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1. Introduction

This supplementary material accompanies the main pa-
per titled IndustReal: A Dataset for Procedure Step Recog-
nition Handling Execution Errors in Egocentric Videos in
an Industrial-Like Setting. This document offers readers a
comprehensive and more in-depth understanding of the con-
ducted research.

Section 2 provides additional information on the ac-
tion recognition (AR), such as the distribution of class in-
stances, implementation details, and further quantitative re-
sults. Section 3 provides implementation details on assem-
bly state detection (ASD) and outlines additional qualitative
as well as quantitative results. Lastly, Section 4 provides
further clarification on the motivation for the proposed pro-
cedure order similarity (POS) evaluation metric, implemen-
tation details and pseudo code describing the procedure step
recognition (PSR) baselines, and a qualitative example.

2. Action recognition

2.1. Annotations

Annotators were instructed to mark the action start when
the participants initiate the action, rather than when partic-
ipants touch the relevant object(s). Figure 2 demonstrates
the action class instances and long-tail distribution for ac-
tion recognition annotations in the IndustReal dataset. As
can be seen, the check instruction action class is the most
common, followed by align objects. The long-tail distribu-
tion demonstrates that 23 action classes (out of 73) consti-
tute 80% of the dataset. All actions were annotated using
the ELAN tool [2]. Two annotators annotated the entire
dataset, and each annotator reviewed the annotations of the
other.

2.2. Implementation details

The AR baselines (SlowFast [5] and MViTv2 [9]) are
trained using the SlowFast library [5], and some baselines
are pre-trained on MECCANO [10]. For all baselines, the

0: take_short_brace
1: align_objects
2: take_pin_short
3: plug_short_pin
4: take_tooth_washer
5: take_nut
6: tighten_nut
7: check_instruction
8: take_partial_model
9: take_long_brace
10: take_screw_pin
11: take_instruction
12: put_instruction
13: take_pin_long
14: put_pin_long
15: take_wing_beam
16: plug_screw_pin
17: take_round_washer
18: take_acorn_nut
19: tighten_acorn_nut
20: take_pin_middle
21: take_wheel
22: plug_pin_long
23: take_wing
24: put_wing

25: plug_partial_model
26: plug_pin_middle
27: take_pulley
28: plug_wheel
29: browse_instruction
30: fit_short_brace
31: fit_tooth_washer
32: fit_round_washer
33: fit_long_brace
34: fit_nut
35: put_screw_pin
36: put_wheel
37: check_wheel
38: pull_wheel
39: loosen_nut
40: put_nut
41: pull_objects
42: put_pin_middle
43: take_objects
44: put_partial_model
45: put_objects
46: pull_pin_short
47: put_pin_short
48: put_long_brace
49: pull_partial_model

50: fit_wheel
51: check_partial_model
52: put_short_brace
53: fit_objects
54: put_round_washer
55: fit_pulley
56: fit_wing_beam
57: put_tooth_washer
58: pull_pin_middle
59: put_wing_beam
60: put_pulley
61: pull_screw_pin
62: put_acorn_nut
63: loosen_acorn_nut
64: fit_partial_model
65: take_small_screw_pin
66: plug_small_screw_pin
67: put_small_screw_pin
68: fit_acorn_nut
69: fit_wing
70: pull_pin_long
71: plug_objects
72: pull_small_screw_pin
73: tighten_tooth_washer
74: loosen_tooth_washer

Figure 1. Normalized confusion matrix for action recognition
(MViTv2 [9] pretrained on Kinetics [7]).

configuration yaml files are provided on the dataset repos-
itory, such that they can directly be used to reproduce the
reported results. The baselines are trained on one Nvidia
Tesla v100 GPU.
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Figure 2. Visualization of the distribution of action recognition labels in the IndustReal dataset.

Model Modality
Top-1

acc. [%]
Top-5

acc. [%]

SlowFast [5] RGB 60.39 85.21
SlowFast [5] Depth 43.20 73.98
SlowFast [5] Visible light 53.75 81.48
SlowFast [5] Stereo images 57.72 83.03

MViTv2 [9] RGB 65.25 87.93
MViTv2 [9] Depth 49.08 76.51
MViTv2 [9] Visible light 58.59 83.50
MViTv2 [9] Stereo images 58.86 83.55

Table 1. AR performance benchmark on IndustReal per modality.
All models are pre-trained on Kinetics [7].

2.3. Quantitative and qualitative analysis

Figure 1 shows the normalized confusion matrix for ac-
tion recognition on the IndustReal test set. Specifically, it
shows the performance of the MViTv2 [9] transformer, pre-
trained on the Kinetics dataset [7]. It is observed that al-
though the performance is generally adequate, the model
confuses actions that are visually similar, such as take and
put the short brace, and tighten and loosen the acorn nut.

