visualizations, further demonstrating our
method’s applications. Additional videos are available in
the supplied webpage “videos.html”.

A. Additional details

First, we elaborate on technical details regarding the im-
plementation of our method, as explained in Sec. 4. We
trained a Glow [6] base model to produce RGB images with
dimensions 128 × 128. The training was done for 590K it-
erations with a batch size of 32, for a total of 316.3 hours,
using 4 12GB Titan Xp GPUs. The model has 4 blocks of
32 flows, each consisting of activation normalization layers,
1 × 1 LU decomposed convolution and additive coupling.
The model is trained using an Adam [5] optimizer with
learning rate 5 ·10−5 and betas (β1, β2) = (0.9, 0.999). Im-
ages are quantized to 5 bits and learned using the continu-
ous dequantization process as done in previous work [6,10].
Since the dequantization introduces the addition of random
noise proportional to the size of quantization bins, every
likelihood estimation we perform in Sec. 4.1 is averaged
over 10 estimations using different random noise. When we
compare NLL of different models, it is done by randomly
sampling 10,000 images. When sampling, we use a tem-
perature parameter T = 0.5. For the forgetting process, we
use a threshold of δ = 4 and a bound of ϵ = 0.15 · δ. We
use the hyperparameters α = 0.6 and γ = 0.6 in all our
experiments, chosen using a grid search. As we trained θB
on the training set of CelebA [8], we used the validation
set of CelebA as the holdout set in this evaluation and all
upcoming demonstrations, unless specified otherwise.

The classifier used in Sec. 4.2 was trained on the at-
tributes of CelebA [8], using a ResNet50 [2] backbone and
achieving an AUC > 0.99 for every binary attribute in
CelebA on a holdout set.

In Tab. 1, each experiment is averaged over 5 experi-
ments with different identities. The nearest neighbors are
chosen using the 5 nearest neighbors, selected using the av-
erage cosine distance between the ArcFace [1] face embed-
dings.

The tamed model used for Fig. 3 is a model that was
trained to forget 15 images of an identity, similar to the last
row in Tab. 1.

In Fig. 4, each line in the graph is computed by using the
tamed model along the process, while randomly sampling
512 latent vectors that are passed through the model and
then classified.

A.1. Normality assumption

Next, we discuss the normality assumption as explained
in Sec. 3.3. We assumed the NLL distribution of the base
model on the training data is normal. To support this as-
sumption, Fig. A.1 visually compares the distribution with
a normal estimation, along with QQ-plots that further sup-
port this claim. We also performed a Kolmogorov–Smirnov
test [9] to compare the distribution to a Normal one. The
test is performed on 2,000 random samples drawn from the
remember set DR. We perform it on both the training data
of the model and unseen data from the same dataset. The
p-value of these tests is 0.95 on the training set and 0.54
on the unseen data. To strengthen the normality assump-
tion, we also compare the NLL distribution of a Normaliz-
ing Flow that was trained on CIFAR-10 [7]. The QQ–plots
and moral estimation can be seen in Fig. A.2. We performed
the Kolmogorov-Smirnov test in the same setting, receiving
p-values of 0.58 and 0.38 for the training and unseen data
from CIFAR-10, respectively.

Combining all these results, on different modalities, sug-
gests that the NLL of the training data samples follows a
Normal distribution, meaning that our normality assump-
tion is grounded.

It is worth noting that our method can also be applied
without the normality assumption, by using empirical quan-
tiles of the sampled NLL. This way, we can perform our
process in a parameter-free setting, without any require-
ment on the underlying distribution. However, in this case,
the notion of forgetting is less powerful, as we use an un-
known empirical CDF instead of the normal distribution one
(Eq. (13)), meaning the supplied example using δ = 4 will
give different (empirically estimated) values, along with the
Likelihood Quantile (Eq. (14)).

Next, we analyze the threshold error bound presented in
Eq. (10). When using the normality assumption, we analyze
the probability that the NLL of a given data point, x ∈ D,
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Figure A.1. Base model (θB) NLL normal assumption. For the base model’s training set (left) and a similar holdout set (right), we show
a QQ-plot against normal distribution (lower row). We also show (upper row) the normalized density histogram (purple) and a Gaussian
estimation (black line) of the distribution. These results suggest that a normal distribution assumption fits this case.

lies inside the error bound:

|dµR,σR
(x, δ; θT )| < ϵ

⇐⇒
µR + σR(δ − ϵ) < − log pθT (x) < µR + σR(δ + ϵ)

⇐⇒
NLL(x) ∈ [µR + σR(δ − ϵ), µR + σR(δ + ϵ)].

