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A. The hyperboloid model

Consider the upper-sheet of a d-dimensional hyperboloid Hd

k
⇢ Rd,1 as defined in (2). At each of its points x 2 Hd

k
, we

have the tangent space as TxHd
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where kvkL =
p
hv,viL, with h·, ·iL the Lorentz pseudometric (1). Given two points x,y 2 Hd

k
, the hyperbolic distance
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(x,y) is obtained by integrating the velocity of the geodesic between them,
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We can verify that the hyperboloid Hd

k
and the Poincaré ball P d

k
are isometric models of d-dimensional hyperbolic space

with curvature k i.e., for x,y 2 Hd

k
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(x,y) = d

P
d
k
(⇧(x),⇧(y)) , (25)

where ⇧ is the stereographic projection defined in (4). A comparison of geometries with constant positive, zero and negative
curvature is presented in Table 6. Note that h·, ·iE denotes the Euclidean inner product (dot product).

Manifold Curvature Geodesic d(x,y)

Euclidean Rd k = 0
p
hx� y,x� yiE

Spherical Sd

k
⇢ Rd+1 k > 0 1p

k
acos(khx,yiE)

Hyperbolic Hd

k
⇢ Rd,1 k < 0 1p

�k
acosh(khx,yiL)

Table 6. Overview of the different isotropic geometries.

Hyperbolic distance for fixed-radius embeddings Consider x and y in P d

k
such that kxk2 = kyk2 = r and \(x,y) = ↵.

The hyperbolic distance between x and y can be computed using (25). Recall that �(u) = 2/(1+kkuk22). We have then
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Plugging this in (24) yields expression (21),
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B. Models

Backbone Similarly to [13], the convolutional backbone used in all experiments consists of a sequence of 4 convolutional
blocks, each of which composed of 3 ⇥ 3 2D Convolutions with 64 filters and stride 1, 2D Batch Normalization, ReLU
activation and 2D MaxPool. The 4th block has as many filters as dimensions in the output manifold.



Scheduler A StepLR scheduler was used to train all models. In the CUB dataset, the initial learning rate of 10�3 is decayed
by a factor of 0.8 every 40 epochs both in the 1s5w and the 5s5w few-shot settings. In the MiniImageNet dataset, the initial
learning rate of 5 ⇥ 10�3 is decayed by a factor of 0.5 every 80 epochs in the 1s5w setting (trained as 1s30w), and by 0.5
every 60 epochs in the 5s5w scenario (trained as 5s20w).

Image transformations In the case of the CUB 200 2011, we crop the images according to the bounding boxes provided
in the dataset before other image transformations. The data augmentations performed during training were: 1) Zero padding
along the smallest dimension to produce a square image; 2) Random crop resized to 84 ⇥ 84 ⇥ 3; 3) Image jitter with 0.4
brightness, 0.4 contrast and 0.4 hue; 4) Random horizontal flip; 5) Normalization. At test time, the images were zero padded,
resized to 84⇥ 84 and normalized.
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