Furthermore, the performance of both the MVit and
SlowFast architectures on the RGB, depth, visible light, and
stereo image modalities are outlined in 1. For both architec-
tures, RGB outperforms the other modalities, likely due to
the extensive pre-training on the (RGB) Kinetics [7] dataset.
Due to hardware limitations on the current HL2 operating
system, it is not possible to access the short-throw depth and
RGB camera simultaneously, hence the short-throw depth
data are not provided. However, the stereo images can be
used to generate high-resolution depth maps, if required.

3. Assembly state detection
3.1. Implementation details

All ASD baselines make use of the YOLOv8-m [6] back-
bone. The baselines were trained with a learning rate of
5e-4 using the Adam optimizer, warm-up of 0.5 epoch, pa-
tience of 5 epochs, and early stopping enabled. Data aug-
mentation is limited to HSV (with default fractions) and im-
age scaling with a +/- gain of 0.2 for all models. For the
model trained solely on synthetic data, random occlusions
and image mix-up are used as additional data augmentation
techniques. The random occlusions are generated using a
single rectangle with random color and size, that covers at
least 50% of the bounding box and forces the class label to
be background. These occlusions are generated on 33% of
the training images. Image mix-up is performed by merging
a synthetic training image with a random image taken from
VOC2012 [4], weighing the VOC image with a random fac-
tor between 0 and 0.2.

All baselines are trained on a single Nvidia Tesla v100.

3.2. Quantitative and qualitative analysis

Two samples from the synthetic dataset constructed with
Unity Perception [1], used to complement the real-world
IndustReal annotations, are demonstrated in Fig. 3. Fur-
thermore, the precision-recall curve of B3 on the test set
is shown in Fig. 4. Figure 5 highlights the prediction of
the B3 ASD baseline on the IndustReal test set. The figure
highlights correct and incorrect predictions for challenging
samples.

4. Procedure step recognition
4.1. Procedure order similarity metric

The main paper proposes to measure the quality of a pre-
dicted sequence order ŷ (e.g., ‘ACB’) by comparing it to



State 11110111110

(a) Sample one.

State 11110111100

(b) Sample two.

Figure 3. Samples from the synthetic dataset, generated using the
publicly available 3D models of all parts and Unity Perception [1].

Figure 4. Precision-recall curve on ASD for YOLOv8-m [6],
trained on a combination of real and synthetic data, evaluated on
the IndustReal test set.

a similarity measure with respect to the ground-truth se-
quence y (e.g., ‘ABC’) using string similarity. Note that
this is a simplified denotation of ŷ, as it does not include
the prediction time t̂σ(i) and confidence cσ(i). Approaches
on temporal action segmentation use the Levenshtein (Lev)
distance [8], normalized over the length of the ground-truth
sequence . We propose to make two changes to this metric,
which are outlined in more detail here than in the section in
the main paper.

The edit distance is defined as the minimum number of
edits required to go from a predicted to a ground-truth se-
quence. For the Lev distance, there are three possible edits
to a sequence: insertions, deletions, and substitutions. In-
sertions and deletions refer to inserting or removing an el-
ement of the sequence, e.g. “ABC ” to “ABCD” requires
the insertion of a “D”. Substitutions consist of replacing an
existing sequence prediction for another, e.g. “ABCE” to
“ABCD” requires a single substitution of “E” to “D”. The
first change to the edit distance proposed in [8] is to weight
substitutions with a factor of 2, rather than weighting them
equally as insertions and deletions, which are weighted by
a factor of 1. This essentially eliminates substitutions, as a
deletion followed by an insertion is of equal edit distance.
The exclusion of substitutions is proposed to prevent the

Table 2. Behaviour of the procedure order similarity (POS)
metric for various predictions to the ground truth sequence y
“ABCD”, compared to using the Lev-based similarity proposed
in [8]. wDamLev indicates the weighted DamLev as proposed in
Section 4.1, prediction errors are are underlined.

ŷ ABDC ADCB DBCA BCD

Edits (Lev) 2 2 2 1
Edits (DamLev) [3] 1 2 2 1
Edits (wDamLev) 1 3 4 1

Edit (Lev) [8] 0.50 0.50 0.50 0.75
POS (DamLev) 0.75 0.50 0.50 0.75
POS (wDamLev) 0.75 0.25 0.00 0.75

metric from favouring models with many false positives.
Models that falsely predict a step when it is not observed,
would be penalized less than models that do not predict
those false steps.