Therefore, the probability that the NLL lies insides the
error bound is:

P (|dµR,σR
(x, δ; θT )| < ϵ) =

F(µR,σR)(µR + σR(δ + ϵ))−F(µR,σR)(µR + σR(δ − ϵ))=

Φ(δ + ϵ)− Φ(δ − ϵ).

Given our analysis, for δ = 4 and ϵ = 0.15δ, the probability
is roughly 0.033%. This means that when choosing these
parameters of δ and ϵ, the probability of an image x ∈ D to
have a likelihood (in terms of NLL) inside the error bound
is low. Specifically in our procedure, when we forget an
image x ∈ DF and force its NLL to lie inside the error
bound we presented in Eq. (10), its sampling probability
is low, meaning the error bound maintains a low sampling
probability to the images in DF .

B. Results
In this section, we discuss additional results associated

with experiments from our paper. We show:

(I) Additional scenarios and details for the experiment of
“Taming an attribute” (Sec. 4.1).

(II) Results evaluating our method on the remember set
DR.

(III) A full comparison of the experiment of “Taming with-
out the training set” (Sec. 4.3).

(IV) Comparison of the batch size effect on KL loss vari-
ance.

(V) Results for an experiment on a dataset from a different
modality.

We first discuss the experiment in Sec. 4.1 (Item (I)).
Tabs. A.1a to A.1d include a more detailed analysis of
Tab. 1, with additional details regarding the likelihood quan-
tiles and the running time. As in Tab. 1, each row in these
tables is averaged over 5 different experiments.

For example, the first row in Tab. A.1a shows that when
forgetting 1 image, we are able to reach the forget threshold.
Regarding the forget set DF , the likelihood quantile of the



−9k −8k −7k −6k −5k

0

0.0002

0.0004

0.0006

0.0008

NLL

D
e
n
s
it
y

−8000 −6000 −4000

0

100μ

200μ

300μ

400μ

500μ

NLL

D
e
n
s
it
y

−4 −2 0 2 4

−10k

−8k

−6k

Theoritical Quantities

S
a
m

p
le

 Q
u

a
n

t
it

ie
s

−4 −2 0 2 4

−10k

−8k

−6k

−4k

−2k

Theoritical Quantities

S
a
m

p
le

 Q
u

a
n

t
it

ie
s

Train set Holdout set

Figure A.2. Normal assumption on a different modality. We train a Normalizing Flow on the training set of CIFAR-10 and evaluate
it on the training set (left) and test set (right). We show a QQ-plot against normal distribution (lower row). We also show (upper row)
the normalized density histogram (purple) and a Gaussian estimation (black line) of the distribution. These results suggest that a normal
distribution assumption fits this case as well.

# Images Forget
threshold

Forget set DF Forget reference set D′
F Remember set DR Unseen identities Did

R Nearest identities DNN
R Time[minutes]

qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·)
1 ✓ 0.47± 0.04 < 10−3 ± 0.00 0.47± 0.04 0.48± 0.22 0.47± 0.22 < 10−2 ± 0.03 0.45± 0.00 0.44± 0.01 < 10−2 ± 0.01 0.36± 0.00 0.36± 0.01 < 10−3 ± 0.01 0.52± 0.11 0.51± 0.11 0.01± 0.01 3.22± 1.38
4 ✓ 0.42± 0.17 < 10−4 ± 0.00 0.42± 0.17 0.48± 0.22 0.42± 0.23 0.05± 0.03 0.45± 0.00 0.44± 0.00 < 10−2 ± 0.00 0.36± 0.00 0.36± 0.01 0.01± 0.01 0.52± 0.11 0.50± 0.13 0.03± 0.02 9.26± 1.83
8 ✓ 0.34± 0.13 < 10−4 ± 0.00 0.34± 0.13 0.48± 0.22 0.41± 0.25 0.06± 0.04 0.45± 0.00 0.45± 0.00 < 10−3 ± 0.00 0.36± 0.00 0.36± 0.00 < 10−2 ± 0.00 0.52± 0.11 0.51± 0.11 0.01± 0.01 16.21± 4.01
15 ✓ 0.38± 0.14 < 10−4 ± 0.00 0.38± 0.14 0.48± 0.22 0.36± 0.25 0.12± 0.04 0.45± 0.00 0.45± 0.00 < 10−3 ± 0.00 0.36± 0.00 0.36± 0.00 < 10−2 ± 0.00 0.52± 0.11 0.52± 0.11 0.01± 0.00 17.60± 2.88

