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In this supplementary material, we provide details re-
garding:

1. the datasets used in our experiments,

2. the implementation of incremental learning and pre-
training algorithms,

3. the method for selecting linear regression models,

4. the analysis of different factors on the accuracy of in-
cremental learning models.

1. Target datasets

We experiment with a wide variety of datasets in terms
of domain, granularity, number of samples per class, and
complexity of patterns to recognize. We select thirteen
datasets containing 100 classes and three datasets con-
taining 1000 classes as follows. The datasets IMN100;
and IMN100y are obtained by randomly sampling 100
classes from ImageNet-21k [2] which are not present
in ILSVRC [11]. Flora is a thematic subset of Ima-
geNet obtained by sampling 100 classes under the con-
cept ‘flora’, without intersection with ILSVRC. We also
used 100-classes subsets of WikiArt [12] (Art100), Casia-
align [16] (Casial00), Food101 [!] (Food100), FGVC-
Aircraft [8] (Airl00), MTSD [7] (MTSD100), Google
Landmarks v2 [15] (Land100), Logo2K [14] (Logo100) and
Quickdraw [3] (Qdraw100). We build two fine-grained sub-
sets from iNaturalist [ 1 3] (2018 version) by selecting (i) am-
phibia species (Amph100) and (ii) fungi species (Fungi100)
which do not intersect with the ILSVRC dataset. Finally,
we also use three 1000-classes subsets of Casia-align (Ca-
sialk), Google Landmarks v1 [9] (Land1k), and iNaturalist
(iNatlk), respectively.

The average number of images per dataset is reported in
Table 1. For reproducibility purposes, we will provide in
a repository the distribution of images between the training
and test subsets of each dataset, as well as the distribution
of classes between the steps of the incremental learning pro-
cess.

Dataset ‘ Htrain ‘ Ptest ‘ Otrain ‘ Otest
Casial00 | 250.0 | 50.0 0.0 0.0
Food100 750.0 | 250.0 0.0 0.0
Land100 300.0 | 50.0 0.0 0.0
IMN100; 340.0 | 60.0 0.0 0.0
IMN1002 | 340.0 | 60.0 0.0 0.0

Flora 340.0 | 60.0 0.0 0.0
Logo100 80.0 15.0 0.0 0.0
Qdraw100 | 500.0 | 100.0 0.0 0.0

Art100 150.0 | 25.0 0.0 0.0
MTSD100 | 100.0 | 20.0 0.0 0.0

Air100 80.0 20.0 0.0 0.0
Fungil00 | 300.0 10.0 0.0 0.0
Amph100 | 300.0 10.0 0.0 0.0

Landlk 37437 | 20.0 | 103.83 | 0.0

iNatlk 300.0 10.0 0.0 0.0
Casialk 60.0 28.0 0.0 0.0

Table 1. Number of images per class in the train and test subsets of
each target dataset. The average and the standard deviation of the
number of images per class are denoted by 1 and o respectively.

2. Implementation
2.1. Incremental learning algorithms

We will release the code for reproducing our experi-
ments.

BSIL. Our implementation of LUCIR [5] algorithm with
a Balanced Cross-Entropy loss [6] is based on the original



repository of [5]'. LUCIR was initially proposed as a CIL
algorithm with rehearsal. In practice, as we focus on EF-
CIL, we set the size of LUCIR’s memory buffer to zero.
DSLDA. Our implementation is based on the original
repository of [4]%.
FeTrIL. Our implementation is based on the original
repository of [10]°.

2.2. Pre-training algorithms

The pre-trained models are taken from the repositories
indicated in the footnotes: DINOv2*, BYOL’, and DeiT®.
We also used the method MoCov3’ for training models with
a ResNet50 architecture in a self-supervised manner on the
initial data subset of each target dataset.

2.3. Fine-tuning

We use PyTorch® implementation of ResNet50 architec-
ture and the ViT-Small transformer architecture from the
checkpoints of DINOv2* and DeiT® we introduced in Sub-
section 2.2. When fine-tuning the models, in the case of
ResNet50, we freeze the first 3 convolutional blocks and
only update the parameters belonging to the last convolu-
tional block, as well as the linear layer. In the case of ViT-
Small, we freeze the blocks up to block 8 and update the
blocks 9 to 11, as well as the linear layer. In both cases, the
parameters are updated using a learning rate equal to one-
tenth of the value of the base learning rate used to pre-train
the model.