The second proposed modification is to use the
Damerau-Levenshtein (DamLev) [3] edit distance, rather
than the Lev distance. The DamLev edit distance allows a
fourth edit method, namely transpositions, which are swaps
between two subsequent elements in the sequence, e.g.
“ABDC” to “ABCD”. Transpositions are included in our
proposed procedure order similarity, as it is intuitive to pe-
nalize “ACB” less compared to “CAB”. Transpositions, like
insertions and deletions, are weighed with a factor of 1.

Similarly to Lea et al. [8], it is proposed to normalize the
edit distance. The aforementioned work normalizes with
respect to the length of either the ground truth or the predic-
tion, depending on which is longer. We propose to always
normalize with respect to the length of the ground truth, as
this prevents models with many false positives from being
normalized favourably. Combined with the elimination of
substitutions, the proposed normalization no longer bounds
the normalized distance between 0 and 1. For instance, a
ground truth of (1, 2, 3) and a prediction of (4, 5, 6) would
result in a normalized edit distance of 2 (3 deletions fol-
lowed by 3 insertions). Therefore, we propose to clip all
normalized edit distances which are larger than 1. Since no
prediction at all would yield a normalized edit distance of
unity, distances larger than that are considered particularly
poor predictions. Consequently, the difference between bad
and worse predictions is uninteresting and not exploited in
this metric. Finally, the clipped, normalized edit distance is
subtracted from the unity value. This results in a similarity
metric, rather than a distance metric. Thus, the procedure
order similarity (POS) between y and ŷ is defined by Equa-
tion 4 in the main paper. A POS value of unity signifies a
perfect match between the prediction and the ground truth
(y = ŷ). The behaviour of the POS metric, as well as the



State 10010110000 67%

(a) Prediction of the correct class, de-
spite motion blur and a part occluded
by the assembly.

State 11110111111 30%

(b) Correct prediction (with low con-
fidence) for final state, despite a
clearly misaligned front wheel as-
sembly.

State 11110111111 92%

(c) Incorrect prediction (with high
confidence) for the completed model,
while the washer and nut for the front
wheel assy are not yet completed.

State 11101111111 93%

(d) Incorrect prediction (with high
confidence) for completed model, as
the rear assy is incorrectly assembled
due to a missing rear pulley.

Figure 5. Assembly state detection predictions on the IndustReal test set, using YOLOv8-m [6] (B3 in main paper).

Table 3. Demonstration of the behaviour of PSR metrics on some example predictions. A perfect POS, F1 score, or delay individually does
not give sufficient information regarding overall performance. The combination of the metrics provides the best insight into model quality.

Action | observation time POS F1 score Delay τ

Ground truth a0 | 5 s, a1 | 10 s, a2 | 15 s, a3 | 20 s – – –

Prediction 1 a0 | 5 s, a1 | 10 s, a2 | 15 s, a3 | 20 s 1.00 1.00 0.0 s

Prediction 2 a0 | 5 s, a1 | 10 s, a3 | 20 s, a2 | 25 s 0.75 1.00 2.5 s
Prediction 3 a0 | 5 s, a1 | 10 s, a3 | 20 s 0.75 0.86 5.0 s
Prediction 4 a3 | 20 s, a2 | 25 s, a1 | 30 s, a0 | 35 s 0.00 1.00 5.0 s
Prediction 5 a0 | 5 s, a1 | 5 s, a2 | 10 s, a3 | 15 s 1.00 0.40 0.0 s

DamLev edit distance, is illustrated in Tab. 2.
As mentioned in the main paper, looking exclusively at

the POS metric is not sufficient for two reasons. Firstly, it
does not penalize false positive predictions, if the action is
later indeed correctly completed. Secondly, POS does not
take time delay into account. For instance, a model could
guess the order correctly before any step is completed, and
obtain a perfect POS score. For these reasons, two com-
plementary metrics are selected: F1 score and the average
delay τ . Table 3 demonstrates the behaviour of all three
metrics and outlines why the combination of them is essen-
tial.