(a) Extensive results for the experiment in Tab. 1.
# Images Forget

threshold
Forget set DF Forget reference set D′

F Remember set DR Unseen identities Did
R Nearest identities DNN

R Time[minutes]
qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·)

1 ✓ 0.47± 0.04 < 10−2 ± 0.00 0.46± 0.04 0.48± 0.22 0.47± 0.23 0.01± 0.01 0.51± 0.02 0.51± 0.02 < 10−3 ± 0.00 0.36± 0.00 0.36± 0.00 < 10−2 ± 0.00 0.52± 0.11 0.52± 0.11 0.01± 0.01 4.16± 1.60
4 ✓ 0.42± 0.17 < 10−2 ± 0.00 0.42± 0.17 0.48± 0.22 0.44± 0.22 0.03± 0.02 0.50± 0.03 0.50± 0.04 < 10−3 ± 0.00 0.36± 0.00 0.36± 0.00 < 10−2 ± 0.00 0.52± 0.11 0.51± 0.11 0.01± 0.01 12.36± 3.73
8 ✓ 0.34± 0.13 < 10−2 ± 0.00 0.34± 0.13 0.48± 0.22 0.43± 0.23 0.05± 0.02 0.49± 0.04 0.49± 0.04 < 10−2 ± 0.00 0.36± 0.00 0.36± 0.00 < 10−2 ± 0.00 0.52± 0.11 0.52± 0.11 0.01± 0.00 19.08± 5.32
15 ✓ 0.38± 0.14 < 10−2 ± 0.00 0.37± 0.14 0.48± 0.22 0.39± 0.25 0.09± 0.04 0.49± 0.04 0.49± 0.03 < 10−2 ± 0.00 0.36± 0.00 0.36± 0.00 < 10−3 ± 0.00 0.52± 0.11 0.52± 0.11 0.01± 0.00 22.29± 4.66

(b) Results for a different forget threshold, δ = 3.
# Images Forget

threshold
Forget set DF Forget reference set D′

F Remember set DR Unseen identities Did
R Nearest identities DNN

R Time[minutes]
qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·)

1 ✓ 0.47± 0.04 0.04± 0.00 0.43± 0.04 0.48± 0.22 0.47± 0.22 0.01± 0.01 0.45± 0.03 0.45± 0.03 < 10−3 ± 0.01 0.36± 0.00 0.36± 0.00 < 10−3 ± 0.00 0.52± 0.11 0.52± 0.11 0.01± 0.01 6.09± 1.94
4 ✓ 0.42± 0.17 0.03± 0.01 0.39± 0.16 0.48± 0.22 0.46± 0.22 0.01± 0.01 0.49± 0.04 0.49± 0.03 < 10−2 ± 0.00 0.36± 0.00 0.36± 0.00 < 10−2 ± 0.01 0.52± 0.11 0.52± 0.11 < 10−2 ± 0.01 22.39± 13.57
8 ✓ 0.34± 0.13 0.02± 0.00 0.32± 0.14 0.48± 0.22 0.46± 0.22 0.02± 0.01 0.51± 0.03 0.50± 0.03 < 10−2 ± 0.00 0.36± 0.00 0.36± 0.00 < 10−2 ± 0.00 0.52± 0.11 0.52± 0.11 0.01± 0.00 29.77± 8.93
15 ✓ 0.38± 0.14 0.02± 0.00 0.35± 0.14 0.48± 0.22 0.44± 0.22 0.04± 0.02 0.50± 0.02 0.50± 0.02 < 10−2 ± 0.00 0.36± 0.00 0.36± 0.00 < 10−2 ± 0.00 0.52± 0.11 0.52± 0.11 0.01± 0.00 35.98± 10.64

(c) Results for a different forget threshold, δ = 2.
# Images Forget

threshold
Forget set DF Forget reference set D′

F Remember set DR Unseen identities Did
R Nearest identities DNN

R Time[minutes]
qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·) qθB (·) qθT (·) QD(·)