3. Linear Regression
3.1. Variable selection

We use the Python module statsmodels for our lin-
ear regressions. We first consider a broad range of explana-
tory variables:

e Accy: the accuracy of the first state,
e Data: dummy variable for the type of target dataset,

e Train: dummy variable for the initial training strat-
gy,

e Incr: dummy variable for the incremental method
used,

lhttps://github.Com/hshustc/CVPRl9_Incremental_
Learning
2https://github.com/tyler-hayes/Deep_SLDA
3https://github.com/GregoirePetit/FeTrIL
“https://github.com/facebookresearch/dinov2
Shttps://github.com/yaox12/BYOL-PyTorch
Shttps://github.com/facebookresearch/deit
Thttps://github.com/ facebookresearch/moco-v3/
tree/main
8https : / / pytorch . org / vision / main / _modules /
torchvision/models/resnet.html#resnet50

Variable‘ p-value ‘ R?

Aceq 2.96e-240 | 0.63
Train 1.17e-87 | 0.33
Data 2.25-55 0.23
Incr 7.52e-29 | 0.11
Nynean 8.16e-20 | 0.07
Small 1.84e-05 | 0.02
Width 9.78¢e-03 | 0.01
B 1.05e-01 | 0.00
N 2.41e-01 | 0.00
Ny 2.87e-01 | 0.00

Table 2. Variables predicting accuracy, sorted by decreasing im-
portance

* Nmean: the mean number of images per class in the
experiment,

e Small: binary variable encoding if the training images
are so small that they have to be up-scaled,

e Width: mean width of the images used for the exper-
iment,

* B: binary variable encoding for the 2 possible CIL sce-
narios (i.e. either 10% or 50% of the total number of
classes learned in the initial step of the process),

¢ N: the total number of classes,
e Nj: the number of images in the first state.

It has to be noted that some of these variables are highly
collinear with each other since they are properties of the
dataset of the experiment.

We first perform 1-variable regressions of the incremen-
tal accuracy Acc and the forgetting I'. We identify the most
important variables by looking at the R? of the regressions
that have a sufficiently small p—value (at the .05 threshold).
Results are presented in tables 2 and 3. We select the four
most important variables and use them to fit more complex
linear regression models that combine these selected vari-
ables.

3.2. Model selection

We perform linear regressions with many different com-
binations of the selected variables. We find that introduc-
ing product variables, such as T'rain x Incr with the in-
tent of directly modeling the interactions between the ini-
tial training strategy and the incremental method, introduces
collinearity problems. Therefore, we choose to study such
interactions following the protocol presented in Section 5 of
the main paper.


https://github.com/hshustc/CVPR19_Incremental_Learning
https://github.com/hshustc/CVPR19_Incremental_Learning
https://github.com/tyler-hayes/Deep_SLDA
https://github.com/GregoirePetit/FeTrIL
https://github.com/facebookresearch/dinov2
https://github.com/yaox12/BYOL-PyTorch
https://github.com/facebookresearch/deit
https://github.com/facebookresearch/moco-v3/tree/main
https://github.com/facebookresearch/moco-v3/tree/main
https://pytorch.org/vision/main/_modules/torchvision/models/resnet.html##resnet50
https://pytorch.org/vision/main/_modules/torchvision/models/resnet.html##resnet50

Variable| p-value | R?
Incr 2.20e-222 | 0.62

Train 6.46e-15 | 0.08
Accy 7.71e-10 | 0.03
Data 2.66e-03 | 0.02

N 7.50e-04 | 0.01
B 3.43e-02 | 0.00

Ny 4.13e-02 | 0.00

Nmean 1.07e-01 | 0.00
Small 6.88e-01 | 0.00
Width | 7.17e-01 | 0.00

Table 3. Variables predicting forgetting, sorted by decreasing im-
portance
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Figure 1. Diagnostics of the regression for the accuracy as in Equa-
tion 1.

We select the following model:
Acc ~ Incr + Train + Data. (D)

The output of the regression is shown in Figure 7. To verify
the quality of the regression, we also plot the residuals along
with a Q-Q plot to verify their normality, as well as a scale-
location plot to verify homoscedasticity (constant variance),
and a residual vs. leverage plot to look for possible influen-
tial outliers. All of these diagnostics are shown in Figure 1.

4. Influence of factors on accuracy

Let us recall the overall pairwise comparisons in Figure
3. We explore the effects of other variables by splitting the
data with respect to a studied variable and report the regres-
sion results separately.

* Figure 4 presents the results for each target dataset,

* Figure 5 presents the results for each incremental algo-
rithm,

* Figure 6 presents the results depending on the number
of classes in the initial state.
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Figure 2. Overall pairwise comparisons on Acc
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Figure 3. Overall pairwise comparisons on Forgetting
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Figure 4. Pairwise gain of accuracy per dataset
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Figure 5. Pairwise gain of accuracy per method
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