Supplementary Material
OmniVec: Learning robust representations with cross modal sharing

Siddharth Srivastava, Gaurav Sharma
TensorTour Inc.

{siddharth, gaurav}@tensortour.com

1. Ablation on increasing number of parame-
ters of base encoders

The details on influence of increasing the number of pa-
rameters termed as Modified encoder, of base modality en-
coders is provided in Table 1. Our observations are as fol-
lows:

OmniVec’s Performance: OmniVec (FT), which is Om-
niVec(Pre.) after fine-tuning, consistently outperforms the
other methods across all datasets. This suggests that fine-
tuning OmniVec is beneficial and leads to superior perfor-
mance.

Base vs Modified Encoder: The Modified Encoder gen-
erally performs better than the Base Encoder. While, the
degree of improvement varies across datasets such as on
datasets like Sun RGBD, we notice a substantial improve-
ment of 5.1 percentage points, others like ImageNet1K and
AudioSet(A) show relatively minor improvements. How-
ever, this relative improvement is significantly lower as
compared to that obtained with OmniVec(Pre.) or Om-
niVec(FT). This suggests that the modifications may be
especially beneficial for certain types of data or tasks,
while training on multiple modalities provides consistent
improvement across all modalities and tasks. This also in-
dicates robustness and versatility achieved by OmniVec.

2. More Implementation Details

In addition to the datasets used for masked pretraining
and training on multiple modalities, we also report results
on additional datasets including both seen and unseen tasks.
We use standard train/test split for each of the datasets for
training and evaluating OmniVec i.e. masked pretraining,
training on multiple tasks, modalities and generalization.

For demonstrating the generalization on unseen datasets,
we compare the results against state-of-the-art methods on
Oxford-IIIT Pets (image classification) [1 1], UCF-101 [15],
HMDBS51 (video action recognition) [7], ScanObjectNN
(3D point cloud classification) [17], NYU v2 seg (point
cloud segmentation) [14] and SamSum (text summariza-
tion) [5]. We evaluate the method on unseen task on KITTI

depth prediction [16]. We obtain results on standard test
sets for each of the tasks.

We do not fine-tune the base OmniVec network on any

of these tasks and term it as OmniVec(Pre.) throughout the
main manuscript (unless specified explicitly otherwise).
The input to the network is the respective modality (text,
image, point cloud, audio etc.). It is encoded with the
respective encoders for these modalities as described in
Table 1 (main manuscript) irrespective of the task.
Segmentation and Summarization. For segmentation and
summarization, we use the same networks as described in
Section 4-Task Heads (main manuscript). For reporting
results with OmniVec(Pre.), we do not fine tune either
encoder or decoder for evaluation on these tasks.
Classification. For classification/recognition tasks, as
the classes differ from our training classes, following
earlier works, we replace the Task Heads with a network
consisting of two fully connected layers and a softmax
classifier. We train these two layers by extracting Om-
niEmbeddings using the pretrained encoders of Table 1
(main manuscript) and the backbone Transformer network.
We term it as OmniVec(Pre.) and we do not fine tune the
backbone or the respective encoders to report results on
it. For reporting results with fine-tuning (OmniVec(FT)),
we use the pretrained OmniVec and fine-tune the network
end-to-end on the respective training sets.
Depth Prediction. We use convolution decoder from [13]
with our common transformer backbone. As the decoder
works on patch wise output from the transformer encoder,
we do not use a linear layer to reduce the features. We
fine-tune the network in an end-to-end manner.

3. Detailed comparison with SoTA

Video Classification on UCF-101. Table 2 shows results
on UCF-101 dataset for action recognition on 3-fold accu-
racy.

Video Classification on HMDBS51 Table 3 shows compar-
ison of state of the art method on HMDB51 dataset.



Dataset Maetric Modality Encoder Base Encoder Modified Encoder OmniVec (Pre.) OmniVec (FT)

AudioSet(A) mAP AST 48.5 494 44.7 54.8
AudioSet(A+V) mAP AST - - 48.6 55.2
SSv2 Top-1 Accuracy ViViT 65.4 68.6 80.1 85.4
ImageNet1K Top-1 Accuracy ViT 88.5 89.1 88.6 92.4
Sun RGBD Top-1 Accuracy  Simple3D-former 57.3 62.4 71.4 74.6

Table 1. Impact of increasing backbone size of base modality encoders. All the base modality encoders above are based on ViT
architecture. We increase the number of parameters equivalent to our OmniVec-4 model, by replicating the number of layers.

Figure 1. More qualitative results on Monocular depth prediction on KITTI test set. (From left to right) Input Image, Depth image
generated using VA-DepthNet, Depth image generated using OmniVec. It can be observed that OmniVec predicts sharper depth around far
away objects and on boundaries.
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Table 2. UCF-101 Action Recogni-
tion. Metric is 3-fold accuracy.

Table 3. Comparison to state-of-the-art
methods on HMDBS51 dataset for Action
Recognition. Metric is 3-split accuracy.

Pets Pets
Method (top-1) _ (top-5)
Omnivore [4] 95.1 99.1
IELT [21] 95.28 -
DINOv2 [10] 96.70 -
EffNet-L2 [3]  97.10 -
OmniVec(Pre.) 97.36 99.3
OmniVec(FT)  99.2 99.7

Table 4. Comparison to state-of-the-art methods
on Fine grained image classification on Oxford-
IIIT Pets dataset. The metrics are top-1 and top-5

accuracy.
Scan Ob-

Method ject NN Method NYUv2 Method R-1 R2 RL

PointConT [9]  90.3 Omnivore [4] 56.8 Pegasus [24] 54.37 29.88 45.89

ReCon [12] 91.3 CMN [§] 56.9 MoCa [23] 55.13  30.57 50.88

ULIP-2 [22] 91.5 OmniVec(Pre.) 58.6 OmniVec(Pre.) 54.81 30.10 51.21

PointGPT [2] 934 OmniVec(FT)  60.8 OmniVec(FT) 58.81 31.1 534
OmniVec(Pre.) 92.10

OmniVec(FT.)  96.10 Table 6. Comparison to state-of-the-art Table 7. SamSum dataset for meeting sum-

methods on NYU v2 for semantic segmen-  marization. Metric are ROGUE scores. Note

Table 5. Comparison to state-  tation. Metric is mean IoU. Note that the net-  that the network has not been fine-tuned on

of-the-art methods on ScanOb-
jectNN for 3D point cloud classifi-

cation. Metric is Overall Accuracy.
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