1 ✓ 0.48± 0.05 < 10−3 ± 0.00 0.48± 0.05 0.32± 0.03 0.28± 0.03 0.04± 0.02 0.50± 0.03 0.49± 0.03 < 10−2 ± 0.01 0.34± 0.00 0.34± 0.00 < 10−2 ± 0.00 0.52± 0.14 0.51± 0.14 0.01± 0.01 3.71± 1.07
4 ✓ 0.40± 0.15 < 10−4 ± 0.00 0.40± 0.15 0.32± 0.03 0.24± 0.09 0.08± 0.08 0.50± 0.04 0.50± 0.05 < 10−2 ± 0.00 0.34± 0.00 0.34± 0.01 < 10−2 ± 0.01 0.52± 0.14 0.51± 0.14 0.01± 0.00 8.69± 2.62
8 ✓ 0.39± 0.17 < 10−4 ± 0.00 0.39± 0.17 0.32± 0.03 0.19± 0.10 0.14± 0.10 0.49± 0.01 0.49± 0.01 < 10−2 ± 0.01 0.34± 0.00 0.34± 0.00 < 10−2 ± 0.01 0.52± 0.14 0.51± 0.14 0.02± 0.02 12.74± 3.76
15 ✓ 0.41± 0.14 < 10−4 ± 0.00 0.41± 0.14 0.32± 0.03 0.14± 0.10 0.19± 0.12 0.51± 0.03 0.51± 0.03 < 10−2 ± 0.00 0.34± 0.00 0.34± 0.00 < 10−3 ± 0.00 0.52± 0.14 0.51± 0.14 0.02± 0.02 21.49± 9.76

(d) Results on an identity outside the training set (from a holdout set of the same distribution).

Table A.1. Forget an identity - Comprehensive evaluation. Additional results for the experiment in Tab. 1, including results for additional
thresholds, and forgetting an identity outside the training set. These tables include the Quantile drop (QDθB ,θT

(·)), along with the
likelihood quantiles (qθ(·)), for different evaluated sets. It also includes the running time in minutes of every experiment.

base model is 0.47 while for the tamed model it is < 10−3,
resulting in a quantile drop of 0.47. This row also shows

that the running time for this experiment is 3.2 minutes.

Tabs. A.1b and A.1c include the results for using a dif-



Quantile drop QDθB ,θT (·) (see Eq. (15))

# Images
Forget

threshold DF (↑) D′
F (↑) DR(↓) Did

R(↓) DNN
R (↓)

1 ✗ < 10−3 ± 0.01 < 10−2 ± 0.00 < 10−2 ± 0.00 < 10−3 ± 0.00 < 10−2 ± 0.00
4 ✗ < 10−3 ± 0.00 < 10−2 ± 0.00 < 10−2 ± 0.00 < 10−2 ± 0.00 < 10−3 ± 0.00
8 ✗ < 10−2 ± 0.00 < 10−2 ± 0.00 < 10−2 ± 0.00 < 10−2 ± 0.00 < 10−2 ± 0.00

15 ✗ < 10−2 ± 0.00 < 10−2 ± 0.00 < 10−2 ± 0.00 < 10−2 ± 0.00 < 10−2 ± 0.00

Table A.2. Baseline — forget identity. Similar to Tab. 1, when we compare a naı̈ve approach of forgetting, by resuming to train only on
the remember set, we get no forgetting, with minimal change in the distribution. The notations are the same as Tab. 1, with (↑) and (↓)
indicating whether higher or lower is better, respectively.
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Figure A.3. Ablation distribution comparison. Comparison of
the NLL distribution of models presented in Sec. 5. Notice how
���LKLR and���LKLR do not preserve the base distribution well.

ferent forget threshold, δ = 2 and δ = 3 respectively.
Tab. A.1d includes results for using a forget set outside of
the training set, i.e., DF ̸⊂ DR. The images in DF are all
from an identity of a holdout set from the same distribution.

These tables show that even for the aforementioned dif-
ferent settings, we are able to forget the identity (DF ) while
reducing the likelihood of a holdout set of its images (D′

F ),
with marginal impact on the remember distribution (DR,
Did

R and DNN
R ).