4.2. Implementation details

The three baselines towards PSR that are evaluated in
the paper, are further outlined in this section. Specifically,
Algorithm 1 describes B1, Algorithm 2 describes B2, and
Algorithm 3 describes B3. B1 consists of the most straight-
forward approach, where each detected assembly state that
differs from the previously observed state, triggers the com-
pletion of all steps required to arrive at the detected state.
B2 accumulates the prediction confidences over time, there-
fore filtering the ASD predictions, resulting in improved
POS and F1 score at the cost of an increased delay τ . B3
accumulates the confidences, like B2, and additionally re-
stricts the state transitions to the ones that are expected in
the procedure. Only the expected transitions are used to
predict completed procedure steps.

input : List of ASD predictions ˆASD (in video Xi)
output: PSR predictions ŷ
ŷ ← empty list;
ASDcurr ← ˆASD [0];
T ← 0.5 ; /* Conf. threshold */

for f ∈ {0 . . . len( ˆASD)} {
state, conf ← getHighestPred( ˆASD [f ]);
if conf ≥ T then

if ASDcurr ̸= state then
append state to ŷ;
ASDcurr ← state;

end
end

}
Algorithm 1: PSR baseline 1

4.3. Qualitative analysis

Figure 6 outlines the ASD predictions on a single video
in the IndustReal test set for the best scoring ASD approach,
as well as the approach trained exclusively on synthetic
data. These predictions are used by the PSR baselines and
can therefore be used to qualitatively analyze the results
from Table 4 in the main paper. It is observed that neither
model is able to detect the error state around frame 1300, re-
sulting in false positives for both PSR baselines. The model
trained only on synthetic data wrongly classifies the second



input : List of ASD predictions ˆASD (in video Xi)
output: PSR predictions ŷ
ŷ ← empty list;
ASDcurr ← ˆASD [0];
confs ← array with zeros for each component;
T ← 8.0 ; /* Conf. threshold */
decay ← 0.75 ; /* Confidence decay */

for f ∈ {0 . . . len( ˆASD)} {
state, conf ← getHighestPred( ˆASD [f ]);
for i ∈ {0 . . . len(state)} {

if ASDcurr,i ̸= statei then
confsi ← confsi + conf ;
if confsi ≥ T then

append statei to ŷ;
ASDcurr,i ← statei;

end
else

confsi = confsi · decay ;
end

}
}

Algorithm 2: PSR baseline 2

input : List of ASD predictions ˆASD (in video
Xi), descriptive set of procedure
information P

output: PSR predictions ŷ
ŷ ← empty list;
ASDcurr ← initialState(P);
confs ← array with zeros for each component;
sexp ← findExpectedStates(P);
T ← 8.0 ; /* Conf. threshold */
decay ← 0.75 ; /* Confidence decay */

for f ∈ {0 . . . len( ˆASD)} {
state, conf ← getHighestPred( ˆASD [f ]);
for i ∈ {0 . . . len(state)} {

if ASDcurr,i ̸= statei then
confsi ← confsi + conf ;
if confsi ≥ T & ASDcurr,i ∈ sexp then

append statei to ŷ;
ASDcurr,i ← statei;

end
else

confsi = confsi · decay ;
end

}
}

Algorithm 3: PSR baseline 3

and last state in the video, explaining the difference in per-
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1: Install front chassis

2: Install front chassis pin

3: Install rear chassis

4: Incorrectly install front-rear chassis pin

9: Install front bracket

10: Incorrectly install front bracket screw

11: Install front wheel assy

12: Install front bracket screw

2

1
2

3
4

3
6

9
10
11

9
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9
11
12

1
2
3
7

3
7

5: Remove rear chassis

6: Install front-rear chassis pin

7: Install rear-rear chassis pin

8: Install rear wheel assy

Figure 6. PSR predictions by B3-S (c1) and B3 (c2), together with
the accompanied ASD classifications by YOLOv8-m [6], trained
exclusively on synthetic data and on a combination of real and syn-
thetic data, respectively. Predictions are shown for a single video
in the IndustReal test set. False and true positive PSR predictions
are highlighted.

formance between B3 and B3-S outlined in Table 4 in the
main paper.

References
[1] Steve Borkman, Adam Crespi, Saurav Dhakad, Sujoy Gan-

guly, Jonathan Hogins, You-Cyuan Jhang, Mohsen Ka-
malzadeh, Bowen Li, Steven Leal, Pete Parisi, et al. Unity
perception: Generate synthetic data for computer vision.
arXiv preprint arXiv:2107.04259, 2021.

[2] Hennie Brugman, Albert Russel, and Xd Nijmegen. Annotat-
ing multi-media/multi-modal resources with elan. In LREC,
pages 2065–2068, 2004.

[3] Fred J Damerau. A technique for computer detection and
correction of spelling errors. Communications of the ACM,
7(3):171–176, Mar. 1964.

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[5] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. SlowFast networks for video recognition. In
Proc. ICCV, pages 6202–6211, Los Alamitos, 2019. IEEE.

[6] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by
Ultralytics, Jan. 2023.

[7] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017.



[8] Colin Lea, Austin Reiter, René Vidal, and Gregory D Hager.
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