Supplementary Material

1. Proof of the proposed approximation

The details of how we obtain the model presented in
equation (5) in the main paper can be found below:
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We have to make three assumptions or hypothesis to de-
rive this model:

* H;: Each domain is of equal importance in our sce-
nario, i.e. if we consider the probability of the sample
belonging to a certain domain uniform when we have
no a priori on the sample.

o Ho: p(x|s) = p(As(x)[s), i.e. the distribution of
fo(Xtox) With 240 € D is isotropic.

o Hs:
Gaussian of mean ;%" and standard deviation o

Ag(x)|s NN( pE ok, ie. x)|s follows a
k*

‘H, is reasonable in practice as test sample can come
from any domain with equal probability. #, and Hg are
made to simplify the model, make it easy to store in mem-
ory and to compute. These hypothesis transform the mix-
ture weights model into a Gaussian Mixture Model on the
distances to the prototypes (L2-GMM). Please note that in
our case the ensembling with the Mahanalobis distance is
equivalent to the well known classical GMM using directly
the features and the prototypes to derive p(x € D).

We empirically observe in the ablation study (Table (4)
in the main paper) that the usage of this Gaussian Mixture
Model on the distances to the prototypes yields superior
performance compared to a GMM using directly the fea-
tures and the prototypes. We suspect that these approxima-
tions are efficient because they reduce the coordinate-wise
noise in the standard deviations inherent to the Mahanalo-
bis distance. Gaussian seems like a good approximation of
Ag(x)
tributions could be investigated in the future, such as the
Weibull Distribution or the Generalized Pareto Distribution.
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2. Algorithm

The detailed algorithm of the proposed MoP-CLIP ap-
proach is shown in Algorithm 1. x denotes the samples
to be classified, fp and fy the visual and text encoder of
the network and PV, PT the sets of visual of text prompts
and £ the domains prototypes learned during training. G =
{(p¥;0%),8 = 1..N,k = 1..K} denotes the parameters of
the Gaussian distributions learned for the different domains
s and classes k.

Algorithm 1 Inference procedure for the proposed method
1 Input: x; fo; fo; PV PT5 €3 G5
2: Tnit E € OF*N
3: Compute image features: f, < fo(Xtok)
4: Compute matrix D : D; j = || fo — mj||2
s: Compute matrix D’ : D’ <— min; D; ;
6
7
8
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 if F(Ag+(x)) < ¢ (x is In-Domain) then

Wee = 1,Vs # s*, W5 = 0.
Compute prediction using the best prompt:
fork=1,2,.... K do
10: Xpro <~ [Xt0k7 pé* ) xcls]
11: tj + [ph, ¢l
12: Ej o SXP(COS(fe(xpro)vf(,s(tk)))
’ Dl explcos(fo(xpro).fo(ti)))
13:  end for
14: else
15 Compute W using equation (5), D’ and
{(f", o)L
16:  Compute predictions using the different prompts:
17 fors=1,2,...,N do
18: fork=1,2,...,K do
19: Xpro < [Xtoka pga mcls]
20: tj < [Pl ¢l
21 Ep . éXP(COS(fe(xpro)»fé(tk)))
’ > e exp(cos(fo(xpro)ifo(ti))
22: end for
23:  end for
24: end if

25: P <+ E - WT Return P the soft classification vector

3. Additional results

Table 1 emphasizes that S-Prompts performances de-
grade when evaluation is done on unseen domains, and
shows that the proposed MoP-CLIP seems to generalize
better, mitigating the performance degradation under do-
main distributions. In particular, the left-side section reports
the results of S-Prompts trained separately on the differ-
ent domains (x-axis) and evaluated in each of the domains
(y-axis). For example, 67.41 denotes the accuracy of the
model trained solely on Infograph domain and tested on the
Clipart domain. We use blue to denote the performance of



Table 1. Empirical motivation of resorting to the prediction ensembling scheme for OOD situations. Classification accuracy across
DomainNet domains using different specialized prompts, for both single and ensembling predictions. The results blue denote the accuracy
with the in-domain prompts, whereas results in magenta denote the accuracy using the best out-of-domain prompts (prompts from all
domains except the current one). Furthermore, results in bold (last column) denote the highest accuracy amongst out-of-domain methods.
For 5 out of 6 domain sets, the proposed prediction ensembling method yields higher accuracy than the best out-of-domain prompt. This
suggests that the ensembling technique is overall relevant when test examples are from a novel domain (i.e. unseen during the training).

| Clipart Infograph  Painting  Quickdraw  Real  Sketch | S-Prompts (ID) | S-Prompts (OOD) | Pred. Ens. (OOD)
Clipart 80.14 67.41 64.77 38.90 69.49 69.02 78.57 69,31 73.48 (+4.01)
Infograph 44.59 60.65 43.24 15.36 48.93 36.08 58.72 46.50 50.40 (+1.47)
Painting 59.56 61.88 78.00 24.97 64.43 57.32 74.76 61.88 67.93 (+3.50)
Quickdraw 16.80 13.11 8.30 46.65 13.58 17.29 46.59 16.79 16.78 (—0.51)
Real 78.35 79.38 75.83 45.44 87.94 71.79 85.19 77.38 83.48 (+4.10)
Sketch 61.51 59.18 55.22 30.43 61.59 72.97 69.76 58.87 66.31 (+4.72)

in-distribution samples (when train and test data are drawn
from the same distribution), which can be considered as an
upper bound, as there is no distributional drift between sam-
ples. Then, both results in black and magenta highlight the
results for each tested domain, assuming that the tested do-
main remains unknown and all training samples come from
the same domain (specified in each column). Note that
across each test domain we highlight the results from the
best model in magenta. If we look at the results obtained by
S-Prompts under ID and OOD conditions (S-Prompts (ID)
and S-Prompts (OOD) columns), we can observe that: i) its
performance deteriorates under domain shift and ii), the se-
lection criterion of S-Prompts is not always optimal. On the
other hand, the proposed approach (last column) substan-
tially outperforms S-Prompts in five out of six domains, as
well as the best out-of-distribution model (in magenta).

4. Analysis of memory-space complexity

One of the main benefits of the proposed approach com-
pared to memory replay strategies is its much lighter storage
requirements. Indeed, memory replay methods typically
store 50 images as exemplars per class and per domain,
which amounts for 15M float numbers per domain in the
case of CDDB (2 classes per domain and image dimensions
of 3 x224 x 224). In contrast, MoP-CLIP stores one pro-
totype per class per domain, along with one distance mean
and one distance standard deviation. We additionally store
aset of (10 x 768 and 16 x 768) visual and text prompts per
domain, which, in total, amounts for 0.02M float numbers
per domain (in CDDB).

5. Impact of the prompt length

We used LY 10 in all of our experiments to com-
pare fairly with [39]. However, we now study the impact
of LV on the Average Accuracy on the CDDB-Hard dataset,
whose results are depicted in Fig. 1. These results empha-
size that i) the performance of the proposed MoP-CLIP is
more stable than S-Prompts [39] with respect to LV, and ii)
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that our method systematically yields higher performance
on the Unseen Domains. We can therefore state that our
proposed MoP-CLIP is more robust in real world scenarios.
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Figure 1. Impact of the prompt length L” (Sec. 3.2) on the Aver-
age Accuracy, evaluated on the ID and OOD domains of CDDB-
Hard.