To add context to the experiment in Sec. 4.1, we also
present results of a baseline experiment. In Tab. A.2 we ex-
plore what happens when we do not force anything on the
forget images, and we use the original training objective of
Normalizing Flows only on the Remember set, i.e. Aθ(DR)
(see (Eq. (5)). We observe that neither the forgetting thresh-
old was reached (Eq. (10)) nor any forgetting occurred. As
we have two opposite objectives, it is natural to explore a
baseline that performs the negative objective on the forget
set, i.e. L = Aθ(DR)− Aθ(DF ). In this case, the distribu-
tion diverges, and we receive infinite NLL values quickly,
meaning that we do not preserve the structure of the NLL
of DR at all.

Now we turn to inspect whether the time to forget an
identity depends on the number of images the model was
trained on. To do so, we trained an additional base model

just on CelebA. This model was trained on 162,770 images,
while the original one, trained additionally on FFHQ [4],
was trained on 232,770. For both models, training stopped
with the same performance (in NLL) on CelebA’s training
set. In Tab. B.1, we compare the running time of these mod-
els and see that even for a smaller training set the running
time is comparable and fast.

As discussed in Sec. 5, in Fig. A.3 we compare the distri-
bution of NLL values on the training set of the base model,
for different ablated models. Some models are not shown in
the figure, as they have a distribution that is visually indis-
tinguishable from the shown distributions of the base and
tamed models. The figure shows that without using the for-
ward KL divergence loss (���LKLF

), the distribution is worse,
but it’s also more “narrow”, fitting the mode-seeking behav-
ior of the reverse KL divergence. On the contrary, without
the reverse KL divergence (���LKLR

), which is known to be
important for generative tasks, the performance is bad, and
fits the mean-seeking behavior of forward kl divergence, at-
tempting to cover more regions.

Next, we discuss Item (II), showing how our method pre-
serves the NLL distribution of the remember set DR. In
Sec. 4, we showed results focusing on the forget set DF . We
now show results, focusing on DR. This is demonstrated by
showing this distribution before and after taming, as seen in
Fig. A.4. The figure visualizes the differences between the
distributions of the base model (θB) and the tamed model
(θT ), for both the training set and a holdout set. This is
done using the normalized density histogram of these distri-
butions, and also by estimating the parameters of a normal
distribution using the distributions’ observations. The dis-
tribution pairs in Fig. A.4 are all similar, indicating that we
successfully forget the target(s), without heavily impacting
the rest of the distribution.

Next, we discuss the experiment in Sec. 4.3 (Item (III)).
Fig. B.1 shows a more detailed comparison of Fig. 6, addi-
tionally showing the NLL distribution of the tamed model
(θT ) on the original training data. We see that while there
is some decrease in the likelihood of the original training
data, this change is much smaller than the difference be-
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Figure A.4. Preserving the NLL’s distribution of the remember set DR. Normalized density histogram and normal estimation of the
NLL distribution on the base model training set, and a similar holdout set. The different plots correspond to models that were tamed
to forget images of a specific identity, with a varying number of images. These plots suggest that when taming, the change of the DR

distribution is minor.

tween the original training data D and the remember set DR,
i.e., {− log pθT (D)} and {− log pθT (DR)}, respectively.

In Fig. B.1, We evaluate the impact of the forget set size
(|DF |) on our method, w.r.t. the experiment in Sec. 4.3.
As the figure shows, when the size of DF is small (i.e.,
|DF | < 40) the average likelihood quantile remains near
zero. When |DF | > 40, the average likelihood quantile in-
creases. This is aligned with the different settings of our

method, as we showed in Sec. 4.2 where we used larger sets
of forget images DF .

Next, we discuss the effect of batch size on the variance
of the KL loss, Var(LKL). In every SGD iteration, we com-
pute the distribution of the remember set DR, according to
a sampled batch (see line 3 in Algorithm 1). The size of
the sampled batch can affect our loss term. Specifically,
we can look at the loss that compares the sampled remem-



# Images CelebA+FFHQ CelebA

T[minutes] T[%] T[minutes] T[%]

1 3.2 0.02% 3.9 0.04%
4 9.3 0.06% 9.0 0.09%
8 16.2 0.09% 16.5 0.16%
15 17.6 0.15% 21.9 0.21%

Table B.1. Training size effect on running time. We compare the
running time for taming an identity using two different base mod-
els (θB), trained using different training set size (D). T[minutes]
is the time taken to run this experiment in minutes. T[%] is the ex-
periment’s runtime divided by the base model’s total training time,
in percentages.

QDθB ,θT (·) ( Eq. (15))

# Images
Forget

threshold DF (↑) DR(↓)

1 ✓ 0.34± 0.36 −0.25± 0.01
4 ✓ 0.24± 0.14 −0.24± 0.01
8 ✓ 0.24± 0.14 −0.26± 0.01

15 ✓ 0.25± 0.15 −0.26± 0.01

Table B.2. Forget — other modality. When forgetting a different
modality (CIFAR-10 [7]) in an experiment similar to Sec. 4.1, we
are able to reduce the likelihood of a set of images, in this case
images from the same class of objects.

ber distribution and the new distribution, the LKL(·) loss.
As the sample size decreases, the loss’s variance increases.
Fig. B.2 shows an analysis of this effect. The plots show
that when computing the distribution with extremely small
batch sizes such as 1, 2, 4 the variance is extremely high,
while it drops for bigger batches.

Lastly, we discuss an experiment on a modality that is
different than faces. Tab. B.2 contains results for an ex-
periment on CIFAR-10 [7]. This experiment has a similar
setting to Sec. 4.1, forgetting a specific set of images. In
this case, instead of focusing on images with the same iden-
tity, we focus on images from the same class of objects, e.g.
airplanes. We see that in this case, with images containing
different objects, a domain that is less aligned than human
faces, we are also able to forget the specific forget set we
intended, without harming the likelihood of other images in
the remember set.

C. Visualizations

In this section, we show different generated samples of
tamed models from the different experiments in Sec. 4.

We begin with Fig. C.1, showing the generated images
when experimenting without any access to the training set
as in Sec. 4.3. This figure shows how the similarity be-
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Figure B.1. Forget without training data access. Full compar-
ison of Fig. 6. Here we see not only the NLL distributions of
θT on the remember set (solid), but also on the training set D
(dashed pink). The distribution of the base model θB on the train-
ing data (dashed purple) is close to the tamed model on the same
data, while the forget images (orange dots) reach the forget thresh-
old.

tween the remember set DR and the training set D affects
the generation quality. Using a similar distribution (CelebA
validation set) maintains generation quality, while using a
more distant distribution (FairFace [3]) does not.

Next, we discuss additional examples for taming an at-
tribute (Sec. 4.2).

In Fig. C.2, we see that an identity possessing blond hair
can quickly be scrubbed of that attribute (1st row). Identi-
ties without blond hair will obtain a darker hair color as a
result of this process, as we globally reduce the blond hair
attribute (2nd row). This property can be used to debias a
model, e.g., a model that generates images of females with
higher probability, can be tamed in order to achieve a higher
generation probability of males (as shown in the 7th row).
This figure also shows that the changes are related to the
data in the forget and remember sets. This can be seen in
the 4th row, as the blond hair change on the male identity is
less impactful compared to the female ones. This is due to
the fact the training data (CelebA) only has 0.85% images
of blond males.

Fig. C.3 shows how while we change an attribute glob-
ally, when we focus on a single latent vector, even in differ-
ent experiments, the attribute change is applied while pre-
serving the original identity.

Additional examples that demonstrate different attribute
changes (Sec. 4.2) are available in the supplied webpage
“videos.html”. The videos depict the process of our
method, including additional examples that describe the ef-
fect of coupled attributes in the dataset on our procedure.
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Figure C.1. Taming with no training set. Images generated using
models that were tamed without any training data access, along
the number of iterations of our method (0, 20, 40). The left side
shows that as the remember set is more distant than the training set
(Fairface [3]), the results are worse compared to unseen data from
a closer distribution (CelebA validation set).



−
B

lo
nd

+
B

lo
nd

Sm
ile

+
M

al
e

0 25 50 75 100 125 150

Figure C.2. Change attributes process. By examining the same latent vectors during our process, we are able to visualize the change of
different attribute (the bottom row includes the number of iterations).



+
B

ea
rd

−
O

pe
n

M
ou

th
+

E
ye

gl
as

se
s

+
B

al
d

0 25 50 75 100 125 150

Figure C.3. Change different attributes of a single identity. We visualize the change of a single identity by visualizing the changes in
different experiments on the same latent vector (the bottom row includes the number of iterations).
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